This file is indexed.

/usr/include/rtai/rtai_lxrt.h is in librtai-dev 3.8.1-4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
/**
 * @ingroup lxrt
 * @file
 *
 * LXRT main header.
 *
 * @author Paolo Mantegazza
 *
 * @note Copyright &copy; 1999-2003 Paolo Mantegazza <mantegazza@aero.polimi.it>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.

 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA.
 *
 * ACKNOWLEDGMENTS:
 * Pierre Cloutier (pcloutier@poseidoncontrols.com) has suggested the 6 
 * characters names and fixed many inconsistencies within this file.
 */

/**
 * @defgroup lxrt LXRT module.
 *
 * LXRT services (soft-hard real time in user space)
 *
 * LXRT is a module that allows you to use all the services made available by
 * RTAI and its schedulers in user space, both for soft and hard real time. At
 * the moment it is a feature youll find nowhere but with RTAI. For an
 * explanation of how it works see
 * @ref lxrt_faq "Pierre Cloutiers LXRT-INFORMED FAQs", and the explanation of
 * @ref whatis_lxrt "the implementation of hard real time in user space"
 * (contributed by: Pierre Cloutier, Paolo Mantegazza, Steve Papacharalambous).
 *
 * LXRT-INFORMED should be the production version of LXRT, the latter being the
 * development version. So it can happen that LXRT-INFORMED could be lagging
 * slightly behind LXRT.  If you need to hurry to the services not yet ported to
 * LXRT-INFORMED do it without pain. Even if you are likely to miss some useful
 * services found only in LXRT-INFORMED, we release only when a feature is
 * relatively stable.
 *
 * From what said above there should be no need for anything specific as all the
 * functions you can use in user space have been already documented in this
 * manual.   There are however a few exceptions that need to be explained.
 *
 * Note also that, as already done for the shared memory services in user space,
 * the function calls for Linux processes are inlined in the file
 * rtai_lxrt.h. This approach has been preferred to a library since it is
 * simpler, more effective, the calls are short and simple so that, even if it
 * is likely that there can be more than just a few per process, they could
 * never be charged of making codes too bigger.   Also common to shared memory
 * is the use of unsigned int to identify LXRT objects.   If you want to use
 * string identifiers the same support functions, i.e. nam2num() and
 * num2nam(), can be used.
 *
 *@{*/

#ifndef _RTAI_LXRT_H
#define _RTAI_LXRT_H

#include <rtai_sched.h>
#include <rtai_nam2num.h>

// scheduler
#define YIELD				 0
#define SUSPEND				 1
#define RESUME				 2
#define MAKE_PERIODIC 			 3
#define WAIT_PERIOD	 		 4
#define SLEEP		 		 5
#define SLEEP_UNTIL	 		 6
#define START_TIMER	 		 7
#define STOP_TIMER	 		 8
#define GET_TIME	 		 9
#define COUNT2NANO			10
#define NANO2COUNT			11
#define BUSY_SLEEP			12
#define SET_PERIODIC_MODE		13
#define SET_ONESHOT_MODE		14
#define SIGNAL_HANDLER	 		15
#define TASK_USE_FPU			16
#define GET_TASK_INFO			17  // was LINUX_USE_FPU
#define HARD_TIMER_COUNT		18
#define GET_TIME_NS			19
#define GET_CPU_TIME_NS			20
#define SET_RUNNABLE_ON_CPUS		21 
#define SET_RUNNABLE_ON_CPUID		22	 
#define GET_TIMER_CPU			23	 
#define START_RT_APIC_TIMERS		24
#define HARD_TIMER_COUNT_CPUID		25
#define COUNT2NANO_CPUID		26
#define NANO2COUNT_CPUID		27
#define GET_TIME_CPUID			28
#define GET_TIME_NS_CPUID       	29
#define MAKE_PERIODIC_NS 		30
#define SET_SCHED_POLICY 		31
#define SET_RESUME_END 			32
#define SPV_RMS 			33
#define WAKEUP_SLEEPING			34
#define CHANGE_TASK_PRIO 		35
#define SET_RESUME_TIME 		36
#define SET_PERIOD        		37
#define HARD_TIMER_RUNNING              38

// semaphores
#define TYPED_SEM_INIT 			39
#define SEM_DELETE			40
#define NAMED_SEM_INIT 			41
#define NAMED_SEM_DELETE		42
#define SEM_SIGNAL			43
#define SEM_WAIT			44
#define SEM_WAIT_IF			45
#define SEM_WAIT_UNTIL			46
#define SEM_WAIT_TIMED			47
#define SEM_BROADCAST       		48
#define SEM_WAIT_BARRIER 		49
#define SEM_COUNT			50
#define COND_WAIT			51
#define COND_WAIT_UNTIL			52
#define COND_WAIT_TIMED			53
#define RWL_INIT 			54
#define RWL_DELETE			55
#define NAMED_RWL_INIT 			56
#define NAMED_RWL_DELETE		57
#define RWL_RDLOCK 			58
#define RWL_RDLOCK_IF 			59
#define RWL_RDLOCK_UNTIL 		60
#define RWL_RDLOCK_TIMED 		61
#define RWL_WRLOCK 			62	
#define RWL_WRLOCK_IF	 		63
#define RWL_WRLOCK_UNTIL		64
#define RWL_WRLOCK_TIMED		65
#define RWL_UNLOCK 			66
#define SPL_INIT 			67
#define SPL_DELETE			68
#define NAMED_SPL_INIT 			69
#define NAMED_SPL_DELETE		70
#define SPL_LOCK 			71	
#define SPL_LOCK_IF	 		72
#define SPL_LOCK_TIMED			73
#define SPL_UNLOCK 			74

// mail boxes
#define TYPED_MBX_INIT 			75
#define MBX_DELETE			76
#define NAMED_MBX_INIT 			77
#define NAMED_MBX_DELETE		78
#define MBX_SEND			79
#define MBX_SEND_WP 			80
#define MBX_SEND_IF 			81
#define MBX_SEND_UNTIL			82
#define MBX_SEND_TIMED			83
#define MBX_RECEIVE 			84
#define MBX_RECEIVE_WP 			85
#define MBX_RECEIVE_IF 			86
#define MBX_RECEIVE_UNTIL		87
#define MBX_RECEIVE_TIMED		88
#define MBX_EVDRP			89
#define MBX_OVRWR_SEND                  90

// short intertask messages
#define SENDMSG				91
#define SEND_IF				92
#define SEND_UNTIL			93
#define SEND_TIMED			94
#define RECEIVEMSG			95
#define RECEIVE_IF			96
#define RECEIVE_UNTIL			97
#define RECEIVE_TIMED			98
#define RPCMSG				99
#define RPC_IF			       100
#define RPC_UNTIL		       101
#define RPC_TIMED		       102
#define EVDRP			       103
#define ISRPC			       104
#define RETURNMSG		       105

// extended intertask messages
#define RPCX			       106
#define RPCX_IF			       107
#define RPCX_UNTIL		       108
#define RPCX_TIMED		       109
#define SENDX			       110
#define SENDX_IF		       111
#define SENDX_UNTIL		       112
#define SENDX_TIMED		       113
#define RETURNX			       114
#define RECEIVEX		       115
#define RECEIVEX_IF		       116
#define RECEIVEX_UNTIL		       117
#define RECEIVEX_TIMED		       118
#define EVDRPX			       119

// proxies
#define PROXY_ATTACH                   120
#define PROXY_DETACH     	       121
#define PROXY_TRIGGER                  122


// synchronous user space specific intertask messages and related proxies
#define RT_SEND                        123
#define RT_RECEIVE                     124
#define RT_CRECEIVE          	       125
#define RT_REPLY                       126
#define RT_PROXY_ATTACH                127
#define RT_PROXY_DETACH                128
#define RT_TRIGGER                     129
#define RT_NAME_ATTACH                 130
#define RT_NAME_DETACH                 131
#define RT_NAME_LOCATE                 132

