This file is indexed.

/usr/share/yacas/orthopoly.rep/code.ys is in yacas 1.3.6-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/*
Orthogonal polynomials
version 1.2
(Serge Winitzki)

Polynomials are found from direct recurrence relations. Sums of series of polynomials are found using the Clenshaw-Smith recurrence scheme.

Reference: Yudell L. Luke. Mathematical functions and their approximations. Academic Press, N. Y., 1975.

Usage:
  The polynomials are evaluated by functions named Ortho*, where * is one of P, G, H, L, T, U. The first argument of these functions is an integer.  The series of polynomials are evaluated by functions named Ortho*Sum. The first argument of these functions is a list of coefficients. The last argument is the value x at which the polynomials are to be computed; if x is numerical, a faster routine is used.

  If n is an integer, n>=0, then:
	OrthoP(n, x) gives the n-th Legendre polynomial, evaluated on x
	OrthoP(n, a, b, x) gives the n-th Jacobi polynomial with parameters a, b, evaluated on x
	OrthoG(n, a, x) gives the n-th Gegenbauer polynomial
	OrthoH(n, x) gives the n-th Hermite polynomial
	OrthoL(n, a, x) gives the n-th Laguerre polynomial
	OrthoT(n, x) gives the n-th Tschebyscheff polynomial of the 1st kind
	OrthoU(n, x) gives the n-th Tschebyscheff polynomial of the 2nd kind

  If c is a list of coefficients c[1], c[2], ..., c[N], then Ortho*Sum(c, ...) where * is one of P, G, H, L, T, U, computes the sum of a series c[1]*P_0+c[2]*P_1+...+c[N]*P_N, where P_k is the relevant polynomial of k-th order. (For polynomials taking parameters: the parameters must remain constant throughout the summation.) Note that the intermediate polynomials are not evaluated and the recurrence relations are different for this computation, so there may be a numerical difference between Ortho*(c, ...) and computing the sum of the series directly.

  Internal functions that may be useful:
	OrthoPolyCoeffs(name_IsString, n_IsInteger, parameters_IsList) returns a list of coefficients of the polynomial. Here "name" must be one of the predefined names: "Jacobi", "Gegenbauer", "Hermite", "Laguerre", "Tscheb1",  "Tscheb2"; and "parameters" is a list of extra parameters for the given family of polynomials, e.g. {a,b} for the Jacobi, {a} for Laguerre and {} for Hermite polynomials.
	OrthoPolySumCoeffs(name_IsString, c_IsList, parameters_IsList) returns a list of coefficients of the polynomial which is a sum of series with coefficients c.
	EvaluateHornerScheme(coefficients, x) returns the Horner-evaluated polynomial on x. The "coefficients" is a list that starts at the lowest power. For example, EvaluateHornerScheme({a,b,c}, x) should return (a+x*(b+x*c))
*/

10 # EvaluateHornerScheme({}, _x) <-- 0;
/* Strictly speaking, the following rule is not needed, but it doesn't hurt */
10 # EvaluateHornerScheme({_coeffs}, _x) <-- coeffs;
20 # EvaluateHornerScheme(coeffs_IsList, _x) <-- Head(coeffs)+x*EvaluateHornerScheme(Tail(coeffs), x);

/* Plain polynomials */
// some are computed by general routines, and some are replaced by more efficient routines below
OrthoP(n_IsInteger, _x)_(n>=0) <-- OrthoP(n, 0, 0, x);
OrthoP(n_IsInteger, a_IsRationalOrNumber, b_IsRationalOrNumber, _x)_(n>=0 And a> -1 And b> -1) <-- OrthoPoly("Jacobi", n, {a, b}, x);

OrthoG(n_IsInteger, a_IsRationalOrNumber, _x)_(n>=0 And a> -1/2) <-- OrthoPoly("Gegenbauer", n, {a}, x);

OrthoH(n_IsInteger, _x)_(n>=0) <-- OrthoPoly("Hermite", n, {}, x);

OrthoL(n_IsInteger, a_IsRationalOrNumber, _x)_(n>=0 And a> -1) <-- OrthoPoly("Laguerre", n, {a}, x);

