/usr/share/pyshared/qiime/util.py is in qiime 1.8.0+dfsg-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 | #!/usr/bin/env python
__author__ = "Daniel McDonald"
__copyright__ = "Copyright 2011, The QIIME Project"
__credits__ = ["Rob Knight", "Daniel McDonald", "Greg Caporaso",
"Justin Kuczynski", "Jens Reeder", "Catherine Lozupone",
"Jai Ram Rideout", "Logan Knecht", "Michael Dwan",
"Levi McCracken", "Damien Coy", "Yoshiki Vazquez Baeza",
"Will Van Treuren"] #remember to add yourself if you make changes
__license__ = "GPL"
__version__ = "1.8.0"
__maintainer__ = "Greg Caporaso"
__email__ = "gregcaporaso@gmail.com"
"""Contains general utility code in support of the Qiime project.
A lot of this might migrate into cogent at some point.
"""
from StringIO import StringIO
from os import getenv, makedirs
from operator import itemgetter
from os.path import abspath, basename, exists, dirname, join, isdir, splitext
from collections import defaultdict
import gzip
import sys
import os
from copy import deepcopy
from datetime import datetime
from subprocess import Popen, PIPE, STDOUT
from random import random
from itertools import repeat, izip
from biom.util import compute_counts_per_sample_stats
from numpy import min, max, median, mean
import numpy
from numpy.ma import MaskedArray
from numpy.ma.extras import apply_along_axis
from numpy import array, zeros, argsort, shape, vstack,ndarray, asarray, \
float, where, isnan, mean, std, sqrt, ravel
from biom.table import DenseTable
from biom.parse import parse_biom_table
import biom
from cogent.util.dict2d import Dict2D
from cogent import LoadSeqs, Sequence,DNA
from cogent.parse.tree import DndParser
from cogent.core.tree import PhyloNode
from cogent.cluster.procrustes import procrustes
from cogent.core.alignment import Alignment
from cogent.core.moltype import MolType, IUPAC_DNA_chars, IUPAC_DNA_ambiguities,\
IUPAC_DNA_ambiguities_complements, DnaStandardPairs, ModelDnaSequence
from cogent.data.molecular_weight import DnaMW
from cogent.core.sequence import DnaSequence
from cogent.app.blast import Blastall
from cogent.app.util import (ApplicationError, CommandLineApplication,
get_tmp_filename as cogent_get_tmp_filename, FilePath)
from cogent.parse.blast import BlastResult
from cogent.parse.fasta import MinimalFastaParser
from cogent.util.misc import remove_files
from cogent.util.dict2d import Dict2D
from cogent.app.formatdb import build_blast_db_from_fasta_path,\
build_blast_db_from_fasta_file
from cogent import LoadSeqs
from cogent.util.misc import (create_dir,
handle_error_codes)
from qcli import (parse_command_line_parameters,
make_option,
qcli_system_call)
from qiime.pycogent_backports.test import is_symmetric_and_hollow
from qiime import __version__ as qiime_library_version
from qiime.parse import (parse_distmat,
parse_mapping_file_to_dict,
parse_qiime_config_files,
parse_coords,
parse_newick,
fields_to_dict,
PhyloNode,
parse_mapping_file,
parse_denoiser_mapping,
MinimalFastqParser)
# for backward compatibility - compute_seqs_per_library_stats has
# been removed in favor of biom.util.compute_counts_per_sample_stats,
# which has the same interface as the former
# qiime.util.compute_seqs_per_library_stats
compute_seqs_per_library_stats = compute_counts_per_sample_stats
class TreeMissingError(IOError):
"""Exception for missing tree file"""
pass
class OtuMissingError(IOError):
"""Exception for missing OTU file"""
pass
class AlignmentMissingError(IOError):
"""Exception for missing alignment file"""
pass
class MissingFileError(IOError):
pass
class FileFormatError(IOError):
"""Exception for wrong file format"""
pass
def make_safe_f(f, allowed_params):
"""Make version of f that ignores extra named params."""
def inner(*args, **kwargs):
if kwargs:
new_kwargs = {}
for k, v in kwargs.items():
if k in allowed_params:
new_kwargs[k] = v
return f(*args, **new_kwargs)
return f(*args, **kwargs)
return inner
class FunctionWithParams(object):
"""A FunctionWithParams is a replacement for the function factory.
Specifically, the params that will be used in the __call__ method are
available in a dict so you can keep track of them with the object
itself.
"""
Application = None
Algorithm = None
Citation = None
Params = {}
Name = 'FunctionWithParams' #override in subclasses
_tracked_properties = [] #properties tracked like params
def __init__(self, params):
"""Return new FunctionWithParams object with specified params.
Note: expect params to contain both generic and per-method (e.g. for
cdhit) params, so leaving it as a dict rather than setting
attributes.
Some standard entries in params are:
[fill in on a per-application basis]
"""
self.Params.update(params)
self._tracked_properties.extend(['Application','Algorithm','Citation'])
def __str__(self):
"""Returns formatted key-value pairs from params."""
res = [self.Name + ' parameters:']
for t in self._tracked_properties:
res.append(t + ':' + str(getattr(self, t)))
for k, v in sorted(self.Params.items()):
res.append(str(k) + ':' + str(v))
return '\n'.join(res)
def writeLog(self, log_path):
"""Writes self.Params and other relevant info to supplied path."""
f=open(log_path, 'w')
f.write(str(self))
f.close()
def getResult(self, *args, **kwargs):
"""Gets result in __call__. Override in subclasses."""
return None
def formatResult(self, result):
"""Formats result as string (for whatever "result" means)."""
return str(result)
def writeResult(self, result_path, result):
"""Writes result to result_path. May need to format in subclasses."""
f = open(result_path, 'w')
f.write(self.formatResult(result))
f.close()
def getTree(self, tree_source):
"""Returns parsed tree from putative tree source"""
if isinstance(tree_source, PhyloNode):
tree = tree_source #accept tree object directly for tests
elif tree_source:
try:
f = open(tree_source, 'U')
except (TypeError, IOError):
raise TreeMissingError, \
"Couldn't read tree file at path: %s" % tree_source
tree = parse_newick(f, PhyloNode)
f.close()
else:
raise TreeMissingError, str(self.Name) + \
" is a phylogenetic metric, but no tree was supplied."
return tree
def getData(self, data_source):
"""Returns data from putative source, which could be a path"""
if isinstance(data_source, str):
try:
return eval(data_source)
except (NameError, SyntaxError):
try:
data_f = open(data_source, 'U')
data = data_f.read()
data_f.close()
try:
return eval(data)
except (NameError, SyntaxError, TypeError):
pass
return data
except (IOError, NameError, TypeError):
pass
#if we got here, either we didn't get a string or we couldn't read
#the data source into any other kind of object
return data_source
def getBiomData(self, data):
"""returns a biom object regardless of whether path or object given"""
try:
if os.path.isfile(data):
otu_table = parse_biom_table(qiime_open(data,'U'))
return otu_table
except TypeError:
if any([type(data) in \
[biom.table.DenseFunctionTable,
biom.table.DenseGeneTable,
biom.table.DenseMetaboliteTable,
biom.table.DenseOTUTable,
biom.table.DenseOrthologTable,
biom.table.DensePathwayTable,
biom.table.DenseTable,
biom.table.DenseTaxonTable,
biom.table.FunctionTable,
biom.table.GeneTable,
biom.table.MetaboliteTable,
biom.table.OTUTable,
biom.table.OrthologTable,
biom.table.PathwayTable,
biom.table.SparseFunctionTable,
biom.table.SparseGeneTable,
biom.table.SparseMetaboliteTable,
biom.table.SparseOTUTable,
biom.table.SparseOrthologTable,
biom.table.SparsePathwayTable,
biom.table.SparseTable,
biom.table.SparseTaxonTable]]):
otu_table = data
return otu_table
else:
raise TypeError('Data is neither a path to a biom table or a'+\
' biom table object.')
def getAlignment(self, aln_source):
"""Returns parsed alignment from putative alignment source"""
if isinstance(aln_source, Alignment):
aln = aln_source
elif aln_source:
try:
aln = LoadSeqs(aln_source, Aligned=True)
except (TypeError, IOError, AssertionError):
raise AlignmentMissingError, \
"Couldn't read alignment file at path: %s" % aln_source
else:
raise AlignmentMissingError, str(self.Name) + \
" requires an alignment, but no alignment was supplied."
return aln
def __call__ (self, result_path=None, log_path=None,\
*args, **kwargs):
"""Returns the result of calling the function using the params dict.