// bits
#define BITS_INIT          	       133	
#define BITS_DELETE        	       134
#define NAMED_BITS_INIT    	       135
#define NAMED_BITS_DELETE  	       136
#define BITS_GET           	       137
#define BITS_RESET         	       138
#define BITS_SIGNAL        	       139
#define BITS_WAIT          	       140
#define BITS_WAIT_IF       	       141		
#define BITS_WAIT_UNTIL    	       142
#define BITS_WAIT_TIMED   	       143

// typed mail boxes
#define TBX_INIT                       144
#define TBX_DELETE         	       145
#define NAMED_TBX_INIT                 146
#define NAMED_TBX_DELETE               147
#define TBX_SEND                       148
#define TBX_SEND_IF                    149
#define TBX_SEND_UNTIL                 150
#define TBX_SEND_TIMED                 151
#define TBX_RECEIVE                    152
#define TBX_RECEIVE_IF                 153
#define TBX_RECEIVE_UNTIL              154
#define TBX_RECEIVE_TIMED              155
#define TBX_BROADCAST                  156
#define TBX_BROADCAST_IF               157
#define TBX_BROADCAST_UNTIL            158
#define TBX_BROADCAST_TIMED            159
#define TBX_URGENT                     160
#define TBX_URGENT_IF                  161
#define TBX_URGENT_UNTIL               162
#define TBX_URGENT_TIMED               163

// pqueue
#define MQ_OPEN         	       164
#define MQ_RECEIVE      	       165
#define MQ_SEND         	       166
#define MQ_CLOSE        	       167
#define MQ_GETATTR     		       168
#define MQ_SETATTR      	       169
#define MQ_NOTIFY       	       170
#define MQ_UNLINK       	       171
#define MQ_TIMEDRECEIVE 	       172
#define MQ_TIMEDSEND    	       173

// named tasks init/delete
#define NAMED_TASK_INIT 	       174
#define NAMED_TASK_INIT_CPUID 	       175
#define NAMED_TASK_DELETE	       176

// registry
#define GET_ADR         	       177
#define GET_NAME         	       178

// netrpc
#define NETRPC			       179
#define SEND_REQ_REL_PORT	       180
#define DDN2NL			       181
#define SET_THIS_NODE		       182
#define FIND_ASGN_STUB		       183
#define REL_STUB		       184	
#define WAITING_RETURN		       185

// a semaphore extension
#define COND_SIGNAL		       186

// new shm
#define SHM_ALLOC                      187
#define SHM_FREE                       188
#define SHM_SIZE                       189
#define HEAP_SET                       190
#define HEAP_ALLOC                     191
#define HEAP_FREE                      192
#define HEAP_NAMED_ALLOC               193
#define HEAP_NAMED_FREE                194
#define MALLOC                         195
#define FREE                           196
#define NAMED_MALLOC                   197
#define NAMED_FREE                     198

#define SUSPEND_IF		       199
#define SUSPEND_UNTIL	 	       200
#define SUSPEND_TIMED		       201
#define IRQ_WAIT		       202	
#define IRQ_WAIT_IF		       203	
#define IRQ_WAIT_UNTIL		       204
#define IRQ_WAIT_TIMED		       205
#define IRQ_SIGNAL		       206
#define REQUEST_IRQ_TASK	       207
#define RELEASE_IRQ_TASK	       208
#define SCHED_LOCK		       209
#define SCHED_UNLOCK		       210
#define PEND_LINUX_IRQ		       211
#define SET_LINUX_SYSCALL_MODE	       212
/*#define RETURN_LINUX_SYSCALL         213 available */
#define REQUEST_RTC                    214
#define RELEASE_RTC                    215
#define RT_GETTID                      216
#define SET_NETRPC_TIMEOUT             217
#define GET_REAL_TIME		       218
#define GET_REAL_TIME_NS	       219

#define MQ_REG_USP_NOTIFIER	       220

#define RT_SIGNAL_HELPER   	       221
#define RT_SIGNAL_WAITSIG  	       222
#define RT_SIGNAL_REQUEST  	       223
#define RT_SIGNAL_RELEASE  	       224
#define RT_SIGNAL_ENABLE	       225
#define RT_SIGNAL_DISABLE	       226
#define RT_SIGNAL_TRIGGER	       227

#define SEM_RT_POLL 		       228
#define RT_POLL_NETRPC		       229

#define MAX_LXRT_FUN		       230

// not recovered yet 
// Qblk's 
#define RT_INITTICKQUEUE		69
#define RT_RELEASETICKQUEUE     	70
#define RT_QDYNALLOC            	71
#define RT_QDYNFREE             	72
#define RT_QDYNINIT             	73
#define RT_QBLKWAIT			74
#define RT_QBLKREPEAT			75
#define RT_QBLKSOON			76
#define RT_QBLKDEQUEUE			77
#define RT_QBLKCANCEL			78
#define RT_QSYNC			79
#define RT_QRECEIVE			80
#define RT_QLOOP			81
#define RT_QSTEP			82
#define RT_QBLKBEFORE			83
#define RT_QBLKAFTER			84
#define RT_QBLKUNHOOK			85
#define RT_QBLKRELEASE			86
#define RT_QBLKCOMPLETE			87
#define RT_QHOOKFLUSH			88
#define RT_QBLKATHEAD			89
#define RT_QBLKATTAIL			90
#define RT_QHOOKINIT			91
#define RT_QHOOKRELEASE			92
#define RT_QBLKSCHEDULE			93
#define RT_GETTICKQUEUEHOOK		94
// Testing
#define RT_BOOM				95
#define RTAI_MALLOC			96
#define RT_FREE				97
#define RT_MMGR_STATS			98
#define RT_STOMP                	99
// VC
#define RT_VC_ATTACH            	100
#define RT_VC_RELEASE           	101
#define RT_VC_RESERVE          		102
// Linux Signal Support
#define RT_GET_LINUX_SIGNAL		103
#define RT_GET_ERRNO			104
#define RT_SET_LINUX_SIGNAL_HANDLER	105
// end of not recovered yet

#define LXRT_GET_ADR		1000
#define LXRT_GET_NAME   	1001
#define LXRT_TASK_INIT 		1002
#define LXRT_TASK_DELETE 	1003
#define LXRT_SEM_INIT  		1004
#define LXRT_SEM_DELETE		1005
#define LXRT_MBX_INIT 		1006
#define LXRT_MBX_DELETE		1007
#define MAKE_SOFT_RT		1008
#define MAKE_HARD_RT		1009
#define PRINT_TO_SCREEN		1010
#define NONROOT_HRT		1011
#define RT_BUDDY		1012
#define HRT_USE_FPU     	1013
#define USP_SIGHDL      	1014
#define GET_USP_FLAGS   	1015
#define SET_USP_FLAGS   	1016
#define GET_USP_FLG_MSK 	1017
#define SET_USP_FLG_MSK 	1018
#define IS_HARD         	1019
#define LINUX_SERVER		1020
#define ALLOC_REGISTER 		1021
#define DELETE_DEREGISTER	1022
#define FORCE_TASK_SOFT  	1023
#define PRINTK			1024
#define GET_EXECTIME		1025
#define GET_TIMEORIG 		1026
#define LXRT_RWL_INIT		1027
#define LXRT_RWL_DELETE 	1028
#define LXRT_SPL_INIT		1029
#define LXRT_SPL_DELETE 	1030