OrthoT(n_IsInteger, _x)_(n>=0) <-- OrthoPoly("Tscheb1", n, {}, x);
OrthoU(n_IsInteger, _x)_(n>=0) <-- OrthoPoly("Tscheb2", n, {}, x);

/* Sums of series of orthogonal polynomials */

OrthoPSum(c_IsList, _x) <-- OrthoP(c, 0, 0, x);
OrthoPSum(c_IsList, a_IsRationalOrNumber, b_IsRationalOrNumber, _x)_(a> -1 And b> -1) <-- OrthoPolySum("Jacobi", c, {a, b}, x);

OrthoGSum(c_IsList, a_IsRationalOrNumber, _x)_(a> -1/2) <-- OrthoPolySum("Gegenbauer", c, {a}, x);

OrthoHSum(c_IsList, _x) <-- OrthoPolySum("Hermite", c, {}, x);

OrthoLSum(c_IsList, a_IsRationalOrNumber, _x)_(a> -1) <-- OrthoPolySum("Laguerre", c, {a}, x);

OrthoTSum(c_IsList, _x) <-- OrthoPolySum("Tscheb1", c, {}, x);
OrthoUSum(c_IsList, _x) <-- OrthoPolySum("Tscheb2", c, {}, x);

/*
Orthogonal polynomials are evaluated using a general routine OrthoPolyCoeffs that generates their coefficients recursively.

The recurrence relations start with n=0 and n=1 (the n=0 polynomial is always identically 1) and continue for n>=2. Note that the n=1 polynomial is not always given by the n=1 recurrence formula if we assume P_{-1}=0, so the recurrence should be considered undefined at n=1.

	For Legendre/Jacobi polynomials: (a>-1, b>-1)
P(0,a,b,x):=1
P(1,a,b,x):=(a-b)/2+x*(1+(a+b)/2)
P(n,a,b,x):=(2*n+a+b-1)*(a^2-b^2+x*(2*n+a+b-2)*(2*n+a+b))/(2*n*(n+a+b)*(2*n+a+b-2))*P(n-1,a,b,x)-(n+a-1)*(n+b-1)*(2*n+a+b)/(n*(n+a+b)*(2*n+a+b-2))*P(n-2,a,b,x)

	For Hermite polynomials:
H(0,x):=1
H(1,x):=2*x
H(n,x):=2*x*H(n-1,x)-2*(n-1)*H(n-2,x)

	For Gegenbauer polynomials: (a>-1/2)
G(0,a,x):=1
G(1,a,x):=2*a*x
G(n,a,x):=2*(1+(a-1)/n)*x*G(n-1,a,x)-(1+2*(a-2)/n)*G(n-2,a,x)

	For Laguerre polynomials: (a>-1)
L(0,a,x):=1
L(1,a,x):=a+1-x
L(n,a,x):=(2+(a-1-x)/n)*L(n-1,a,x)-(1+(a-1)/n)*L(n-2,a,x)

	For Tschebycheff polynomials of the first kind:
T(0,x):=1
T(1,x):=x
T(n,x):=2*x*T(n-1,x)-T(n-2,x)

	For Tschebycheff polynomials of the second kind:
U(0,x):=1
U(1,x):=2*x
U(n,x):=2*x*U(n-1,x)-U(n-2,x)

The database "KnownOrthoPoly" contains closures that return coefficients for the recurrence relations of each family of polynomials. KnownOrthoPoly["name"] is a closure that takes two arguments: the order (n) and the extra parameters (p), and returns a list of two lists: the first list contains the coefficients {A,B} of the n=1 polynomial, i.e. "A+B*x"; the second list contains the coefficients {A,B,C} in the recurrence relation, i.e. "P_n = (A+B*x)*P_{n-1}+C*P_{n-2}". (So far there are only 3 coefficients in the second list, i.e. no "C+D*x", but we don't want to be limited.)