Parameters:
[fill in on a per-application basis]
"""
result = self.getResult(*args, **kwargs)
if log_path:
self.writeLog(log_path)
if result_path:
self.writeResult(result_path, result)
else:
return result
def trim_fastq(fastq_lines,output_length):
"""trim fastq seqs/quals to output_length bases """
for seq_id, seq, qual in MinimalFastqParser(fastq_lines,strict=False):
yield '@%s\n%s\n+\n%s\n' % (seq_id,seq[:output_length],
qual[:output_length])
def trim_fasta(fasta_lines,output_length):
"""trim fasta seqs to output_length bases """
for seq_id, seq in MinimalFastaParser(fasta_lines):
yield '>%s\n%s\n' % (seq_id,seq[:output_length])
def get_qiime_project_dir():
""" Returns the top-level QIIME directory
"""
# Get the full path of util.py
current_file_path = abspath(__file__)
# Get the directory containing util.py
current_dir_path = dirname(current_file_path)
# Return the directory containing the directory containing util.py
# In Debian what we actually want is /usr/lib/[qiime]
return "/usr/lib"
def get_qiime_scripts_dir():
""" Returns the QIIME scripts directory
This value must be stored in qiime_config if the user
has installed qiime using setup.py. If it is not in
qiime_config, it is inferred from the qiime_project_dir.
"""
qiime_config = load_qiime_config()
qiime_config_value = qiime_config['qiime_scripts_dir']
if qiime_config_value != None:
result = qiime_config_value
else:
result = join(get_qiime_project_dir(),'scripts')
#assert exists(result),\
# "qiime_scripts_dir does not exist: %s." % result +\
# " Have you defined it correctly in your qiime_config?"
return result
def get_qiime_temp_dir():
""" Returns the temp directory that should be used by QIIME scripts
"""
qiime_config = load_qiime_config()
qiime_config_value = qiime_config['temp_dir']
if qiime_config_value != None:
result = qiime_config_value
else:
result = '/tmp/'
return result
def get_tmp_filename(tmp_dir=None, prefix="tmp", suffix=".txt",
result_constructor=FilePath):
""" Wrap cogent.app.util.get_tmp_filename to modify the default tmp_dir """
if tmp_dir == None:
tmp_dir = get_qiime_temp_dir()
return cogent_get_tmp_filename(tmp_dir=tmp_dir,
prefix=prefix,
suffix=suffix,
result_constructor=result_constructor)
def load_qiime_config():
"""Return default parameters read in from file"""
qiime_config_filepaths = []
qiime_project_dir = get_qiime_project_dir()
qiime_config_filepaths.append(\
qiime_project_dir + '/qiime/support_files/qiime_config')
qiime_config_env_filepath = getenv('QIIME_CONFIG_FP')
if qiime_config_env_filepath:
qiime_config_filepaths.append(qiime_config_env_filepath)
home_dir = getenv('HOME')
if home_dir:
qiime_config_home_filepath = home_dir + '/.qiime_config'
qiime_config_filepaths.append(qiime_config_home_filepath)
qiime_config_files = []
for qiime_config_filepath in qiime_config_filepaths:
if exists(qiime_config_filepath):
qiime_config_files.append(open(qiime_config_filepath))
return parse_qiime_config_files(qiime_config_files)
def qiime_blast_seqs(seqs,
blast_constructor=Blastall,
blast_program='blastn',
blast_db=None,
refseqs=None,
refseqs_fp=None,
blast_mat_root=None,
params=None,
WorkingDir=None,
seqs_per_blast_run=1000,
is_protein=False,
HALT_EXEC=False):
"""Blast list of sequences.
seqs: a list (or object with list-like interace) of (seq_id, seq)
tuples (e.g., the output of MinimalFastaParser)
"""
assert blast_db or refseqs_fp or refseqs, \
'Must provide either a blast_db or a fasta '+\
'filepath containing sequences to build one.'
if refseqs_fp:
blast_db, db_files_to_remove =\
build_blast_db_from_fasta_path(refseqs_fp,
output_dir=WorkingDir,
is_protein=is_protein)
elif refseqs:
blast_db, db_files_to_remove =\
build_blast_db_from_fasta_file(refseqs,
output_dir=WorkingDir,
is_protein=is_protein)
else:
db_files_to_remove = []
if params is None: params = {}
params["-d"] = blast_db
params["-p"] = blast_program
blast_app = blast_constructor(
params=params,
blast_mat_root=blast_mat_root,
InputHandler='_input_as_seq_id_seq_pairs',
WorkingDir=WorkingDir,
SuppressStderr=True,
HALT_EXEC=HALT_EXEC)
current_seqs = []
blast_results = BlastResult([])
for seq in seqs:
current_seqs.append(seq)
if len(current_seqs) % seqs_per_blast_run == 0:
if blast_results:
blast_results.update(\
BlastResult(blast_app(current_seqs)['StdOut']))
else:
blast_results = BlastResult(blast_app(current_seqs)['StdOut'])
current_seqs = []
# clean-up run: blast the remaining sequences
blast_results.update(\
BlastResult(blast_app(current_seqs)['StdOut']))
remove_files(db_files_to_remove)
return blast_results
def qiime_blastx_seqs(seqs,
blast_constructor=Blastall,
blast_db=None,
refseqs=None,
refseqs_fp=None,
blast_mat_root=None,
params={},
WorkingDir=None,
seqs_per_blast_run=1000,
HALT_EXEC=False):
"""Blast list of sequences.
seqs: a list (or object with list-like interace) of (seq_id, seq)
tuples (e.g., the output of MinimalFastaParser)
"""
return qiime_blast_seqs(seqs,
blast_constructor=blast_constructor,
blast_program='blastx',
blast_db=blast_db,
refseqs=refseqs,
refseqs_fp=refseqs_fp,
blast_mat_root=blast_mat_root,
params={},
WorkingDir=WorkingDir,
seqs_per_blast_run=seqs_per_blast_run,
is_protein=True,
HALT_EXEC=HALT_EXEC)
def extract_seqs_by_sample_id(seqs, sample_ids, negate=False):
""" Returns (seq id, seq) pairs if sample_id is in sample_ids """
sample_ids = {}.fromkeys(sample_ids)
if not negate:
def f(s):
return s in sample_ids
else:
def f(s):
return s not in sample_ids
for seq_id, seq in seqs:
sample_id = seq_id.split('_')[0]
if f(sample_id):
yield seq_id, seq
def split_fasta_on_sample_ids(seqs):
""" yields (sample_id, seq_id, seq) for each entry in seqs
seqs: (seq_id,seq) pairs, as generated by MinimalFastaParser
"""
for seq_id, seq in seqs:
yield (seq_id.split()[0].rsplit('_',1)[0], seq_id, seq)
return
def split_fasta_on_sample_ids_to_dict(seqs):
""" return split_fasta_on_sample_ids as {sample_id: [(seq_id, seq), ], }
seqs: (seq_id,seq) pairs, as generated by MinimalFastaParser
"""
result = {}
for sample_id,seq_id,seq in split_fasta_on_sample_ids(seqs):
try:
result[sample_id].append((seq_id,seq))
except KeyError:
result[sample_id] = [(seq_id,seq)]
return result
def write_seqs_to_fasta(fp,seqs,write_mode='w'):
"""Write seqs to fp with specified write mode ('a' or 'w')
seqs: list of (seq_id,seq) tuples, as obtained from
MinimalFastaParser
"""
f = open(fp,write_mode)
for s in seqs:
f.write('>%s\n%s\n' % (s))
f.close()
def split_fasta_on_sample_ids_to_files(seqs,
output_dir,
per_sample_buffer_size=500):
""" output of split_fasta_on_sample_ids to fasta in specified output_dir
seqs: (seq_id,seq) pairs, as generated by MinimalFastaParser
output_dir: string defining directory where output should be
written, will be created if it doesn't exist
This function takes a buffered approach to writing files to
avoid hitting errors arising from too many files being open
when working with large numbers of samples ids (e.g. > 1024 on linux)
"""
create_dir(output_dir)
file_lookup = {}
all_fps = []
for sample_id,seq_id,seq in split_fasta_on_sample_ids(seqs):
# grab or create the list corresponding to the current sample id
try:
current_seqs = file_lookup[sample_id][1]
except KeyError:
current_fp = '%s/%s.fasta' % (output_dir,sample_id)
all_fps.append(current_fp)
if exists(current_fp):
raise IOError,\
(" %s already exists. Will not perform split -- remove this"
" file or specify a different output directory." % current_fp)
current_seqs = list()
file_lookup[sample_id] = [current_fp,current_seqs]
# append the current sequence to the current seqs list
current_seqs.append((seq_id,seq))
# compare current_seqs length to the buffer size, and write
# if it has hit the buffer size
if len(current_seqs) == per_sample_buffer_size:
current_fp = file_lookup[sample_id][0]
write_seqs_to_fasta(current_fp,current_seqs,write_mode='a')
# reset the current seqs buffer
file_lookup[sample_id][1] = list()
for current_fp,current_seqs in file_lookup.values():
write_seqs_to_fasta(current_fp,current_seqs,write_mode='a')
return all_fps
def median_absolute_deviation(x):
""" compute the median of the absolute deviations from the median """
x = asarray(x)
median_x = median(x)
median_abs_deviation = median(abs(x - median_x))
return median_abs_deviation, median_x
def guess_even_sampling_depth(counts_per_sample,num_deviations=2.25):
""" guess a depth for even sampling
this is currently computed as the smallest seqs per sample
count >= the median seqs per sample count - (2.25 * the median absolute
deviation). 2.25 was chosen emprically by seeing how different values
of num_deviations resulted in a choice that was similar to what
I've chosen on several real OTU tables.