#define FORCE_SOFT 0x80000000

// Keep LXRT call enc/decoding together, so you are sure to act consistently.
// This is the encoding, note " | GT_NR_SYSCALLS" to ensure not a Linux syscall, ...
#define GT_NR_SYSCALLS  (1 << 11)
#define ENCODE_LXRT_REQ(dynx, srq, lsize)  (((dynx) << 24) | ((srq) << 12) | GT_NR_SYSCALLS | (lsize))
// ... and this is the decoding.
#define SRQ(x)   (((x) >> 12) & 0xFFF)
#define NARG(x)  ((x) & (GT_NR_SYSCALLS - 1))
#define INDX(x)  (((x) >> 24) & 0xF)

#define LINUX_SYSCALL_GET_MODE       0
#define SYNC_LINUX_SYSCALL           1
#define ASYNC_LINUX_SYSCALL          2
#define LINUX_SYSCALL_CANCELED       3
#define LINUX_SYSCALL_GET_CALLBACK   ((void *)4)

#define NSYSCALL_ARGS     7
#define NSYSCALL_PACARGS  6

struct linux_syscall { long args[NSYSCALL_ARGS], mode; void (*cbfun)(long, long); int id; long pacargs[NSYSCALL_PACARGS]; long retval; };
struct linux_syscalls_list { int in, out, nr, id, mode; void (*cbfun)(long, long); void *serv; struct linux_syscall *syscall; RT_TASK *task; };

#ifdef __KERNEL__

#include <asm/rtai_lxrt.h>

/*
     Encoding of system call argument
            31                                    0  
soft SRQ    .... |||| |||| |||| .... .... .... ....  0 - 4095 max
int  NARG   .... .... .... .... |||| |||| |||| ||||  
arg  INDX   |||| .... .... .... .... .... .... ....
*/

/*
These USP (unsigned long) type fields allow to read and write up to 2 arguments.  
                                               
The high part of the unsigned long encodes writes
W ARG1 BF .... .... ..|| |... .... .... .... ....
W ARG1 SZ .... ...| ||.. .... .... .... .... ....
W ARG2 BF .... |||. .... .... .... .... .... ....
W ARG2 SZ .||| .... .... .... .... .... .... ....

The low part of the unsigned long encodes writes
R ARG1 BF .... .... .... .... .... .... ..|| |...
R ARG1 SZ .... .... .... .... .... ...| ||.. ....
R ARG2 BF .... .... .... .... .... |||. .... ....
R ARG2 SZ .... .... .... .... .||| .... .... ....

The low part of the unsigned long encodes also
RT Switch .... .... .... .... .... .... .... ...|

If SZ is zero sizeof(int) is copied by default, if LL bit is set sizeof(long long) is copied.
*/

// These are for setting appropriate bits in any function entry structure, OR
// them in fun entry type to obtain the desired encoding

// for writes
#define UW1(bf, sz)  ((((bf) & 0x7) << 19) | (((sz) & 0x7) << 22))
#define UW2(bf, sz)  ((((bf) & 0x7) << 25) | (((sz) & 0x7) << 28))

// for reads
#define UR1(bf, sz)  ((((bf) & 0x7) << 3) | (((sz) & 0x7) <<  6))
#define UR2(bf, sz)  ((((bf) & 0x7) << 9) | (((sz) & 0x7) << 12))

#define	NEED_TO_RW(x)	((x) & 0xFFFFFFFE)

#define NEED_TO_W(x)	((x) & (0x3F << 19))
#define NEED_TO_W2ND(x)	((x) & (0x3F << 25))

#define NEED_TO_R(x)	((x) & (0x3F <<  3))
#define NEED_TO_R2ND(x)	((x) & (0x3F <<  9))

#define USP_WBF1(x)   	(((x) >> 19) & 0x7)
#define USP_WSZ1(x)    	(((x) >> 22) & 0x7)
#define USP_WBF2(x)    	(((x) >> 25) & 0x7)
#define USP_WSZ2(x)    	(((x) >> 28) & 0x7)

#define USP_RBF1(x)  	(((x) >>  3) & 0x7)
#define USP_RSZ1(x)    	(((x) >>  6) & 0x7)
#define USP_RBF2(x)    	(((x) >>  9) & 0x7)
#define USP_RSZ2(x)    	(((x) >> 12) & 0x7)

struct rt_fun_entry {
    unsigned long type;
    void *fun;
};

struct rt_native_fun_entry {
    struct rt_fun_entry fun;
    int index;
};

extern struct rt_fun_entry rt_fun_lxrt[];

void reset_rt_fun_entries(struct rt_native_fun_entry *entry);

int set_rt_fun_entries(struct rt_native_fun_entry *entry);

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

#if 1 // needs CONFIG_RTAI_INTERNAL_LXRT_SUPPORT no more
 
static inline struct rt_task_struct *pid2rttask(long pid)
{
	struct task_struct *lnxtsk = find_task_by_pid(pid);
        return lnxtsk ? lnxtsk->rtai_tskext(TSKEXT0) : NULL;
	return ((unsigned long)pid) > PID_MAX_LIMIT ? (struct rt_task_struct *)pid : find_task_by_pid(pid)->rtai_tskext(TSKEXT0);
}

static inline long rttask2pid(struct rt_task_struct * task)
{
    return task->lnxtsk ? task->lnxtsk->pid : (long)task;
}

#else /* !CONFIG_RTAI_INTERNAL_LXRT_SUPPORT */

static inline struct rt_task_struct *pid2rttask(pid_t pid)
{
    return 0;
}

// The following might look strange but it must be so to work with
// buddies also.
static inline pid_t rttask2pid(struct rt_task_struct * task)
{
    return (long) task;
}

#endif /* CONFIG_RTAI_INTERNAL_LXRT_SUPPORT */

int set_rtai_callback(void (*fun)(void));

void remove_rtai_callback(void (*fun)(void));

RT_TASK *rt_lxrt_whoami(void);

void exec_func(void (*func)(void *data, int evn),
	       void *data,
	       int evn);

int  set_rt_fun_ext_index(struct rt_fun_entry *fun,
			  int idx);

void reset_rt_fun_ext_index(struct rt_fun_entry *fun,
			    int idx);

#ifdef __cplusplus
}
#endif /* __cplusplus */

#else /* !__KERNEL__ */

#include <sys/types.h>
#include <sys/mman.h>
#include <sched.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <asm/rtai_lxrt.h>

struct apic_timer_setup_data;

#ifdef CONFIG_MMU

#define rt_grow_and_lock_stack(incr) \
	do { \
		char buf[incr]; \
		memset(buf, 0, incr); \
		mlockall(MCL_CURRENT | MCL_FUTURE); \
	} while (0)

#else

#define rt_grow_and_lock_stack(incr) do { } while (0)

#endif

#define BIDX   0 // rt_fun_ext[0]
#define SIZARG sizeof(arg)

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

/**
 * Get an object address by its name.
 *
 * rt_get_adr returns the address associated to @a name.
 *
 * @return the address associated to @a name on success, 0 on failure
 */
RTAI_PROTO(void *, rt_get_adr, (unsigned long name))
{
	struct { unsigned long name; } arg = { name };
	return rtai_lxrt(BIDX, SIZARG, LXRT_GET_ADR, &arg).v[LOW];
} 

/**
 * Get an object name by its address.
 *
 * rt_get_name returns the name pointed by the address @a adr.
 *
 * @return the identifier pointed by the address @a adr on success, 0 on
 * failure.
 */
RTAI_PROTO(unsigned long, rt_get_name, (void *adr))
{
	struct { void *adr; } arg = { adr };
	return rtai_lxrt(BIDX, SIZARG, LXRT_GET_NAME, &arg).i[LOW];
}