*/

LocalSymbols(knownOrthoPoly) [
  knownOrthoPoly := Hold({
    {"Jacobi", {{n, p}, {{(p[1]-p[2])/2, 1+(p[1]+p[2])/2}, {(2*n+p[1]+p[2]-1)*((p[1])^2-(p[2])^2)/(2*n*(n+p[1]+p[2])*(2*n+p[1]+p[2]-2)), (2*n+p[1]+p[2]-1)*(2*n+p[1]+p[2])/(2*n*(n+p[1]+p[2])), -(n+p[1]-1)*(n+p[2]-1)*(2*n+p[1]+p[2])/(n*(n+p[1]+p[2])*(2*n+p[1]+p[2]-2))}}}},
    {"Gegenbauer", {{n, p}, {{0, 2*p[1]}, {0, 2+2*(p[1]-1)/n, -1-2*(p[1]-1)/n}}}},
    {"Laguerre", {{n, p}, {{p[1]+1, -1}, {2+(p[1]-1)/n, -1/n, -1-(p[1]-1)/n}}}},
    {"Hermite", {{n, p}, {{0,2}, {0, 2, -2*(n-1)}}}},
    {"Tscheb1", {{n, p}, {{0,1}, {0,2,-1}}}},
    {"Tscheb2", {{n, p}, {{0,2}, {0,2,-1}}}}
  });
  KnownOrthoPoly() := knownOrthoPoly;

]; // LocalSymbols(knownOrthoPoly)

/*
For efficiency, polynomials are represented by lists of coefficients rather than by Yacas expressions. Polynomials are evaluated using the explicit Horner scheme. On numerical arguments, the polynomial coefficients are not computed, only the resulting value.
*/

/*
Sums of series of orthogonal polynomials are found using the Clenshaw-Smith recurrence scheme:
	If $P_n$ satisfy $P_n = A_n p_{n-1} + B_n p_{n-2}$, $n>=2$, and if $A_1$ is defined so that $P_1 = A_1 P_0$, then $\sum _{n=0}^N c_n P_n = X_0 P_0$, where $X_n$ are found from the following backward recurrence: $X_{N+1} = X_{N+2} = 0$, $X_n = c_n + A_{n+1} X_{n+1} + B_{n+2} X_{n+2}$, $n=N, N-1, ..., 0$.
*/

/* Numeric arguments are processed by a faster routine */

10 # OrthoPoly(name_IsString, _n, p_IsList, x_IsRationalOrNumber) _ (KnownOrthoPoly()[name] != Empty) <-- OrthoPolyNumeric(name, n, p, x);
20 # OrthoPoly(name_IsString, _n, p_IsList, _x) _ (KnownOrthoPoly()[name] != Empty) <-- EvaluateHornerScheme(OrthoPolyCoeffs(name, n, p), x);

10 # OrthoPolySum(name_IsString, c_IsList, p_IsList, x_IsRationalOrNumber) _ (KnownOrthoPoly()[name] != Empty) <-- OrthoPolySumNumeric(name, c, p, x);
20 # OrthoPolySum(name_IsString, c_IsList, p_IsList, _x) _ (KnownOrthoPoly()[name] != Empty) <-- EvaluateHornerScheme(OrthoPolySumCoeffs(name, c, p), x);

/*
OrthoPolyNumeric computes the value of the polynomial from recurrence relations directly. Do not use with non-numeric arguments, except for testing!
*/
OrthoPolyNumeric(name_IsString, n_IsInteger, p_IsList, _x) <-- [
	Local(value1, value2, value3, ruleCoeffs, index);
	value1 := 1;
	ruleCoeffs := Apply(KnownOrthoPoly()[name], {n, p})[1];
	value2 := ruleCoeffs[1] + x*ruleCoeffs[2];
	index := 1;
	/* value1, value2, value3 is the same as P_{n-2}, P_{n-1}, P_n where n = index */
	While(index<n) [
		index := index + 1;
		ruleCoeffs := Apply(KnownOrthoPoly()[name], {index, p})[2];
		value3 := (ruleCoeffs[1] + x*ruleCoeffs[2])*value2 + ruleCoeffs[3]*value1;
		value1 := value2;
		value2 := value3;
//Serge! 		Echo(index);
	];
	value2;
];