"""
counts_per_sample.sort()
median_abs_dev, median_count = \
median_absolute_deviation(counts_per_sample)
min_threshold = median_count - (num_deviations * median_abs_dev)
for e in counts_per_sample:
if e >= min_threshold:
return e
raise ValueError,\
"No acceptable even sampling depth identified. "+\
"It shouldn't be possible to get here, but just in case here's the " +\
"counts per sample: %s" ' '.join(map(str,counts_per_sample))
def raise_error_on_parallel_unavailable(qiime_config=None):
"""Raise error if no parallel QIIME bc user hasn't set jobs_to_start
"""
if qiime_config == None:
qiime_config = load_qiime_config()
if 'jobs_to_start' not in qiime_config or \
int(qiime_config['jobs_to_start']) < 2:
raise RuntimeError,\
"Parallel QIIME is not available. (Have you set"+\
" jobs_to_start to greater than 1 in your qiime_config?"
def get_options_lookup():
""" Return dict of commonly used options """
qiime_config = load_qiime_config()
result = {}
result['fasta_as_primary_input'] =\
make_option('-i','--input_fasta_fp',type="existing_filepath",
help='path to the input fasta file')
result['otu_table_as_primary_input'] =\
make_option('-i','--otu_table_fp',type="existing_filepath",
help='path to the input OTU table (i.e., the output from make_otu_table.py)')
result['otu_map_as_primary_input'] =\
make_option('-i','--otu_map_fp',type="existing_filepath",
help='path to the input OTU map (i.e., the output from pick_otus.py)')
result['log_fp'] =\
make_option('-l','--log_fp',type="new_filepath",
help='path to write the log file')
result['input_fasta'] =\
make_option('-f','--input_fasta_fp',type="existing_filepath",
help='path to the input fasta file')
result['output_dir'] =\
make_option('-o','--output_dir',type="new_dirpath",
help='path to the output directory')
result['output_fp'] =\
make_option('-o','--output_fp',type="new_filepath",
help='the output filepath')
result['output_biom_fp'] =\
make_option('-o','--output_biom_fp',type="new_filepath",
help='the output otu table in biom format (recommended extension: .biom)')
result['mapping_fp'] =\
make_option('-m','--mapping_fp',type="existing_filepath",
help='the mapping filepath')
## Define options used by the workflow scripts
result['jobs_to_start_workflow'] =\
make_option('-O','--jobs_to_start',type='int',
help='Number of jobs to start. NOTE: you must also'
' pass -a to run in parallel, this defines the number of'
' jobs to be started if and only if -a is passed'
' [default: %default]',
default=qiime_config['jobs_to_start'])
## Define options used by the parallel scripts
result['jobs_to_start'] =\
make_option('-O','--jobs_to_start',type='int',\
help='Number of jobs to start [default: %default]',\
default=qiime_config['jobs_to_start'])
result['poller_fp'] =\
make_option('-P','--poller_fp',action='store',\
help='full path to '+\
'qiime/parallel/poller.py [default: %default]',\
default=join(get_qiime_scripts_dir(),'poller.py'))
result['retain_temp_files'] =\
make_option('-R','--retain_temp_files',action='store_true',\
help='retain temporary files after runs complete '+\
'(useful for debugging) [default: %default]',\
default=False)
result['suppress_submit_jobs'] =\
make_option('-S','--suppress_submit_jobs',action='store_true',\
help='Only split input and write commands file - don\'t submit '+\
'jobs [default: %default]',default=False)
result['poll_directly'] =\
make_option('-T','--poll_directly',action='store_true',\
help='Poll directly for job completion rather than running '+\
'poller as a separate job. If -T is specified this script will '+\
'not return until all jobs have completed. [default: %default]',\
default=False)
result['cluster_jobs_fp'] =\
make_option('-U','--cluster_jobs_fp',
help='path to cluster jobs script (defined in qiime_config) ' +\
' [default: %default]',\
default=qiime_config['cluster_jobs_fp'] or\
join(get_qiime_scripts_dir(),'start_parallel_jobs.py'))
result['suppress_polling'] =\
make_option('-W','--suppress_polling',action='store_true',
help='suppress polling of jobs and merging of results '+\
'upon completion [default: %default]',\
default=False)
result['job_prefix'] =\
make_option('-X','--job_prefix',help='job prefix '+\
'[default: descriptive prefix + random chars]')
result['python_exe_fp'] =\
make_option('-Y','--python_exe_fp',
help='full path to python executable [default: %default]',\
default=qiime_config['python_exe_fp'])
result['seconds_to_sleep'] =\
make_option('-Z','--seconds_to_sleep',type='int',\
help='Number of seconds to sleep between checks for run '+\
' completion when polling runs [default: %default]',\
default=qiime_config['seconds_to_sleep'] or 60)
return result
def matrix_stats(headers_list, distmats):
"""does, mean, median, stdev on a series of (dis)similarity matrices
takes a series of parsed matrices (list of headers, list of numpy 2d arrays)
headers must are either row or colunm headers (those must be identical)
outputs headers (list), means, medians, stdevs (all numpy 2d arrays)
"""
if len(set(map(tuple,headers_list))) > 1:
raise ValueError("error, not all input matrices have"+\
" identical column/row headers")
all_mats = numpy.array(distmats) # 3d numpy array: mtx, row, col
means = numpy.mean(all_mats, axis=0)
medians = numpy.median(all_mats, axis=0)
stdevs = numpy.std(all_mats, axis=0)
return deepcopy(headers_list[0]), means, medians, stdevs
def convert_otu_table_relative(otu_table):
"""Convert the OTU table to relative abundances
this method works on a parsed OTU table
"""
sample_ids, otu_ids, otu_counts, consensus = otu_table
otu_counts = asarray(otu_counts, float)
otu_counts = otu_counts / otu_counts.sum(axis=0)
otu_counts = where(isnan(otu_counts), 0.0, otu_counts)
return (sample_ids, otu_ids, otu_counts, consensus)
def convert_OTU_table_relative_abundance(otu_table):
"""convert the OTU table to have relative abundances rather than raw counts
"""
output = []
data_lines = []
otu_ids = []
tax_strings = []
taxonomy=False
for line in otu_table:
line = line.strip().split('\t')
if line[0].startswith('#OTU ID'):
output.append('\t'.join(line))
if line[-1] == 'Consensus Lineage':
taxonomy=True
elif line[0].startswith('#'):
output.append('\t'.join(line))
else:
if taxonomy:
vals = [float(i) for i in line[1:-1]]
tax_strings.append(line[-1])
else:
vals = [float(i) for i in line[1:]]
tax_string = None
data = array(vals, dtype=float)
data_lines.append(data)
otu_ids.append(line[0])
data_lines = array(data_lines)
totals = sum(data_lines)
new_values = []
for i in data_lines:
new_values.append(i/totals)
for index, i in enumerate(new_values):
line = [otu_ids[index]]
line.extend([str(j) for j in i])
if taxonomy:
line.append(tax_strings[index])
output.append('\t'.join(line))
return output
def load_pcoa_files(pcoa_dir):
"""loads PCoA files from filepaths
"""
support_pcoas = []
pcoa_filenames = os.listdir(pcoa_dir)
#ignore invisible files like .DS_Store
pcoa_filenames = [fname for fname in pcoa_filenames if not \
fname.startswith('.')]
master_pcoa = open(os.path.join(pcoa_dir, pcoa_filenames[0]), 'U')
master_pcoa = parse_coords(master_pcoa)
for fname in pcoa_filenames:
try:
f = open(os.path.join(pcoa_dir, fname), 'U')
pcoa_res = parse_coords(f)
support_pcoas.append(pcoa_res)
f.close()
except IOError, err:
sys.stderr.write('error loading support pcoa ' + fname + '\n')
exit(1)
return master_pcoa, support_pcoas
def summarize_pcoas(master_pcoa, support_pcoas, method='IQR', apply_procrustes=True):
"""returns the average PCoA vector values for the support pcoas
Also returns the ranges as calculated with the specified method.