RTAI_PROTO(RT_TASK *, rt_task_init_schmod, (unsigned long name, int priority, int stack_size, int max_msg_size, int policy, int cpus_allowed))
{
        struct sched_param mysched;
        struct { unsigned long name; long priority, stack_size, max_msg_size, cpus_allowed; } arg = { name ? name : rt_get_name(NULL), priority, stack_size, max_msg_size, cpus_allowed };

        if (policy == SCHED_OTHER) {
        	mysched.sched_priority = 0;
	} else if ((mysched.sched_priority = sched_get_priority_max(policy) - priority) < 1) {
		mysched.sched_priority = 1;
	}
        if (sched_setscheduler(0, policy, &mysched) < 0) {
                return 0;
        }
	rtai_iopl();
	mlockall(MCL_CURRENT | MCL_FUTURE);

	return (RT_TASK *)rtai_lxrt(BIDX, SIZARG, LXRT_TASK_INIT, &arg).v[LOW];
}

static inline int rt_clone(void *fun, void *args, long stack_size, unsigned long flags)
{
	void *sp;
	if (!flags) {
		flags = CLONE_VM | CLONE_FS | CLONE_FILES;
	}
	memset(sp = malloc(stack_size), 0, stack_size);
	sp = (void *)(((unsigned long)sp + stack_size - 16) & ~0xF);
	return clone((int (*)(void *))fun, sp, flags, args);
}

#define RT_THREAD_STACK_MIN  64*1024

#include <pthread.h>

RTAI_PROTO(long, rt_thread_create, (void *fun, void *args, int stack_size))
{
	long thread;
	pthread_attr_t attr;

        pthread_attr_init(&attr);
	if (!pthread_attr_setstacksize(&attr, stack_size > RT_THREAD_STACK_MIN ? stack_size : RT_THREAD_STACK_MIN)) {
		struct { unsigned long hs; } arg = { 0 };
		if ((arg.hs = rtai_lxrt(BIDX, SIZARG, IS_HARD, &arg).i[LOW])) {
			rtai_lxrt(BIDX, SIZARG, MAKE_SOFT_RT, &arg);
		}
		if (pthread_create((pthread_t *)&thread, &attr, (void *(*)(void *))fun, args)) {
			thread = 0;
		}
		if (arg.hs) {
			rtai_lxrt(BIDX, SIZARG, MAKE_HARD_RT, &arg);
		}
	} else {
		thread = 0;
	}
	return thread;
}

RTAI_PROTO(int, rt_thread_join, (long thread))
{
	return pthread_join((pthread_t)thread, NULL);
}

#ifndef __SUPPORT_LINUX_SERVER__
#define __SUPPORT_LINUX_SERVER__

#include <unistd.h>
#include <sys/mman.h>

static void linux_syscall_server_fun(struct linux_syscalls_list *list)
{
	struct linux_syscalls_list syscalls;

	syscalls = *list;
	syscalls.serv = &syscalls;
	if ((syscalls.serv = rtai_lxrt(BIDX, sizeof(struct linux_syscalls_list), LINUX_SERVER, &syscalls).v[LOW])) {
		long *args;
		struct linux_syscall *todo;
		struct linux_syscall calldata[syscalls.nr];
		syscalls.syscall = calldata;
		memset(calldata, 0, sizeof(calldata));
                mlockall(MCL_CURRENT | MCL_FUTURE);
		list->serv = &syscalls;
		rtai_lxrt(BIDX, sizeof(RT_TASK *), RESUME, &syscalls.task);
		while (abs(rtai_lxrt(BIDX, sizeof(RT_TASK *), SUSPEND, &syscalls.serv).i[LOW]) < RTE_LOWERR) {
			if (syscalls.syscall[syscalls.out].mode != LINUX_SYSCALL_CANCELED) {
				todo = &syscalls.syscall[syscalls.out];
				args = todo->args;
				todo->retval = syscall(args[0], args[1], args[2], args[3], args[4], args[5], args[6]);
				todo->id = -todo->id;
				if (todo->mode == SYNC_LINUX_SYSCALL) {
					rtai_lxrt(BIDX, sizeof(RT_TASK *), RESUME, &syscalls.task);
				} else if (syscalls.cbfun) {
					todo->cbfun(args[0], todo->retval);
				}
			}
			if (++syscalls.out >= syscalls.nr) {
				syscalls.out = 0;
			}
		}
        }
	rtai_lxrt(BIDX, sizeof(RT_TASK *), LXRT_TASK_DELETE, &syscalls.serv);
}

#endif /* __SUPPORT_LINUX_SERVER__ */

RTAI_PROTO(int, rt_set_linux_syscall_mode, (int mode, void (*cbfun)(long, long)))
{
	struct { long mode; void (*cbfun)(long, long); } arg = { mode, cbfun };
	return rtai_lxrt(BIDX, SIZARG, SET_LINUX_SYSCALL_MODE, &arg).i[LOW];
}

RTAI_PROTO(int, rt_linux_syscall_mode, (struct linux_syscalls_list *syscalls, int mode))
{
	int retval; 
	if (syscalls == NULL) {
		return EINVAL;
	}
	retval = syscalls->mode; 
	if (mode == SYNC_LINUX_SYSCALL || mode == ASYNC_LINUX_SYSCALL) {
		syscalls->mode = mode; 
	}
	return retval;
}

RTAI_PROTO(void *, rt_linux_syscall_cbfun, (struct linux_syscalls_list *syscalls, void (*cbfun)(long, long)))
{
	void *retval; 
	if (syscalls == NULL) {
		return (void *)EINVAL;
	}
	retval = (void *)((unsigned long)syscalls->cbfun);
	if ((unsigned long)cbfun > (unsigned long)LINUX_SYSCALL_GET_CALLBACK) {
		syscalls->cbfun = cbfun;
	}
	return retval;
}

RTAI_PROTO(int, rt_linux_syscall_status, (struct linux_syscalls_list *syscalls, int id, int *retval))
{
	int slot, slotid;
	if (syscalls == NULL || id < 0) {
		return EINVAL;
	}
	if (id != abs(slotid = syscalls->syscall[slot = id%syscalls->nr].id)) {
		return ENOENT;
	}
	if (syscalls->syscall[slot].mode == LINUX_SYSCALL_CANCELED) {
		return ECANCELED;
	}
	if (slotid > 0) {
		return EINPROGRESS;
	}
	if (retval) {
		*retval =  syscalls->syscall[slot].retval;
	}
	return 0;
}

RTAI_PROTO(int, rt_linux_syscall_cancel, (struct linux_syscalls_list *syscalls, int id))
{
	int slot, slotid;
	if (syscalls == NULL || id < 0) {
		return EINVAL;
	}
	if (id != abs(slotid = syscalls->syscall[slot = id%syscalls->nr].id)) {
		return ENOENT;
	}
	if (slotid < 0) {
		return slotid;
	}
	syscalls->syscall[slot].mode = LINUX_SYSCALL_CANCELED;
	return 0;
}

RTAI_PROTO(void *, rt_create_linux_syscall_server, (RT_TASK *task, int mode, void (*cbfun)(long, long), int nr_bufd_async_calls))
{
	if ((task || (task = (RT_TASK *)rtai_lxrt(BIDX, sizeof(RT_TASK *), RT_BUDDY, &task).v[LOW])) && nr_bufd_async_calls > 0) {
		struct linux_syscalls_list syscalls;
		memset(&syscalls, 0, sizeof(syscalls));
		syscalls.task  = task;
		syscalls.cbfun = cbfun;
		syscalls.nr    = nr_bufd_async_calls + 1;
		syscalls.mode  = mode;
		syscalls.serv  = NULL;
		if (rt_thread_create((void *)linux_syscall_server_fun, &syscalls, RT_THREAD_STACK_MIN + syscalls.nr*sizeof(struct linux_syscall))) {
			rtai_lxrt(BIDX, sizeof(RT_TASK *), SUSPEND, &task);
			return syscalls.serv;
		}
	}
	return NULL;
}