/* Clenshaw-Smith recurrence scheme */
OrthoPolySumNumeric(name_IsString, c_IsList, p_IsList, _x) <-- [
	Local(value1, value2, value3, ruleCoeffs, ruleCoeffs1, index);
	value1 := 0;
	value2 := 0;
	index := Length(c) - 1;
	/* value1, value2, value3 is the same as X_{n+2}, X_{n+1}, X_n where n = index */
	While(index>=1) [
		ruleCoeffs := Apply(KnownOrthoPoly()[name], {index+1, p})[2];
		ruleCoeffs1 := Apply(KnownOrthoPoly()[name], {index+2, p})[2];
		value3 := (ruleCoeffs[1] + x*ruleCoeffs[2])*value2 + ruleCoeffs1[3]*value1 + c[index+1];
		value1 := value2;
		value2 := value3;
		index := index - 1;
	];
	/* Last iteration by hand: works correctly also if c has only 1 element */
	ruleCoeffs := Apply(KnownOrthoPoly()[name], {1, p})[1];
	ruleCoeffs1 := Apply(KnownOrthoPoly()[name], {2, p})[2];
	value2 := (ruleCoeffs[1] + x*ruleCoeffs[2])*value2 + ruleCoeffs1[3]*value1 + c[1];
	value2;
];

/*
OrthoPolyCoeffs(name, n, p) returns the list of coefficients for orthogonal polynomials, starting with the lowest powers.
*/

10 # OrthoPolyCoeffs(name_IsString, 0, p_IsList) <-- {1};
10 # OrthoPolyCoeffs(name_IsString, 1, p_IsList) <-- Apply(KnownOrthoPoly()[name], {1, p})[1];

/* Simple implementation, very slow, for testing only: recursive rule matches, no loops
20 # OrthoPolyCoeffs(name_IsString, n_IsInteger, p_IsList)_(n>1) <-- [
	Local(ruleCoeffs, newCoeffs);
	ruleCoeffs := Apply(KnownOrthoPoly()[name], {n, p})[2];
	newCoeffs := OrthoPolyCoeffs(name, n-1, p);
	Concat(newCoeffs,{0})*ruleCoeffs[1] + Concat(OrthoPolyCoeffs(name, n-2, p),{0,0})*ruleCoeffs[3] + Concat({0}, newCoeffs)*ruleCoeffs[2];
];
*/

/* A fast implementation that works directly with lists and saves memory. Same recurrence as in OrthoPolyNumeric() */
/* note: here we pass "name" instead of "KnownOrthoPoly()[name]" for efficiency, but strictly speaking we don't need to use this global constant */

20 # OrthoPolyCoeffs(name_IsString, n_IsInteger, p_IsList)_(n>1) <-- [
	Local(ruleCoeffs, tmpCoeffs, newCoeffs, prevCoeffs, index, jndex, tmptmpCoeffs, prevCoeffsA, newCoeffsA, tmpCoeffsA);
	/* For speed, allocate all lists now. Length is n+1 */
	prevCoeffsA := ZeroVector(n+1);
	newCoeffsA := ZeroVector(n+1);
	tmpCoeffsA := ZeroVector(n+1);
	/* pointers to arrays */
	prevCoeffs := prevCoeffsA;
	newCoeffs := newCoeffsA;
	tmpCoeffs := tmpCoeffsA;
	/* Initialize: n=0 and n=1 */
	prevCoeffs[1] := 1;
	ruleCoeffs := Apply(KnownOrthoPoly()[name], {n, p})[1];
	newCoeffs[1] := ruleCoeffs[1];
	newCoeffs[2] := ruleCoeffs[2];
	/* Invariant: answer ready in "newCoeffs" at value of index */
	index := 1;
	/* main loop */
	While(index < n) [
		index := index + 1;
		/* Echo({"index ", index}); */ /* in case this is slow */
		ruleCoeffs := Apply(KnownOrthoPoly()[name], {index, p})[2];
		tmpCoeffs[1] := ruleCoeffs[1]*newCoeffs[1] + ruleCoeffs[3]*prevCoeffs[1];
		/* The polynomial tmpCoeffs must have (index+1) coefficients now */
		For(jndex:=2, jndex <= index, jndex:=jndex+1) [
			tmpCoeffs[jndex] := ruleCoeffs[1]*newCoeffs[jndex] + ruleCoeffs[3]*prevCoeffs[jndex] + ruleCoeffs[2]*newCoeffs[jndex-1];
		];
		tmpCoeffs[index+1] := ruleCoeffs[2]*newCoeffs[index];
/*
		prevCoeffs := FlatCopy(newCoeffs);
		newCoeffs := FlatCopy(tmpCoeffs);
*/
/* juggle pointers instead of copying lists */
		tmptmpCoeffs := prevCoeffs;
		prevCoeffs := newCoeffs;
		newCoeffs := tmpCoeffs;
		tmpCoeffs := tmptmpCoeffs;
	];
	newCoeffs;
];