The choices are:
IQR: the Interquartile Range
ideal fourths: Ideal fourths method as implemented in scipy
"""
if apply_procrustes:
# perform procrustes before averaging
support_pcoas = [list(sp) for sp in support_pcoas]
master_pcoa = list(master_pcoa)
for i, pcoa in enumerate(support_pcoas):
master_std, pcoa_std, m_squared = procrustes(master_pcoa[1],pcoa[1])
support_pcoas[i][1] = pcoa_std
master_pcoa[1] = master_std
m_matrix = master_pcoa[1]
m_eigvals = master_pcoa[2]
m_names = master_pcoa[0]
jn_flipped_matrices = []
all_eigvals = []
for rep in support_pcoas:
matrix = rep[1]
eigvals = rep[2]
all_eigvals.append(eigvals)
jn_flipped_matrices.append(_flip_vectors(matrix, m_matrix))
matrix_average, matrix_low, matrix_high = _compute_jn_pcoa_avg_ranges(\
jn_flipped_matrices, method)
#compute average eigvals
all_eigvals_stack = vstack(all_eigvals)
eigval_sum = numpy.sum(all_eigvals_stack, axis=0)
eigval_average = eigval_sum / float(len(all_eigvals))
return matrix_average, matrix_low, matrix_high, eigval_average, m_names
def _compute_jn_pcoa_avg_ranges(jn_flipped_matrices, method):
"""Computes PCoA average and ranges for jackknife plotting
returns 1) an array of jn_averages
2) an array of upper values of the ranges
3) an array of lower values for the ranges
method: the method by which to calculate the range
IQR: Interquartile Range
ideal fourths: Ideal fourths method as implemented in scipy
"""
x,y = shape(jn_flipped_matrices[0])
all_flat_matrices = [matrix.ravel() for matrix in jn_flipped_matrices]
summary_matrix = vstack(all_flat_matrices)
matrix_sum = numpy.sum(summary_matrix, axis=0)
matrix_average = matrix_sum / float(len(jn_flipped_matrices))
matrix_average = matrix_average.reshape(x,y)
if method == 'IQR':
result = matrix_IQR(summary_matrix)
matrix_low = result[0].reshape(x,y)
matrix_high = result[1].reshape(x,y)
elif method == 'ideal_fourths':
result = idealfourths(summary_matrix, axis=0)
matrix_low = result[0].reshape(x,y)
matrix_high = result[1].reshape(x,y)
elif method == "sdev":
# calculate std error for each sample in each dimension
sdevs = zeros(shape=[x,y])
for j in xrange(y):
for i in xrange(x):
vals = array([pcoa[i][j] for pcoa in jn_flipped_matrices])
sdevs[i,j] = vals.std(ddof=1)
matrix_low = -sdevs/2
matrix_high = sdevs/2
return matrix_average, matrix_low, matrix_high
def _flip_vectors(jn_matrix, m_matrix):
"""transforms PCA vectors so that signs are correct"""
m_matrix_trans = m_matrix.transpose()
jn_matrix_trans = jn_matrix.transpose()
new_matrix= zeros(jn_matrix_trans.shape, float)
for i, m_vector in enumerate(m_matrix_trans):
jn_vector = jn_matrix_trans[i]
disT = list(m_vector - jn_vector)
disT = sum(map(abs, disT))
jn_flip = jn_vector*[-1]
disF = list(m_vector - jn_flip)
disF = sum(map(abs, disF))
if disT > disF:
new_matrix[i] = jn_flip
else:
new_matrix[i] = jn_vector
return new_matrix.transpose()
def IQR(x):
"""calculates the interquartile range of x
x can be a list or an array
returns min_val and max_val of the IQR"""
x.sort()
#split values into lower and upper portions at the median
odd = len(x) % 2
midpoint = int(len(x)/2)
if odd:
low_vals = x[:midpoint]
high_vals = x[midpoint+1:]
else: #if even
low_vals = x[:midpoint]
high_vals = x[midpoint:]
#find the median of the low and high values
min_val = median(low_vals)
max_val = median(high_vals)
return min_val, max_val
def matrix_IQR(x):
"""calculates the IQR for each column in an array
"""
num_cols = x.shape[1]
min_vals = zeros(num_cols)
max_vals = zeros(num_cols)
for i in range(x.shape[1]):
col = x[:, i]
min_vals[i], max_vals[i] = IQR(col)
return min_vals, max_vals
def idealfourths(data, axis=None):
"""This function returns an estimate of the lower and upper quartiles of the data along
the given axis, as computed with the ideal fourths. This function was taken
from scipy.stats.mstat_extra.py (http://projects.scipy.org/scipy/browser/trunk/scipy/stats/mstats_extras.py?rev=6392)
"""
def _idf(data):
x = data.compressed()
n = len(x)
if n < 3:
return [numpy.nan,numpy.nan]
(j,h) = divmod(n/4. + 5/12.,1)
qlo = (1-h)*x[j-1] + h*x[j]
k = n - j
qup = (1-h)*x[k] + h*x[k-1]
return [qlo, qup]
data = numpy.sort(data, axis=axis).view(MaskedArray)
if (axis is None):
return _idf(data)
else:
return apply_along_axis(_idf, axis, data)
def isarray(a):
"""
This function tests whether an object is an array
"""
try:
validity=isinstance(a,ndarray)
except:
validity=False
return validity
#make an alphabet that allows '.' as additional gaps
DNA_with_more_gaps = MolType(
Sequence = DnaSequence,
motifset = IUPAC_DNA_chars,
Ambiguities = IUPAC_DNA_ambiguities,
label = "dna",
Gaps = ".",
MWCalculator = DnaMW,
Complements = IUPAC_DNA_ambiguities_complements,
Pairs = DnaStandardPairs,
make_alphabet_group=True,
ModelSeq = ModelDnaSequence,
)
def degap_fasta_aln(seqs):
"""degap a Fasta aligment.
seqs: list of label,seq pairs
"""
for (label,seq) in seqs:
degapped_seq = Sequence(moltype=DNA_with_more_gaps,
seq=seq, name=label).degap()
degapped_seq.Name = label
yield degapped_seq
def write_degapped_fasta_to_file(seqs, tmp_dir="/tmp/"):
""" write degapped seqs to temp fasta file."""
tmp_filename = get_tmp_filename(tmp_dir=tmp_dir, prefix="degapped_", suffix=".fasta")
fh = open(tmp_filename,"w")
for seq in degap_fasta_aln(seqs):
fh.write(seq.toFasta()+"\n")
fh.close()
return tmp_filename
def get_diff_for_otu_maps(otu_map1, otu_map2):
"""return reads in two otu_maps that are not shared
otu_map1, otu_map2: OTU to seqID mapping as dict of lists
"""
otus1 = set(otu_map1.keys())
otus2 = set(otu_map2.keys())
ids1 = set([x for otu in otus1 for x in otu_map1[otu]])
ids2 = set([x for otu in otus2 for x in otu_map2[otu]])
return ids1-ids2, ids2-ids1
def compare_otu_maps(otu_map1, otu_map2, verbose=False):
"""compare two otu maps and compute fraction of
otu_map1, otu_map2: OTU to seqID mapping as dict of lists
"""
right = 0
wrong = 0
otus1 = set(otu_map1.keys())
otus2 = set(otu_map2.keys())
shared_otus = otus1.intersection(otus2)
# check for equal members in shared OTUs
for otu in shared_otus:
members1 = set(otu_map1[otu])
members2 = set(otu_map2[otu])
right += len(members1 & members2)
missing_in_2 = members1 - members2
wrong += len(missing_in_2)
if (verbose and len(missing_in_2)>0):
print "OTU id: %s" % otu
print list(missing_in_2)
print
# process OTUs in 1 not in 2
for otu in otus1 - shared_otus:
wrong += len(otu_map1[otu])
if verbose:
print "OTU id: %s" % otu
print list(otu_map1[otu])
return float(wrong)/(right+wrong)
def compute_days_since_epoch(day,month,year):
""" pass day, month, year to compute days since epoch (1/1/1970)
Note that full years should always be provided: 09 is a
different year than 2009!