#define rt_sync_async_linux_syscall_server_create(task, mode, cbfun, nr_calls)  rt_create_linux_syscall_server(task, mode, cbfun, nr_calls)

#define rt_linux_syscall_server_create(task)  rt_sync_async_linux_syscall_server_create(task, SYNC_LINUX_SYSCALL, NULL, 1);

RTAI_PROTO(void, rt_destroy_linux_syscall_server, (RT_TASK *task))
{
	struct linux_syscalls_list s;
	s.nr = 0;
	s.task = task;
	rtai_lxrt(BIDX, sizeof(struct linux_syscalls_list), LINUX_SERVER, &s);
}

RTAI_PROTO(RT_TASK *, rt_thread_init, (unsigned long name, int priority, int max_msg_size, int policy, int cpus_allowed))
{
	return rt_task_init_schmod(name, priority, 0, max_msg_size, policy, cpus_allowed);
}

/**
 * Create an RTAI task extension for a Linux process/task in user space.
 * 
 * rt_task_init extends the Linux task structure, making it possible to use
 * RTAI APIs that wants to access RTAI scheduler services.   It needs no task
 * function as none is used, but it does need to setup an RTAI task structure
 * and initialize it appropriately as the provided services are carried out as
 * if the Linux process has become an RTAI task also.   Because of that it 
 * requires less arguments and returns the pointer to the RTAI task extension
 * that is to be used in related calls.
 *
 * @param name is a unique identifier that is possibly used to ease
 * referencing the RTAI task extension of a peer Linux process.
 *
 * @param priority is the priority of the RTAI task extension.
 *
 * @param stack_size, a legacy parameter used nomore; kept for portability 
 * reasons only. (It was just what is implied by such a name and referred to 
 * the stack size used by the buddy in the very first implementation of LXRT).
 *
 * @param max_msg_size is a hint for the size of the most lengthy intertask
 * message that is likely to be exchanged.
 *
 * @a max_msg_size can be zero, in which case a default internal value is
 * used.  Keep an eye on such a default message (256) size. It could be 
 * possible that a larger size is required to suite your needs best. In such 
 * a case either recompile sys.c with the macro MSG_SIZE set appropriately, 
 * or assign a larger size here esplicitly.  Note that the message size is 
 * not critical though. In fact the module reassigns it, dynamically and 
 * appropriately sized, whenever it is needed.  The cost is a real time 
 * allocation of the new buffer.
 * Note also that @a max_msg_size is for a buffer to be used to copy whatever
 * intertask message from user to kernel space, as intertask messages are not 
 * necessarily used immediately.
 *
 * It is important to remark that the returned task pointers cannot be used
 * directly, they are for kernel space data, but just passed as arguments when
 * needed.
 *
 * @return On success a pointer to the task structure initialized in kernel
 * space.
 * @return On failure a NULL value is returned if it was not possible to setup 
 * the RTAI task extension or something using the same name was found.
 */
RTAI_PROTO(RT_TASK *,rt_task_init,(unsigned long name, int priority, int stack_size, int max_msg_size))
{
	return rt_task_init_schmod(name, priority, 0, max_msg_size, SCHED_FIFO, 0xFF);
}

RTAI_PROTO(void,rt_set_sched_policy,(RT_TASK *task, int policy, int rr_quantum_ns))
{
	struct { RT_TASK *task; long policy; long rr_quantum_ns; } arg = { task, policy, rr_quantum_ns };
	rtai_lxrt(BIDX, SIZARG, SET_SCHED_POLICY, &arg);
}

RTAI_PROTO(int,rt_change_prio,(RT_TASK *task, int priority))
{
	struct { RT_TASK *task; long priority; } arg = { task, priority };
	return rtai_lxrt(BIDX, SIZARG, CHANGE_TASK_PRIO, &arg).i[LOW];
}

/**
 * Return a hard real time Linux process, or pthread to the standard Linux
 * behavior.
 *
 * rt_make_soft_real_time returns to soft Linux POSIX real time a process, from
 * which it is called, that was made hard real time by a call to
 * rt_make_hard_real_time.
 *
 * Only the process itself can use this functions, it is not possible to impose
 * the related transition from another process.
 *
 */
RTAI_PROTO(void,rt_make_soft_real_time,(void))
{
	struct { unsigned long dummy; } arg;
	rtai_lxrt(BIDX, SIZARG, MAKE_SOFT_RT, &arg);
}

RTAI_PROTO(int, rt_thread_delete,(RT_TASK *task))
{
	struct { RT_TASK *task; } arg = { task };
	rt_make_soft_real_time();
	return rtai_lxrt(BIDX, SIZARG, LXRT_TASK_DELETE, &arg).i[LOW];
}

#define rt_task_delete(task)  rt_thread_delete(task)

RTAI_PROTO(int,rt_task_yield,(void))
{
	struct { unsigned long dummy; } arg;
	return rtai_lxrt(BIDX, SIZARG, YIELD, &arg).i[LOW];
}

RTAI_PROTO(int,rt_task_suspend,(RT_TASK *task))
{
	struct { RT_TASK *task; } arg = { task };
	return rtai_lxrt(BIDX, SIZARG, SUSPEND, &arg).i[LOW];
}

RTAI_PROTO(int,rt_task_suspend_if,(RT_TASK *task))
{
	struct { RT_TASK *task; } arg = { task };
	return rtai_lxrt(BIDX, SIZARG, SUSPEND_IF, &arg).i[LOW];
}

RTAI_PROTO(int,rt_task_suspend_until,(RT_TASK *task, RTIME time))
{
	struct { RT_TASK *task; RTIME time; } arg = { task, time };
	return rtai_lxrt(BIDX, SIZARG, SUSPEND_UNTIL, &arg).i[LOW];
}

RTAI_PROTO(int,rt_task_suspend_timed,(RT_TASK *task, RTIME delay))
{
	struct { RT_TASK *task; RTIME delay; } arg = { task, delay };
	return rtai_lxrt(BIDX, SIZARG, SUSPEND_TIMED, &arg).i[LOW];
}

RTAI_PROTO(int,rt_task_resume,(RT_TASK *task))
{
	struct { RT_TASK *task; } arg = { task };
	return rtai_lxrt(BIDX, SIZARG, RESUME, &arg).i[LOW];
}

RTAI_PROTO(void, rt_sched_lock, (void))
{
	struct { long dummy; } arg;
	rtai_lxrt(BIDX, SIZARG, SCHED_LOCK, &arg);
}

RTAI_PROTO(void, rt_sched_unlock, (void))
{
	struct { long dummy; } arg;
	rtai_lxrt(BIDX, SIZARG, SCHED_UNLOCK, &arg);
}

RTAI_PROTO(void, rt_pend_linux_irq, (unsigned irq))
{
	struct { unsigned irq; } arg = { irq };
	rtai_lxrt(BIDX, SIZARG, PEND_LINUX_IRQ, &arg);
}

RTAI_PROTO(int, rt_irq_wait, (unsigned irq))
{
	struct { unsigned irq; } arg = { irq };
	return rtai_lxrt(BIDX, SIZARG, IRQ_WAIT, &arg).i[LOW];
}

RTAI_PROTO(int, rt_irq_wait_if, (unsigned irq))
{
	struct { unsigned irq; } arg = { irq };
	return rtai_lxrt(BIDX, SIZARG, IRQ_WAIT_IF, &arg).i[LOW];
}

RTAI_PROTO(int, rt_irq_wait_until, (unsigned irq, RTIME time))
{
	struct { unsigned irq; RTIME time; } arg = { irq, time };
	return rtai_lxrt(BIDX, SIZARG, IRQ_WAIT_UNTIL, &arg).i[LOW];
}