/*
OrthoPolySumCoeffs(name, c, p) returns the list of coefficients for the sum of a series of orthogonal polynomials. Same recurrence as in OrthoPolySumNumeric()
*/

OrthoPolySumCoeffs(name_IsString, c_IsList, p_IsList) <-- [
	Local(n, ruleCoeffs, ruleCoeffs1, tmpCoeffs, newCoeffs, prevCoeffs, index, jndex, tmptmpCoeffs, prevCoeffsA, newCoeffsA, tmpCoeffsA);
	/* n is the max polynomial order we need */
	n := Length(c) - 1;
	/* For speed, allocate all lists now. Length is n+1 */
	prevCoeffsA := ZeroVector(n+1);
	newCoeffsA := ZeroVector(n+1);
	tmpCoeffsA := ZeroVector(n+1);
	/* pointers to arrays */
	prevCoeffs := prevCoeffsA;
	newCoeffs := newCoeffsA;
	tmpCoeffs := tmpCoeffsA;
	/* Invariant: answer ready in "newCoeffs" at value of index */
	/* main loop */
	For(index:=n, index >= 1, index:=index-1) [
		/* Echo({"index ", index}); */ /* in case this is slow */
		ruleCoeffs := Apply(KnownOrthoPoly()[name], {index+1, p})[2];
		ruleCoeffs1 := Apply(KnownOrthoPoly()[name], {index+2, p})[2];
		tmpCoeffs[1] := c[index+1] + ruleCoeffs[1]*newCoeffs[1] + ruleCoeffs1[3]*prevCoeffs[1];
		/* The polynomial tmpCoeffs must have (n-index+1) coefficients now */
		For(jndex:=2, jndex <= n-index, jndex:=jndex+1) [
			tmpCoeffs[jndex] := ruleCoeffs[1]*newCoeffs[jndex] + ruleCoeffs1[3]*prevCoeffs[jndex] + ruleCoeffs[2]*newCoeffs[jndex-1];
		];
		If(n-index>0, tmpCoeffs[n-index+1] := ruleCoeffs[2]*newCoeffs[n-index]);
/*
		prevCoeffs := FlatCopy(newCoeffs);
		newCoeffs := FlatCopy(tmpCoeffs);
*/
/* juggle pointers instead of copying lists */
		tmptmpCoeffs := prevCoeffs;
		prevCoeffs := newCoeffs;
		newCoeffs := tmpCoeffs;
		tmpCoeffs := tmptmpCoeffs;
	];
	/* Last iteration by hand: works correctly also if c has only 1 element */
	index:=0;
	ruleCoeffs := Apply(KnownOrthoPoly()[name], {index+1, p})[1];
	ruleCoeffs1 := Apply(KnownOrthoPoly()[name], {index+2, p})[2];
	tmpCoeffs[1] := c[index+1] + ruleCoeffs[1]*newCoeffs[1] + ruleCoeffs1[3]*prevCoeffs[1];
	/* The polynomial tmpCoeffs must have (n-index+1) coefficients now */
	For(jndex:=2, jndex <= n-index, jndex:=jndex+1) [
		tmpCoeffs[jndex] := ruleCoeffs[1]*newCoeffs[jndex] + ruleCoeffs1[3]*prevCoeffs[jndex] + ruleCoeffs[2]*newCoeffs[jndex-1];
	];
	tmpCoeffs[n-index+1] := ruleCoeffs[2]*newCoeffs[n-index];
	tmpCoeffs;
];