"""
d = datetime(int(year),int(month),int(day))
epoch = datetime.utcfromtimestamp(0)
return (d - epoch).days
def get_interesting_mapping_fields(mapping_data,mapping_headers):
""" Returns headers for fields that are useful to color by in plots
These fields are the ones that contain greater than one value
and less values than the number of entries (so for example
not SampleID)
"""
result = []
num_samples = len(mapping_data)
num_cols = len(mapping_headers)
transposed_data = array(mapping_data).T
for header, datum in zip(mapping_headers, transposed_data):
d = set(datum)
len_d = len(d)
if len_d > 1 and len_d < num_samples:
result.append(header)
return result
def flowgram_id_to_seq_id_map(seqs):
"""Map flowgram ids to sequence ids from a post-split_libraries fasta file
"""
result = {}
for id_, seq in seqs:
fields = id_.split()
seq_id = id_
flowgram_id = fields[1]
result[flowgram_id] = seq_id
return result
def get_java_version():
"""Returns the Java version, or None if not installed"""
o, e, exit_status = qiime_system_call("java -version")
if exit_status != 0:
return None
# expect the first line of stderr to be 'java version "x.y.z_build"'
e = e.strip().splitlines()
version_line = e[0]
if not version_line.startswith('java version'):
return None
else:
return version_line.split()[-1].strip('"')
# retain qiime_system_call function name for backward compatibility
qiime_system_call = qcli_system_call
def get_qiime_library_version():
"""get QIIME version and the git SHA + current branch (if applicable)"""
qiime_dir = get_qiime_project_dir()
qiime_version = qiime_library_version
# more information could be retrieved following this pattern
sha_cmd = 'git --git-dir %s/.git rev-parse HEAD' % (qiime_dir)
sha_o, sha_e, sha_r = qiime_system_call(sha_cmd)
git_sha = sha_o.strip()
branch_cmd = 'git --git-dir %s/.git rev-parse --abbrev-ref HEAD' %\
(qiime_dir)
branch_o, branch_e, branch_r = qiime_system_call(branch_cmd)
git_branch = branch_o.strip()
# validate the output from both command calls
if is_valid_git_refname(git_branch) and is_valid_git_sha1(git_sha):
return '%s, %s@%s' % (__version__, git_branch, git_sha[0:7])
else:
return '%s' % __version__
def is_valid_git_refname(refname):
"""check if a string is a valid branch-name/ref-name for git
Input:
refname: string to validate
Output:
True if 'refname' is a valid branch name in git. False if it fails to meet
any of the criteria described in the man page for 'git check-ref-format',
also see:
http://www.kernel.org/pub/software/scm/git/docs/git-check-ref-format.html
"""
if len(refname) == 0:
return False
# git imposes a few requirements to accept a string as a refname/branch-name
# They can include slash / for hierarchical (directory) grouping, but no
# slash-separated component can begin with a dot . or end with the sequence
# .lock
if (len([True for element in refname.split('/')\
if element.startswith('.') or element.endswith('.lock')]) != 0):
return False
# They cannot have two consecutive dots .. anywhere
if '..' in refname:
return False
# They cannot have ASCII control characters (i.e. bytes whose values are
# lower than \040, or \177 DEL), space, tilde, caret ^, or colon : anywhere
if len([True for refname_char in refname if ord(refname_char) < 40 or\
ord(refname_char) == 177 ]) != 0:
return False
if ' ' in refname or '~' in refname or '^' in refname or ':' in refname:
return False
# They cannot have question-mark ?, asterisk *, or open bracket [ anywhere
if '?' in refname or '*' in refname or '[' in refname:
return False
# They cannot begin or end with a slash / or contain multiple consecutive
# slashes
if refname.startswith('/') or refname.endswith('/') or '//' in refname:
return False
# They cannot end with a dot ..
if refname.endswith('.'):
return False
# They cannot contain a sequence @{
if '@{' in refname:
return False
# They cannot contain a \
if '\\' in refname:
return False
return True
def is_valid_git_sha1(hash):
"""check if a string is a valid git sha1 string
Input:
hash: string to validate
Output:
True if the string has 40 characters and is an hexadecimal number, False
otherwise.
"""
if len(hash) != 40:
return False
try:
value = int(hash, 16)
except ValueError:
return False
return True
def get_pynast_version():
"""Return PyNAST version string or None if PyNAST is not installed"""
try:
import pynast
return pynast.__version__
except ImportError:
return None
def inflate_denoiser_output(centroid_seqs,singleton_seqs,denoiser_map,raw_seqs):
"""Expand denoiser fasta files based on denoiser map
The inflation process works as follows: write each centroid
sequence n times, where n is the number of reads in that
cluster, and write each singleton once. While writing these
out map back to original sequence identifiers.
The seqs objects passed in are lists of (seq_id, seq) tuples,
as returned from MinimalFastaParser.
"""
id_lookup = parse_denoiser_mapping(denoiser_map)
flowgram_to_seq_id_lookup = flowgram_id_to_seq_id_map(raw_seqs)
for id_, seq in centroid_seqs:
#centroid headers look like
#>FZTHQMS01E140G | cluster size: 4353
id, cluster_size_str = id_.split(' | ')
cluster_member_ids = id_lookup[id]
for c in cluster_member_ids:
yield flowgram_to_seq_id_lookup[c], seq
for id_, seq in singleton_seqs:
yield flowgram_to_seq_id_lookup[id_], seq
return
## Functions for counting sequences in fasta files
def count_seqs(fasta_filepath,parser=MinimalFastaParser):
""" Count the sequences in fasta_filepath
fasta_filepath: string indicating the full path to the file
"""
# Open the file and pass it to py_count_seqs_from_file -- wrapping
# this makes for easier unit testing
return count_seqs_from_file(open(fasta_filepath,'U'),parser=parser)
def count_seqs_from_file(fasta_file,parser=MinimalFastaParser):
"""Return number of sequences in fasta_file (no format checking performed)
fasta_file: an open file object
"""
result = 0
lens = []
for record in parser(fasta_file):
result += 1
lens.append(len(record[1]))
if result == 0:
return result, None, None
else:
return result, mean(lens), std(lens)
def count_seqs_in_filepaths(fasta_filepaths,seq_counter=count_seqs):
""" Wrapper to apply seq_counter to fasta_filepaths
fasta_filepaths: list of one or more fasta filepaths
seq_counter: a function which takes a single filepath
and returns the count of the number of sequences
(default: count_seqs) -- this is parameterized to
facilitate unit testing
"""
total = 0
counts = []
inaccessible_filepaths = []
# iterate over the input files
for fasta_filepath in fasta_filepaths:
# if the file is actually fastq, use the fastq parser.
# otherwise use the fasta parser
if fasta_filepath.endswith('.fastq'):
parser = MinimalFastqParser
elif fasta_filepath.endswith('.tre') or \
fasta_filepath.endswith('.ph') or \
fasta_filepath.endswith('.ntree'):
# This is clunky, but really convenient bc
# it lets us count tree tips with count_seqs.py
def parser(f):
t = DndParser(f,constructor=PhyloNode)
return zip(t.iterTips(),repeat(''))
else:
parser = MinimalFastaParser
try:
# get the count of sequences in the current file
current_count = seq_counter(fasta_filepath,parser=parser)
# store it
counts.append((current_count,fasta_filepath))
# and increment the total count
total += current_count[0]
except IOError:
# if the file couldn't be open, keep track of the filepath
inaccessible_filepaths.append(fasta_filepath)
return counts, total, inaccessible_filepaths
## End functions for counting sequences in fasta files
def get_top_fastq_two_lines(open_file):
""" This function returns the first 4 lines of the open fastq file
"""
line1 = open_file.readline()
line2 = open_file.readline()
line3 = open_file.readline()
line4 = open_file.readline()
open_file.seek(0)
return line1, line2, line3, line4
def get_split_libraries_fastq_params_and_file_types(fastq_fps,mapping_fp):
""" The function takes a list of open fastq files and a mapping file, then
returns a recommended parameters string for split_libraries_fastq
"""
#parse the mapping
data, headers, run_description= parse_mapping_file(open(mapping_fp,'U'))
#determine the which column of mapping file is the BarcodeSequence
for i,col_head in enumerate(headers):
if col_head=='BarcodeSequence':
barcode_column=i
#create a set of barcodes for easier lookup
barcode_mapping_column=set(zip(*data)[barcode_column])
#create set of reverse complement barcodes from mapping file
revcomp_barcode_mapping_column=[]
for i in barcode_mapping_column:
revcomp_barcode_mapping_column.append(DNA.rc(i))
barcode_len=len(i)
revcomp_barcode_mapping_column=set(revcomp_barcode_mapping_column)
# get the filenames and sort them, so the file1 corresponds to file2
fastq_fps.sort()
# get the len of the sequence in each of the files, so we can determine
# which file is the sequence file and which is the barcode sequence
get_file_type_info={}
for fastq_file in fastq_fps:
# allow for gzipped files to be used
if fastq_file.endswith('.gz'):
fastq_fp = gzip_open(fastq_file)
else:
fastq_fp = open(fastq_file,'U')
file_lines=get_top_fastq_two_lines(fastq_fp)
parsed_fastq=MinimalFastqParser(file_lines,strict=False)
for i,seq_data in enumerate(parsed_fastq):
if i==0:
get_file_type_info[fastq_file]=len(seq_data[1])
else:
break
fastq_fp.close()
# iterate over the sequence lengths and assign each file to either
# a sequence list or barcode list
barcode_files=[]
sequence_files=[]
for i in range(0,len(fastq_fps),2):
if get_file_type_info[fastq_fps[i]]<get_file_type_info[fastq_fps[i+1]]:
barcode_files.append(fastq_fps[i])
sequence_files.append(fastq_fps[i+1])
else:
barcode_files.append(fastq_fps[i+1])
sequence_files.append(fastq_fps[i])
# count the number of barcode matches in the forward and reverse direction
# to determine if the rev_comp_barcode option needs passed
fwd_count=0
rev_count=0
for bfile in barcode_files:
# allow for gzipped files to be used
if fastq_file.endswith('.gz'):
fastq_fp = gzip_open(bfile)
else:
fastq_fp = open(bfile,'U')
parsed_fastq=MinimalFastqParser(fastq_fp,strict=False)
for bdata in parsed_fastq:
if bdata[1][:barcode_len] in barcode_mapping_column:
fwd_count+=1
elif bdata[1][:barcode_len] in revcomp_barcode_mapping_column:
rev_count+=1
fastq_fp.close()
# determine which barcode direction is correct
if rev_count > fwd_count:
barcode_orientation='--rev_comp_mapping_barcodes'
else:
barcode_orientation=''
#generate the string to use in command call to split_libraries_fastq
split_lib_str='-i %s -b %s %s' % (','.join(sequence_files),
','.join(barcode_files),
barcode_orientation)
return split_lib_str
def iseq_to_qseq_fields(line,barcode_in_header,barcode_length,barcode_qual_c='b'):
""" Split an Illumina sequence line into qseq fields"""
record = line.strip().split(':')
rec_0_1, rec_0_2 = record[0].split('_')
rec_4_1, rec_4_23 = record[4].split('#')
rec_4_2, rec_4_3 = rec_4_23.split('/')
if barcode_in_header:
barcode = rec_4_2[:barcode_length]
sequence = record[5]
barcode_qual = barcode_qual_c*barcode_length
sequence_qual = record[6]
else:
barcode = record[5][:barcode_length]
sequence = record[5][barcode_length:]
barcode_qual = record[6][:barcode_length]
sequence_qual = record[6][barcode_length:]
return (rec_0_1,rec_0_2,record[1],record[2],record[3],\
rec_4_1,rec_4_2,rec_4_3), sequence, sequence_qual,\
barcode,barcode_qual
def is_gzip(fp):
"""Checks the first two bytes of the file for the gzip magic number
If the first two bytes of the file are 1f 8b (the "magic number" of a
gzip file), return True; otherwise, return false.
"""
return open(fp, 'rb').read(2) == '\x1f\x8b'
def gzip_open(fp):
return gzip.open(fp,'rb')
def qiime_open(fp, permission='U'):
"""Wrapper to allow opening of gzipped or non-compressed files
Read or write the contents of a file
file_fp : file path
permission : either 'r','w','a'
If the file is binary, be sure to pass in a binary mode (append 'b' to
the mode); opening a binary file in text mode (e.g., in default mode 'U')
will have unpredictable results.
"""
if is_gzip(fp):
return gzip_open(fp)
else:
return open(fp, permission)
def make_compatible_distance_matrices(dm1,dm2,lookup=None):
""" Intersect distance matrices and sort the values """
dm1_ids = dm1[0]
dm1_data = dm1[1]
dm2_ids = dm2[0]
dm2_data = dm2[1]
if lookup:
try:
dm1_ids = [lookup[e] for e in dm1_ids]
dm2_ids = [lookup[e] for e in dm2_ids]
except KeyError,e:
raise KeyError,\
("All entries in both DMs must be in "
"lookup if a lookup is provided. Missing: %s" % str(e))
order = [e for e in dm1_ids if e in dm2_ids]
# create Dict2D from dm1
d1 = {}
for i,r in enumerate(dm1_ids):
d1[r] = {}
for j,c in enumerate(dm1_ids):
d1[r][c] = dm1_data[i,j]
result1 = Dict2D(data=d1,RowOrder=order,ColOrder=order)
# remove entries not in order
result1.purge()
# return 2d list in order
result1 = array(result1.toLists())
# create Dict2D from dm2
d2 = {}
for i,r in enumerate(dm2_ids):
d2[r] = {}
for j,c in enumerate(dm2_ids):
d2[r][c] = dm2_data[i,j]
result2 = Dict2D(data=d2,RowOrder=order,ColOrder=order)
# remove entries not in order
result2.purge()
# return 2d list in order
result2 = array(result2.toLists())
return (order,result1), (order,result2)
def get_rdp_jarpath():
""" Return jar file name for RDP classifier ($RDP_JAR_PATH)"""
return getenv('RDP_JAR_PATH')
def expand_otu_ids(otu_map,otus_to_expand,ignore_missing=False):
"""From OTU map and otu ids, return seq ids represented by the OTUs
"""
result = []
for o in otus_to_expand:
otu_id = o.split()[0]
try:
result += otu_map[otu_id]
except KeyError:
if ignore_missing:
continue
else:
raise KeyError,\
"OTU id not in OTU map: %s" % o.split()[0]
return result
# This function (stderr) was pulled from the following website:
# http://www.java2s.com/Open-Source/Python/Math/SciPy/scipy/scipy/stats/stats.py.htm
# then modified to fit the purpose needed. Originally from Scipy.
def stderr(a, axis=0, ddof=1):
""" Returns the estimated population standard error of the values in the
passed array (i.e., N-1). Axis can equal None (ravel array
first), or an integer (the axis over which to operate).
"""
a, axis = _chk_asarray(a, axis)
return std(a,axis,ddof=1) / float(sqrt(a.shape[axis]))
# This function (_chk_asarray) was pulled from the following website:
# http://www.java2s.com/Open-Source/Python/Math/SciPy/scipy/scipy/stats/stats.py.htm
# then modified to fit the purpose needed. Originally from Scipy.
def _chk_asarray(a, axis):
""" Converts a list into an numpy array """
if axis is None:
a = ravel(a)
outaxis = 0
else:
a = asarray(a)
outaxis = axis
return a, outaxis
def subsample_fasta(input_fasta_fp,
output_fp,
percent_subsample):
""" Writes random percent_sample of sequences from input fasta filepath
input_fasta_fp: input fasta filepath
output_fp: output fasta filepath
percent_subsample: percent of sequences to write
"""
input_fasta = open(input_fasta_fp, "U")
output_fasta = open(output_fp, "w")
for label, seq in MinimalFastaParser(input_fasta):
if random() < percent_subsample:
output_fasta.write('>%s\n%s\n' % (label, seq))
input_fasta.close()
output_fasta.close()
def subsample_fastq(input_fastq_fp,
output_fp,
percent_subsample):
""" Writes random percent_sample of sequences from input fastq filepath
input_fastq_fp: input fastq filepath
output_fp: output fasta filepath
percent_subsample: percent of sequences to write
"""
input_fastq = open(input_fastq_fp, "U")
output_fastq = open(output_fp, "w")
for label, seq, qual in MinimalFastqParser(input_fastq,strict=False):
if random() < percent_subsample:
output_fastq.write('@%s\n%s\n+%s\n%s\n' % (label, seq, label, qual))
input_fastq.close()
output_fastq.close()
def subsample_fastqs(input_fastq1_fp,
output_fastq1_fp,
input_fastq2_fp,
output_fastq2_fp,
percent_subsample):
""" Writes random percent_sample of sequences from input fastq filepath
"""
input_fastq1 = open(input_fastq1_fp, "U")
output_fastq1 = open(output_fastq1_fp, "w")
input_fastq2 = open(input_fastq2_fp, "U")
output_fastq2 = open(output_fastq2_fp, "w")
for fastq1, fastq2 in izip(MinimalFastqParser(input_fastq1,strict=False),
MinimalFastqParser(input_fastq2,strict=False)):
label1, seq1, qual1 = fastq1
label2, seq2, qual2 = fastq2
if random() < percent_subsample:
output_fastq1.write('@%s\n%s\n+%s\n%s\n' % (label1, seq1, label1, qual1))
output_fastq2.write('@%s\n%s\n+%s\n%s\n' % (label2, seq2, label2, qual2))
input_fastq1.close()
output_fastq1.close()
input_fastq2.close()
output_fastq2.close()
def summarize_otu_sizes_from_otu_map(otu_map_f):
""" Given an otu map file handle, summarizes the sizes of the OTUs
This is useful for determining number of singletons, doubletons, etc
from an OTU map.