RTAI_PROTO(int, rt_irq_wait_timed, (unsigned irq, RTIME delay))
{
	struct { unsigned irq; RTIME delay; } arg = { irq, delay };
	return rtai_lxrt(BIDX, SIZARG, IRQ_WAIT_TIMED, &arg).i[LOW];
}

RTAI_PROTO(int, rt_irq_signal, (unsigned irq))
{
	struct { unsigned irq; } arg = { irq };
	return rtai_lxrt(BIDX, SIZARG, IRQ_SIGNAL, &arg).i[LOW];
}

RTAI_PROTO(int, rt_request_irq_task, (unsigned irq, void *handler, int type, int affine2task))
{
	struct { unsigned irq; void *handler; long type, affine2task; } arg = { irq, handler, type, affine2task };
	return rtai_lxrt(BIDX, SIZARG, REQUEST_IRQ_TASK, &arg).i[LOW];
}


RTAI_PROTO(int, rt_release_irq_task, (unsigned irq))
{
	struct { unsigned irq; } arg = { irq };
	return rtai_lxrt(BIDX, SIZARG, RELEASE_IRQ_TASK, &arg).i[LOW];
}

RTAI_PROTO(int, rt_task_make_periodic,(RT_TASK *task, RTIME start_time, RTIME period))
{
	struct { RT_TASK *task; RTIME start_time, period; } arg = { task, start_time, period };
	return rtai_lxrt(BIDX, SIZARG, MAKE_PERIODIC, &arg).i[LOW];
}

RTAI_PROTO(int,rt_task_make_periodic_relative_ns,(RT_TASK *task, RTIME start_delay, RTIME period))
{
	struct { RT_TASK *task; RTIME start_time, period; } arg = { task, start_delay, period };
	return rtai_lxrt(BIDX, SIZARG, MAKE_PERIODIC_NS, &arg).i[LOW];
}

RTAI_PROTO(int,rt_task_wait_period,(void))
{
	struct { unsigned long dummy; } arg;
	return rtai_lxrt(BIDX, SIZARG, WAIT_PERIOD, &arg).i[LOW];
}

RTAI_PROTO(int,rt_sleep,(RTIME delay))
{
	struct { RTIME delay; } arg = { delay };
	return rtai_lxrt(BIDX, SIZARG, SLEEP, &arg).i[LOW];
}

RTAI_PROTO(int,rt_sleep_until,(RTIME time))
{
	struct { RTIME time; } arg = { time };
	return rtai_lxrt(BIDX, SIZARG, SLEEP_UNTIL, &arg).i[LOW];
}

RTAI_PROTO(int,rt_is_hard_timer_running,(void))
{
	struct { unsigned long dummy; } arg;
	return rtai_lxrt(BIDX, SIZARG, HARD_TIMER_RUNNING, &arg).i[LOW];
}

RTAI_PROTO(RTIME, start_rt_timer, (int period))
{
	int hs;
	RTIME retval;
	struct { long period; } arg = { 0 };
	if ((hs = rtai_lxrt(BIDX, SIZARG, IS_HARD, &arg).i[LOW])) {
		rtai_lxrt(BIDX, SIZARG, MAKE_SOFT_RT, &arg);
	}
	arg.period = period;
	retval = rtai_lxrt(BIDX, SIZARG, START_TIMER, &arg).rt;
	if (hs) {
		rtai_lxrt(BIDX, SIZARG, MAKE_HARD_RT, &arg);
	}
	return retval;
}

RTAI_PROTO(void, stop_rt_timer, (void))
{
	struct { long hs; } arg = { 0 };
	if ((arg.hs = rtai_lxrt(BIDX, SIZARG, IS_HARD, &arg).i[LOW])) {
		rtai_lxrt(BIDX, SIZARG, MAKE_SOFT_RT, &arg);
	}
	rtai_lxrt(BIDX, SIZARG, STOP_TIMER, &arg);
	if (arg.hs) {
		rtai_lxrt(BIDX, SIZARG, MAKE_HARD_RT, &arg);
	}
}

RTAI_PROTO(void, rt_request_rtc,(int rtc_freq, void *handler))
{
	struct { long rtc_freq; void *handler; } arg = { rtc_freq, handler };
	rtai_lxrt(BIDX, SIZARG, REQUEST_RTC, &arg);
}

RTAI_PROTO(void, rt_release_rtc,(void))
{
	struct { unsigned long dummy; } arg;
	rtai_lxrt(BIDX, SIZARG, RELEASE_RTC, &arg);
}

RTAI_PROTO(RTIME,rt_get_time,(void))
{
	struct { unsigned long dummy; } arg;
	return rtai_lxrt(BIDX, SIZARG, GET_TIME, &arg).rt;
}

RTAI_PROTO(RTIME, rt_get_real_time, (void))
{
	struct { unsigned long dummy; } arg;
	return rtai_lxrt(BIDX, SIZARG, GET_REAL_TIME, &arg).rt;
}

RTAI_PROTO(RTIME, rt_get_real_time_ns, (void))
{
	struct { unsigned long dummy; } arg;
	return rtai_lxrt(BIDX, SIZARG, GET_REAL_TIME_NS, &arg).rt;
}

RTAI_PROTO(RTIME,count2nano,(RTIME count))
{
	struct { RTIME count; } arg = { count };
	return rtai_lxrt(BIDX, SIZARG, COUNT2NANO, &arg).rt;
}

RTAI_PROTO(RTIME,nano2count,(RTIME nanos))
{
	struct { RTIME nanos; } arg = { nanos };
	return rtai_lxrt(BIDX, SIZARG, NANO2COUNT, &arg).rt;
}

RTAI_PROTO(void,rt_busy_sleep,(int ns))
{
	struct { long ns; } arg = { ns };
	rtai_lxrt(BIDX, SIZARG, BUSY_SLEEP, &arg);
}

RTAI_PROTO(void,rt_set_periodic_mode,(void))
{
	struct { unsigned long dummy; } arg;
	rtai_lxrt(BIDX, SIZARG, SET_PERIODIC_MODE, &arg);
}

RTAI_PROTO(void,rt_set_oneshot_mode,(void))
{
	struct { unsigned long dummy; } arg;
	rtai_lxrt(BIDX, SIZARG, SET_ONESHOT_MODE, &arg);
}

RTAI_PROTO(int, rt_task_signal_handler, (RT_TASK *task, void (*handler)(void)))
{
	struct { RT_TASK *task; void (*handler)(void); } arg = { task, handler };
	return rtai_lxrt(BIDX, SIZARG, SIGNAL_HANDLER, &arg).i[LOW];
}

RTAI_PROTO(int,rt_task_use_fpu,(RT_TASK *task, int use_fpu_flag))
{
        struct { RT_TASK *task; long use_fpu_flag; } arg = { task, use_fpu_flag };
        if (rtai_lxrt(BIDX, SIZARG, RT_BUDDY, &arg).v[LOW] != task) {
                return rtai_lxrt(BIDX, SIZARG, TASK_USE_FPU, &arg).i[LOW];
        } else {
// note that it would be enough to do whatever FP op here to have it OK. But
// that is scary if it is done when already in hard real time, and we do not
// want to force users to call this before making it hard.
                rtai_lxrt(BIDX, SIZARG, HRT_USE_FPU, &arg);
                return 0;
        }
}

RTAI_PROTO(int,rt_buddy_task_use_fpu,(RT_TASK *task, int use_fpu_flag))
{
	struct { RT_TASK *task; long use_fpu_flag; } arg = { task, use_fpu_flag };
	return rtai_lxrt(BIDX, SIZARG, TASK_USE_FPU, &arg).i[LOW];
}