//////////////////////////////////////////////////
/// Very fast computation of Chebyshev polynomials
//////////////////////////////////////////////////
/// (This is not used now because of numerical instability, until I figure out how much to increase the working precision to get P correct digits.)
/// See: W. Koepf. Efficient computation of Chebyshev polynomials in computer algebra (unpublished preprint). Contrary to Koepf's claim (unsupported by any calculation in his paper) that the method is numerically stable, I found unsatisfactory numerical behavior for very large orders.
/// Koepf suggests to use M. Bronstein's algorithm for finding rational solutions of linear ODEs for all other orthogonal polynomials (may be faster than recursion if we want to find the analytic form of the polynomial, but still slower if an explicit formula is available).
//////////////////////////////////////////////////
/// Main formulae: T(2*n,x) = 2*T(n,x)^2-1; T(2*n+1,x) = 2*T(n+1,x)*T(n,x)-x;
/// U(2*n,x) = 2*T(n,x)*U(n,x)-1; T(2*n+1,x) = 2*T(n+1,x)*U(n,x);
/// We avoid recursive calls and build the sequence of bits of n to determine the minimal sequence of n[i] for which T(n[i], x) and U(n[i], x) need to be computed
//////////////////////////////////////////////////
/*
/// This function will return the list of binary bits, e.g. BitList(10) returns {1,0,1,0}.
BitList(n) := BitList(n, {});
/// This will not be called on very large numbers so it's okay to use recursion
1# BitList(0, _bits) <-- bits;
2# BitList(_n, _bits) <-- BitList(Div(n,2), Push(bits, Mod(n,2)));

// Tchebyshev polynomials of 1st kind
1 # FastOrthoT(0, _x) <-- 1;
1 # FastOrthoT(1, _x) <-- x;
// Tchebyshev polynomials of 2nd kind
1 # FastOrthoU(0, _x) <-- 1;
1 # FastOrthoU(1, _x) <-- 2*x;

// guard against user errors
2 # FastOrthoT(_n, _x) _ (IsInteger(n) And n<0) <-- Undefined;
2 # FastOrthoU(_n, _x) _ (IsInteger(n) And n<0) <-- Undefined;

// make T(), U() of even order more efficient: delegate gruntwork to odd order
2 # FastOrthoT(n_IsEven, _x) <-- 2*FastOrthoT(Div(n,2), x)^2-1;
2 # FastOrthoU(n_IsEven, _x) <-- 2*FastOrthoT(Div(n,2), x)*FastOrthoU(Div(n,2), x)-1;

// FastOrthoT() of odd order
3 # FastOrthoT(n_IsOdd, _x) <--
[
	Local(T1, T2, i);
	// first bit in the list is always 1, so initialize the pair
	T1 := FastOrthoT(1, x);
	T2 := FastOrthoT(2, x);
	ForEach(i, Tail(BitList(n)))	// skip first bit
	[
		// if the current bit is 1, we need to double the second index, else double the first index.
		// Invariant: n[i+1] = 2*n[i] + BitList[i] and we need to have FastOrthoT(n[i]), FastOrthoT(1+n[i]) as T1, T2. Initially n[1]=1 and after the cycle n[i]=n.
		{T1, T2} := If
		(
			i=1,
			{2*T1*T2-x, 2*T2^2-1},
			{2*T1^2-1, 2*T1*T2-x}
		);
	];
	T1;
];

// FastOrthoU() of any order
3 # FastOrthoU(_n, _x) <--
[
	Local(U1, T1, T2, i);
	// first bit in the list is always 1, so initialize the pair
	U1 := FastOrthoU(1, x);
	T1 := FastOrthoT(1, x);
	T2 := FastOrthoT(2, x);
	ForEach(i, Tail(BitList(n)))	// skip first bit
	[
		// if the current bit is 1, we need to double the second index, else double the first index
		// Invariant: n[i+1] = 2*n[i] + BitList[i] and we need to have U(n[i]), T(n[i]), T(1+n[i]) as U1, T1, T2. Initially n[1]=1 and after the cycle n[i]=n.
		{U1, T1, T2} := If
		(
			i=1,
			{2*U1*T2, 2*T1*T2-x, 2*T2^2-1},
			{2*U1*T1-1, 2*T1^2-1, 2*T1*T2-x}
		);
	];
	U1;
];
*/
//////////////////////////////////////////////////
/// Fast symbolic computation of some polynomials
//////////////////////////////////////////////////