"""
result = {}
for otu_id, seq_ids in fields_to_dict(otu_map_f).items():
otu_size = len(seq_ids)
try:
result[otu_size] += 1
except KeyError:
result[otu_size] = 1
result = result.items()
result.sort()
return result
class DistanceMatrix(DenseTable):
"""This class represents a QIIME distance matrix.
Public attributes:
SampleIds - the list of sample ID strings (i.e. row/column headers)
"""
_biom_type = "Distance matrix"
@staticmethod
def parseDistanceMatrix(lines):
"""Parses a QIIME distance matrix file into a DistanceMatrix object.
This static method is basically a factory that reads in the given
distance matrix file contents and returns a DistanceMatrix instance.
This method is provided for convenience.
Arguments:
lines - a list of strings representing the file contents of a QIIME
distance matrix
"""
sample_ids, matrix_data = parse_distmat(lines)
return DistanceMatrix(matrix_data, sample_ids, sample_ids)
def __init__(self, *args, **kwargs):
"""Instantiates a DistanceMatrix object.
A distance matrix must be square and its sample IDs are exactly the
same as its observation IDs (a biom table has sample IDs for column
labels and observation IDs for row labels). A distance matrix must be
at least 1x1 in size.
Please refer to the biom.table.Table class documentation for a list of
acceptable arguments to the constructor. The data matrix argument (the
first argument) is expected to be a numpy array.
We have to match the parent class constructor exactly in this case due
to how several of the parent class methods are implemented (they assume
all subclasses have the same constructor signature). Otherwise, I would
have just made a simple constructor that took the matrix data and a
single list of sample IDs (because the row/col IDs are the same for a
distance matrix). As there is no easy way around this at the moment,
users of this class must pass the same list of sample IDs as the
observation IDs parameter as well.
"""
super(DistanceMatrix, self).__init__(*args, **kwargs)
# Make sure the matrix isn't empty, is square, and our sample IDs match
# the observation IDs.
data_matrix = args[0]
if 0 in data_matrix.shape:
raise ValueError("The input data matrix must be at least 1x1 in "
"size.")
if data_matrix.shape[0] != data_matrix.shape[1]:
raise ValueError("The input distance matrix must be square.")
if self.SampleIds != self.ObservationIds:
raise ValueError("The sample IDs must match the observation IDs.")
@property
def Size(self):
"""Returns the size of the distance matrix (number of rows or cols)."""
return len(self.SampleIds)
@property
def DataMatrix(self):
"""Returns the matrix of distances as a numpy array.
The returned matrix is not a copy of the matrix stored in this object.
"""
return asarray(self._data)
def max(self):
"""Returns the maximum value present in the distance matrix.
Since distance matrices are guaranteed to be at least 1x1 in size, this
method will always return a valid maximum.
"""
max_val = self[0][0]
for row_idx in range(self.Size):
for col_idx in range(self.Size):
if self[row_idx][col_idx] > max_val:
max_val = self[row_idx][col_idx]
return max_val
def flatten(self, lower=True):
"""Returns a list containing the flattened distance matrix.
The returned list will contain the elements in column-major order
(i.e. from leftmost to rightmost column, starting from the first row).
Arguments:
lower - If True, only the lower triangular elements will be
included (the diagonal will not be included). If False, all
elements (including the diagonal) will be included
"""
flattened = []
for col_num in range(self.Size):
for row_num in range(self.Size):
if lower:
if col_num < row_num:
flattened.append(self[row_num][col_num])
else:
flattened.append(self[row_num][col_num])
return flattened
def is_symmetric_and_hollow(self):
"""Returns True if the distance matrix is symmetric and hollow."""
return is_symmetric_and_hollow(self._data)
class MetadataMap():
"""This class represents a QIIME metadata mapping file.
Public attributes:
Comments - the comments associated with this metadata map (a list of
strings)
"""
@staticmethod
def parseMetadataMap(lines):
"""Parses a QIIME metadata mapping file into a MetadataMap object.
This static method is basically a factory that reads in the given
metadata mapping file contents and returns a MetadataMap instance. This
method is provided for convenience.
Arguments:
lines - a list of strings representing the file contents of a QIIME
metadata mapping file
"""
return MetadataMap(*parse_mapping_file_to_dict(lines))
def __init__(self, sample_metadata, Comments):
"""Instantiates a MetadataMap object.
Arguments:
sample_metadata - the output of parse_mapping_file_to_dict(). It
expects a python dict of dicts, where the top-level key is
sample ID, and the inner dict maps category name to category
value. This can be an empty dict altogether or the inner dict
can be empty
Comments - the output of parse_mapping_file_to_dict(). It expects a
list of strings for the comments in the mapping file. Can be an
empty list
"""
self._metadata = sample_metadata
self.Comments = Comments
def __eq__(self, other):
"""Test this instance for equality with another.
Note: This code was taken from http://stackoverflow.com/questions/
390250/elegant-ways-to-support-equivalence-equality-in-python-
classes.
"""
if isinstance(other, self.__class__):
return self.__dict__ == other.__dict__
else:
return False
def __ne__(self, other):
"""Test this instance for inequality with another.
Note: This code was taken from http://stackoverflow.com/questions/
390250/elegant-ways-to-support-equivalence-equality-in-python-
classes.
"""
return not self.__eq__(other)
def getSampleMetadata(self, sample_id):
"""Returns the metadata associated with a particular sample.
The metadata will be returned as a dict mapping category name to
category value.
Arguments:
sample_id - the sample ID (string) to retrieve metadata for
"""
return self._metadata[sample_id]
def getCategoryValue(self, sample_id, category):
"""Returns the category value associated with a sample's category.
The returned category value will be a string.
Arguments:
sample_id - the sample ID (string) to retrieve category information
for
category - the category name whose value will be returned
"""
return self._metadata[sample_id][category]
def getCategoryValues(self, sample_ids, category):
"""Returns all the values of a given category.
The return categories will be a list.
Arguments:
sample_ids - An ordered list of sample IDs (i.e., from a distance
matrix)
category - the category name whose values will be returned
"""
return [self._metadata[sid][category] for sid in sample_ids]
def isNumericCategory(self, category):
"""Returns True if the category is numeric and False otherwise.
A category is numeric if all values within the category can be
converted to a float.
Arguments:
category - the category that will be checked
"""
category_values = self.getCategoryValues(self.SampleIds, category)
is_numeric = True
for category_value in category_values:
try:
float(category_value)
except ValueError:
is_numeric = False
return is_numeric
def hasUniqueCategoryValues(self, category):
"""Returns True if the category's values are all unique.
Arguments:
category - the category that will be checked for uniqueness
"""
category_values = self.getCategoryValues(self.SampleIds, category)
is_unique = False
if len(set(category_values)) == len(self.SampleIds):
is_unique = True
return is_unique
def hasSingleCategoryValue(self, category):
"""Returns True if the category's values are all the same.
For example, the category 'Treatment' only has values 'Control' for the
entire column.
Arguments:
category - the category that will be checked
"""
category_values = self.getCategoryValues(self.SampleIds, category)
single_value = False
if len(set(category_values)) == 1:
single_value = True
return single_value
@property
def SampleIds(self):
"""Returns the IDs of all samples in the metadata map.
The sample IDs are returned as a list of strings in alphabetical order.
"""
return sorted(self._metadata.keys())
@property
def CategoryNames(self):
"""Returns the names of all categories in the metadata map.
The category names are returned as a list of strings in alphabetical
order.
"""
return sorted(self.getSampleMetadata(self.SampleIds[0]).keys()) \
if len(self.SampleIds) > 0 else []
def filterSamples(self, sample_ids_to_keep, strict=True):
"""Remove samples that are not in ``sample_ids_to_keep``.