/*
RTAI_PROTO(int,rt_linux_use_fpu,(int use_fpu_flag))
{
	struct { long use_fpu_flag; } arg = { use_fpu_flag };
	return rtai_lxrt(BIDX, SIZARG, LINUX_USE_FPU, &arg).i[LOW];
}
*/

RTAI_PROTO(int, rt_task_get_info, (RT_TASK *task, RT_TASK_INFO *task_info))
{
	RT_TASK_INFO ltask_info;
	struct { RT_TASK *task; RT_TASK_INFO *taskinfo; } arg = { task, &ltask_info };
	if (task_info && !rtai_lxrt(BIDX, SIZARG, GET_TASK_INFO, &arg).i[LOW]) {
		*task_info = ltask_info;
		return 0;
	}
	return -EINVAL;
}

RTAI_PROTO(int, rt_get_priorities, (RT_TASK *task, int *priority, int *base_priority))
{
	RT_TASK_INFO task_info;
	if (priority && base_priority && !rt_task_get_info(task, &task_info)) {
		*priority      = task_info.priority;
		*base_priority = task_info.base_priority;
		return 0;
	}
	return -EINVAL;
}

RTAI_PROTO(int, rt_hard_timer_tick, (void))
{
	struct { long dummy; } arg;
	return rtai_lxrt(BIDX, SIZARG, HARD_TIMER_COUNT, &arg).i[LOW];
}

RTAI_PROTO(RTIME,rt_get_time_ns,(void))
{
	struct { unsigned long dummy; } arg;
	return rtai_lxrt(BIDX, SIZARG, GET_TIME_NS, &arg).rt;
}

RTAI_PROTO(RTIME,rt_get_cpu_time_ns,(void))
{
	struct { unsigned long dummy; } arg;
	return rtai_lxrt(BIDX, SIZARG, GET_CPU_TIME_NS, &arg).rt;
}

#define rt_named_task_init(task_name, thread, data, stack_size, prio, uses_fpu, signal) \
	rt_task_init(nam2num(task_name), thread, data, stack_size, prio, uses_fpu, signal)

#define rt_named_task_init_cpuid(task_name, thread, data, stack_size, prio, uses_fpu, signal, run_on_cpu) \
	rt_task_init_cpuid(nam2num(task_name), thread, data, stack_size, prio, uses_fpu, signal, run_on_cpu)

RTAI_PROTO(void,rt_set_runnable_on_cpus,(RT_TASK *task, unsigned long cpu_mask))
{
	struct { RT_TASK *task; unsigned long cpu_mask; } arg = { task, cpu_mask };
	rtai_lxrt(BIDX, SIZARG, SET_RUNNABLE_ON_CPUS, &arg);
}

RTAI_PROTO(void,rt_set_runnable_on_cpuid,(RT_TASK *task, unsigned int cpuid))
{
	struct { RT_TASK *task; unsigned long cpuid; } arg = { task, cpuid };
	rtai_lxrt(BIDX, SIZARG, SET_RUNNABLE_ON_CPUID, &arg);
}

RTAI_PROTO(int,rt_get_timer_cpu,(void))
{
	struct { unsigned long dummy; } arg;
	return rtai_lxrt(BIDX, SIZARG, GET_TIMER_CPU, &arg).i[LOW];
}

RTAI_PROTO(void,start_rt_apic_timers,(struct apic_timer_setup_data *setup_mode, unsigned int rcvr_jiffies_cpuid))
{
	struct { struct apic_timer_setup_data *setup_mode; unsigned long rcvr_jiffies_cpuid; } arg = { setup_mode, rcvr_jiffies_cpuid };
	rtai_lxrt(BIDX, SIZARG, START_RT_APIC_TIMERS, &arg);
}

RTAI_PROTO(int, rt_hard_timer_tick_cpuid, (int cpuid))
{
	struct { unsigned long cpuid; } arg = { cpuid };
	return rtai_lxrt(BIDX, SIZARG, HARD_TIMER_COUNT_CPUID, &arg).i[LOW];
}

RTAI_PROTO(RTIME,count2nano_cpuid,(RTIME count, unsigned int cpuid))
{
	struct { RTIME count; unsigned long cpuid; } arg = { count, cpuid };
	return rtai_lxrt(BIDX, SIZARG, COUNT2NANO_CPUID, &arg).rt;
}

RTAI_PROTO(RTIME,nano2count_cpuid,(RTIME nanos, unsigned int cpuid))
{
	struct { RTIME nanos; unsigned long cpuid; } arg = { nanos, cpuid };
	return rtai_lxrt(BIDX, SIZARG, NANO2COUNT_CPUID, &arg).rt;
}

RTAI_PROTO(RTIME,rt_get_time_cpuid,(unsigned int cpuid))
{
	struct { unsigned long cpuid; } arg = { cpuid };
	return rtai_lxrt(BIDX, SIZARG, GET_TIME_CPUID, &arg).rt;
}

RTAI_PROTO(RTIME,rt_get_time_ns_cpuid,(unsigned int cpuid))
{
	struct { unsigned long cpuid; } arg = { cpuid };
	return rtai_lxrt(BIDX, SIZARG, GET_TIME_NS_CPUID, &arg).rt;
}

RTAI_PROTO(void,rt_boom,(void))
{
	struct { long dummy; } arg = { 0 };
	rtai_lxrt(BIDX, SIZARG, RT_BOOM, &arg);
}

RTAI_PROTO(void,rt_mmgr_stats,(void))
{
	struct { long dummy; } arg = { 0 };
	rtai_lxrt(BIDX, SIZARG, RT_MMGR_STATS, &arg);
}

RTAI_PROTO(void,rt_stomp,(void) )
{
	struct { long dummy; } arg = { 0 };
	rtai_lxrt(BIDX, SIZARG, RT_STOMP, &arg);
}

RTAI_PROTO(int,rt_get_linux_signal,(RT_TASK *task))
{
    struct { RT_TASK *task; } arg = { task };
    return rtai_lxrt(BIDX, SIZARG, RT_GET_LINUX_SIGNAL, &arg).i[LOW];
}

RTAI_PROTO(int,rt_get_errno,(RT_TASK *task))
{
    struct { RT_TASK *task; } arg = { task };
    return rtai_lxrt(BIDX, SIZARG, RT_GET_ERRNO, &arg).i[LOW];
}

RTAI_PROTO(int,rt_set_linux_signal_handler,(RT_TASK *task, void (*handler)(int sig)))
{
    struct { RT_TASK *task; void (*handler)(int sig); } arg = { task, handler };
    return rtai_lxrt(BIDX, SIZARG, RT_SET_LINUX_SIGNAL_HANDLER, &arg).i[LOW];
}

#define VSNPRINTF_BUF_SIZE 256
RTAI_PROTO(int,rtai_print_to_screen,(const char *format, ...))
{
	char display[VSNPRINTF_BUF_SIZE];
	struct { const char *display; long nch; } arg = { display, 0 };
	va_list args;

	va_start(args, format);
	arg.nch = vsnprintf(display, VSNPRINTF_BUF_SIZE, format, args);
	va_end(args);
	rtai_lxrt(BIDX, SIZARG, PRINT_TO_SCREEN, &arg);
	return arg.nch;
}

RTAI_PROTO(int,rt_printk,(const char *format, ...))
{
	char display[VSNPRINTF_BUF_SIZE];
	struct { const char *display; long nch; } arg = { display, 0 };
	va_list args;

	va_start(args, format);
	arg.nch = vsnprintf(display, VSNPRINTF_BUF_SIZE, format, args);
	va_end(args);
	rtai_lxrt(BIDX, SIZARG, PRINTK, &arg);
	return arg.nch;
}

RTAI_PROTO(int,rt_usp_signal_handler,(void (*handler)(void)))
{
	struct { void (*handler)(void); } arg = { handler };
	return rtai_lxrt(BIDX, SIZARG, USP_SIGHDL, &arg).i[0];
}