//////////////////////////////////////////////////
/// Fast symbolic computation of Legendre polynomials
//////////////////////////////////////////////////

8# OrthoPolyCoeffs("Jacobi", n_IsInteger, {0,0}) <--
[
	Local(i, result);
	result := ZeroVector(n+1);
	result[n+1] := (2*n-1)!! /n!;	// coefficient at x^n
	i := 1;
	While(2*i<=n)
	[	// prepare coefficient at x^(n-2*i) now
		result[n+1-2*i] := -(result[n+3-2*i]*(n-2*i+1)*(n-2*i+2)) / ((2*n-2*i+1)*2*i);
		i++;
	];
	result;
];

//////////////////////////////////////////////////
/// Fast symbolic computation of Hermite polynomials
//////////////////////////////////////////////////

OrthoPolyCoeffs("Hermite", n_IsInteger, {}) <-- HermiteCoeffs(n);

/// Return the list of coefficiets of Hermite polynomials.
HermiteCoeffs(n_IsEven)_(n>0) <--
[
	Local(i, k, result);
	k := Div(n,2);
	result := ZeroVector(n+1);
	result[1] := (-2)^k*(n-1)!!;	// coefficient at x^0
	For(i:=1,i<=k,i++)	// prepare coefficient at x^(2*i) now
		result[2*i+1] := Div(-2*result[2*i-1] * (k-i+1), (2*i-1)*i);	// this division is always integer but faster with Div()
	result;
];
HermiteCoeffs(n_IsOdd)_(n>0) <--
[
	Local(i, k, result);
	k := Div(n,2);
	result := ZeroVector(n+1);
	result[2] := 2*(-2)^k*(n!!);	// coefficient at x^1
	For(i:=1,i<=k,i++)	// prepare coefficient at x^(2*i+1) now
		result[2*i+2] := Div(-2*result[2*i] * (k-i+1), i*(2*i+1));	// this division is always integer but faster with Div()
	result;
];

//////////////////////////////////////////////////
/// Fast symbolic computation of Laguerre polynomials
//////////////////////////////////////////////////

/// Return the list of coefficients of Laguerre polynomials.
OrthoPolyCoeffs("Laguerre", n_IsInteger, {_k}) <--
[
	Local(i, result);
	result := ZeroVector(n+1);
	result[n+1] := (-1)^n/n!;	// coefficient at x^n
	For(i:=n,i>=1,i--)	// prepare coefficient at x^(i-1) now
		result[i] := -(result[i+1]*i*(k+i))/(n-i+1);
	result;
];


//////////////////////////////////////////////////
/// Fast symbolic computation of Chebyshev polynomials
//////////////////////////////////////////////////

OrthoPolyCoeffs("Tscheb1", n_IsInteger, {}) <-- ChebTCoeffs(n);
OrthoPolyCoeffs("Tscheb2", n_IsInteger, {}) <-- ChebUCoeffs(n);

1 # ChebTCoeffs(0) <-- {1};
2 # ChebTCoeffs(n_IsInteger) <--
[
	Local(i, result);
	result := ZeroVector(n+1);
	result[n+1] := 2^(n-1);	// coefficient at x^n
	i := 1;
	While(2*i<=n)
	[	// prepare coefficient at x^(n-2*i) now
		result[n+1-2*i] := -(result[n+3-2*i]*(n-2*i+2)*(n-2*i+1)) / ((n-i)*4*i);
		i++;
	];
	result;
];

1 # ChebUCoeffs(0) <-- {1};
2 # ChebUCoeffs(n_IsInteger) <--
[
	Local(i, result);
	result := ZeroVector(n+1);
	result[n+1] := 2^n;	// coefficient at x^n
	i := 1;
	While(2*i<=n)
	[	// prepare coefficient at x^(n-2*i) now
		result[n+1-2*i] := -(result[n+3-2*i]*(n-2*i+2)*(n-2*i+1)) / ((n-i+1)*4*i);
		i++;
	];
	result;
];