If ``strict=True``, a ``ValueError`` will be raised if any of the
sample IDs in ``sample_ids_to_keep`` cannot be found in the metadata
map.
"""
for sid in self.SampleIds:
if sid not in sample_ids_to_keep:
del self._metadata[sid]
if strict:
extra_samples = set(sample_ids_to_keep) - set(self.SampleIds)
if extra_samples:
raise ValueError("Could not find the following sample IDs in "
"metadata map: %s" % ', '.join(extra_samples))
class RExecutor(CommandLineApplication):
"""RExecutor application controller
Runs R with a source script (from qiime/support_files/R)
"""
_input_handler = '_input_as_path'
_command = "R"
_options ={}
_R_parameters = {
'flags': '--slave'
}
# The name of the R script (located under qiime/support_files/R/)
_R_script = ''
_parameters = {}
_parameters.update(_options)
_parameters.update(_R_parameters)
def getHelp(self):
"""Returns documentation string"""
help_str =\
"""
Runs the specified r script using the specified command
Outputs:
The results of the r script that is ran
"""
return help_str
def __call__(self, command_args, script_name, output_dir=None,
verbose=False):
"""Run the specified r script using the commands_args
returns a CommandLineAppResult object
"""
input_handler = self.InputHandler
suppress_stdout = self.SuppressStdout
suppress_stderr = self.SuppressStderr
if suppress_stdout:
outfile = devnull
else:
outfilepath = FilePath(join(self.TmpDir,'R.stdout'))
outfile = open(outfilepath,'w')
if suppress_stderr:
errfile = devnull
else:
errfilepath = FilePath(join(self.TmpDir,'R.stderr'))
errfile = open(errfilepath, 'w')
self._R_script = script_name
rscript = self._get_R_script_path()
base_command = self._get_base_command()
cd_command, base_command = base_command.split(';')
cd_command += ';'
R_source_dir = self._get_R_script_dir()
# Build up the command, consisting of a BaseCommand followed by
# input and output (file) specifications
command = self._commandline_join(
[ cd_command, base_command,
'--args',
'--source_dir', R_source_dir,
] + command_args + [' < %s ' %(rscript)]
)
if self.HaltExec:
raise AssertionError, "Halted exec with command:\n" + command
# run command, wait for output, get exit status
proc = Popen(command, shell=True, stdout=outfile, stderr=errfile)
proc.wait()
exit_status = proc.returncode
# Determine if error should be raised due to exit status of
# appliciation
if not self._accept_exit_status(exit_status):
if exit_status == 2:
raise ApplicationError, \
'R library not installed: \n' + \
''.join(open(errfilepath,'r').readlines()) + '\n'
else:
raise ApplicationError, \
'Unacceptable application exit status: %s, command: %s'\
% (str(exit_status),command) +\
' Program output: \n\n%s\n'\
%(''.join(open(errfilepath,'r').readlines()))
# open the stdout and stderr if not being suppressed
out = None
if not suppress_stdout:
out = open(outfilepath,"r")
err = None
if not suppress_stderr:
err = open(errfilepath,"r")
if verbose:
msg = '\n\nCommand Executed: %s' % command + \
' \n\nR Command Output:\n%s' % \
(''.join(open(errfilepath,'r').readlines()))
print(msg)
# The methods below were taken from supervised_learning.py
def _get_R_script_dir(self):
"""Returns the path to the qiime R source directory."""
qiime_dir = get_qiime_project_dir()
script_dir = join(qiime_dir,'qiime','support_files','R')
return script_dir
def _get_R_script_path(self):
"""Returns the path to the R script to be executed."""
return join(self._get_R_script_dir(), self._R_script)
def _commandline_join(self, tokens):
"""Formats a list of tokens as a shell command."""
commands = filter(None, map(str, tokens))
return self._command_delimiter.join(commands).strip()
def _accept_exit_status(self,exit_status):
""" Return False to raise an error due to exit_status !=0."""
if exit_status != 0:
return False
return True
@property
def RParameters(self):
return self.__extract_parameters('R')
def __extract_parameters(self, name):
"""Extracts parameters in self._<name>_parameters from self.Parameters.
Allows the program to conveniently access a subset of user-
adjusted parameters, which are stored in the Parameters
attribute.
Relies on the convention of providing dicts named according to
"_<name>_parameters" and "_<name>_synonyms". The main
parameters object is expected to be initialized with the
contents of these dicts. This method will throw an exception
if either convention is not adhered to.
"""
parameters = getattr(self, '_' + name + '_parameters')
result = Parameters(parameters)
for key in result.keys():
result[key] = self.Parameters[key]
return result
def get_duplicates(fields):
""" Returns duplicates out of a list
Modified from stackoverflow.com example duplicate detection code
http://stackoverflow.com/a/5420328
fields: list of elements to check for duplicates
"""
cnt = {}
for field in fields:
try:
cnt[field] += 1
except KeyError:
cnt[field] = 1
return [key for key in cnt.keys() if cnt[key]> 1]
def duplicates_indices(fields):
""" Gets dictionary of duplicates:locations in a list
Modified from stackoverflow.com example duplicate detection code
http://stackoverflow.com/a/5420328
fields: list of elements to check for duplicates
"""
dup, ind = get_duplicates(fields), defaultdict(list)
for i, v in enumerate(fields):
if v in dup: ind[v].append(i)
return ind
def head_gzip(fp,n=10):
f = gzip_open(fp)
for i in range(n):
print f.readline(),
def add_filename_suffix(filepath, suffix):
"""Adds a suffix to the filepath, inserted before the file extension.
Returns the new filepath string. For example, if filepath is 'foo.txt' and
suffix is '_bar', 'foo_bar.txt' will be returned.
Arguments:
filepath - any filepath to append the suffix to (before the file
extension, if it exists). Most useful if the filepath points to a
file instead of a directory. The filepath isn't required to have
an extension
"""
root, extension = splitext(basename(filepath))
return root + suffix + extension
def sync_biom_and_mf(pmf, bt):
"""Reduce mapping file dict and biom table to shared samples.
Inputs:
pmf - parsed mapping file from parse_mapping_file_to_dict (nested dict).
bt - parse biom table from parse_biom_table (biom table object).
Outputs are a bt and pmf that contain only shared samples and a set of
samples that are not shared. If no samples are unshared this final output
will be an empty set.
"""
mf_samples = set(pmf)
bt_samples = set(bt.SampleIds)
if mf_samples == bt_samples:
# agreement, can continue without fear of breaking code
return pmf, bt, set()
else:
shared_samples = mf_samples.intersection(bt_samples)
# check that we shared something
assert len(shared_samples)!=0, \
"sync_biom_and_mf: No shared samples, no point in continuing."
nonshared_samples = mf_samples.union(bt_samples)-shared_samples
# remove samples that were in the mapping file but not biom file
npmf = {k:v for k,v in pmf.items() if k in shared_samples}
# remove samples in the biom table that were not in the mapping file
def _f(sv, sid, smd):
return sid in shared_samples
nbt = bt.filterSamples(_f)
return npmf, nbt, nonshared_samples
def biom_taxonomy_formatter(bt, md_key):
"""Return md strings from bt using md_key in order of bt.ObservationMetadata
There are multiple legacy formats for metadata encoding in biom formats
including as lists, dicts, and strings. This function attempts to figure out
what form the metadata is in and convert it into a single string. This
function assumes that the metadata is encoded as a single format. It will
break if some of the metadata is e.g., encoded as a dict and some as a list.
Inputs:
bt - biom table object
md_key - string, the key to return the metadata from the biom table.
Outputs a list of strings (in order of bt.ObservationMetadata entries) of
metadata. If no metadata could be found using the given key the function
will print a warning and return None.
"""
if bt.ObservationMetadata is None:
print 'No metadata in biom table.'
return None
else:
dtype = bt.ObservationMetadata[0][md_key]
if isinstance(dtype, dict):
data = []
for md in bt.ObservationMetadata:
tmp = []
for k,v in md[md_key].iteritems():
tmp.append('%s_%s' % (k,v))
data.append(' '.join(tmp))
# data = [' '.join(['%s_%s' % (k,v) for k,v in md[md_key].items()]) for \
# md in bt.ObservationMetadata]
return map(str, data)
elif isinstance(dtype, list):
return map(str, [';'.join(md[md_key]) for md in bt.ObservationMetadata])
elif isinstance(dtype, (str, unicode)):
return map(str, [md[md_key] for md in bt.ObservationMetadata])
else:
print ('Metadata format could not be determined or metadata key (%s) '+\
'was incorrect. Metadata will not be returned.') % md_key
return None
|