RTAI_PROTO(unsigned long,rt_get_usp_flags,(RT_TASK *rt_task))
{
	struct { RT_TASK *task; } arg = { rt_task };
	return rtai_lxrt(BIDX, SIZARG, GET_USP_FLAGS, &arg).i[LOW];
}

RTAI_PROTO(unsigned long,rt_get_usp_flags_mask,(RT_TASK *rt_task))
{
	struct { RT_TASK *task; } arg = { rt_task };
	return rtai_lxrt(BIDX, SIZARG, GET_USP_FLG_MSK, &arg).i[LOW];
}

RTAI_PROTO(void,rt_set_usp_flags,(RT_TASK *rt_task, unsigned long flags))
{
	struct { RT_TASK *task; unsigned long flags; } arg = { rt_task, flags };
	rtai_lxrt(BIDX, SIZARG, SET_USP_FLAGS, &arg);
}

RTAI_PROTO(void,rt_set_usp_flags_mask,(unsigned long flags_mask))
{
	struct { unsigned long flags_mask; } arg = { flags_mask };
	rtai_lxrt(BIDX, SIZARG, SET_USP_FLG_MSK, &arg);
}

RTAI_PROTO(RT_TASK *,rt_force_task_soft,(int pid))
{
	struct { long pid; } arg = { pid };
	return (RT_TASK *)rtai_lxrt(BIDX, SIZARG, FORCE_TASK_SOFT, &arg).v[LOW];
}

RTAI_PROTO(RT_TASK *,rt_agent,(void))
{
	struct { unsigned long dummy; } arg;
	return (RT_TASK *)rtai_lxrt(BIDX, SIZARG, RT_BUDDY, &arg).v[LOW];
}

#define rt_buddy() rt_agent()

RTAI_PROTO(int, rt_gettid, (void))
{
	struct { unsigned long dummy; } arg;
	return rtai_lxrt(BIDX, SIZARG, RT_GETTID, &arg).i[LOW];
}

/**
 * Give a Linux process, or pthread, hard real time execution capabilities 
 * allowing full kernel preemption.
 *
 * rt_make_hard_real_time makes the soft Linux POSIX real time process, from
 * which it is called, a hard real time LXRT process.   It is important to
 * remark that this function must be used only with soft Linux POSIX processes
 * having their memory locked in memory.   See Linux man pages.
 *
 * Only the process itself can use this functions, it is not possible to impose
 * the related transition from another process.
 *
 * Note that processes made hard real time should avoid making any Linux System
 * call that can lead to a task switch as Linux cannot run anymore processes
 * that are made hard real time.   To interact with Linux you should couple the
 * process that was made hard real time with a Linux buddy server, either
 * standard or POSIX soft real time.   To communicate and synchronize with the
 * buddy you can use the wealth of available RTAI, and its schedulers, services.
 * 
 * After all it is pure nonsense to use a non hard real time Operating System,
 * i.e. Linux, from within hard real time processes.
 */
RTAI_PROTO(void,rt_make_hard_real_time,(void))
{
	struct { unsigned long dummy; } arg;
	rtai_lxrt(BIDX, SIZARG, MAKE_HARD_RT, &arg);
}

/**
 * Allows a non root user to use the Linux POSIX soft real time process 
 * management and memory lock functions, and allows it to do any input-output
 * operation from user space.
 *
 * Only the process itself can use this functions, it is not possible to impose
 * the related transition from another process.
 */
RTAI_PROTO(void,rt_allow_nonroot_hrt,(void))
{
	struct { unsigned long dummy; } arg;
	rtai_lxrt(BIDX, SIZARG, NONROOT_HRT, &arg);
}

RTAI_PROTO(int,rt_is_hard_real_time,(RT_TASK *rt_task))
{
	struct { RT_TASK *task; } arg = { rt_task };
	return rtai_lxrt(BIDX, SIZARG, IS_HARD, &arg).i[LOW];
}

#define rt_is_soft_real_time(rt_task) (!rt_is_hard_real_time((rt_task)))

RTAI_PROTO(void,rt_task_set_resume_end_times,(RTIME resume, RTIME end))
{
	struct { RTIME resume, end; } arg = { resume, end };
	rtai_lxrt(BIDX, SIZARG, SET_RESUME_END, &arg);
}

RTAI_PROTO(int,rt_set_resume_time,(RT_TASK *rt_task, RTIME new_resume_time))
{
	struct { RT_TASK *rt_task; RTIME new_resume_time; } arg = { rt_task, new_resume_time };
	return rtai_lxrt(BIDX, SIZARG, SET_RESUME_TIME, &arg).i[LOW];
}

RTAI_PROTO(int, rt_set_period, (RT_TASK *rt_task, RTIME new_period))
{
	struct { RT_TASK *rt_task; RTIME new_period; } arg = { rt_task, new_period };
	return rtai_lxrt(BIDX, SIZARG, SET_PERIOD, &arg).i[LOW];
}

RTAI_PROTO(void, rt_spv_RMS, (int cpuid))
{
	struct { long cpuid; } arg = { cpuid };
	rtai_lxrt(BIDX, SIZARG, SPV_RMS, &arg);
}

RTAI_PROTO(int, rt_task_masked_unblock, (RT_TASK *task, unsigned long mask))
{
	struct { RT_TASK *task; unsigned long mask; } arg = { task, mask };
	return rtai_lxrt(BIDX, SIZARG, WAKEUP_SLEEPING, &arg).i[LOW];
}

#define rt_task_wakeup_sleeping(task)  rt_task_masked_unblock(task, RT_SCHED_DELAYED)

RTAI_PROTO(void, rt_get_exectime, (RT_TASK *task, RTIME *exectime))
{
	RTIME lexectime[] = { 0LL, 0LL, 0LL };
	struct { RT_TASK *task; RTIME *lexectime; } arg = { task, lexectime };
	rtai_lxrt(BIDX, SIZARG, GET_EXECTIME, &arg);
	memcpy(exectime, lexectime, sizeof(lexectime));
}

RTAI_PROTO(void, rt_gettimeorig, (RTIME time_orig[]))
{
	struct { RTIME *time_orig; } arg = { time_orig };
	rtai_lxrt(BIDX, SIZARG, GET_TIMEORIG, &arg);
}

RTAI_PROTO(RT_TASK *,ftask_init,(unsigned long name, int priority))
{
	struct { unsigned long name; long priority, stack_size, max_msg_size, cpus_allowed; } arg = { name, priority, 0, 0, 0 };
	return (RT_TASK *)rtai_lxrt(BIDX, SIZARG, LXRT_TASK_INIT, &arg).v[LOW];
}

RTAI_PROTO(RTIME, start_ftimer,(long period, long ftick_freq))
{
	struct { long ftick_freq; void *handler; } arg = { ftick_freq, NULL };
	if (!period) {
		rtai_lxrt(BIDX, sizeof(long), SET_ONESHOT_MODE, &period);
	} else {
		rtai_lxrt(BIDX, sizeof(long), SET_PERIODIC_MODE, &period);
	}
	rtai_lxrt(BIDX, SIZARG, REQUEST_RTC, &arg);
	return rtai_lxrt(BIDX, sizeof(long), START_TIMER, &period).rt;
}

RTAI_PROTO(RTIME, stop_ftimer,(void))
{
	struct { long dummy; } arg;
	rtai_lxrt(BIDX, SIZARG, RELEASE_RTC, &arg);
	return rtai_lxrt(BIDX, SIZARG, STOP_TIMER, &arg).rt;
}

#ifdef __cplusplus
}
#endif /* __cplusplus */

#endif /* __KERNEL__ */

/*@}*/

#endif /* !_RTAI_LXRT_H */