This file is indexed.

/usr/lib/swi-prolog/library/protobufs.pl is in swi-prolog-nox 7.2.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
/*  Part of SWI-Prolog

    Author:        Jeffrey Rosenwald
    E-mail:        jeffrose@acm.org
    WWW:           http://www.swi-prolog.org
    Copyright (C): 2010, Jeffrey Rosenwald

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License
    as published by the Free Software Foundation; either version 2
    of the License, or (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

    As a special exception, if you link this library with other files,
    compiled with a Free Software compiler, to produce an executable, this
    library does not by itself cause the resulting executable to be covered
    by the GNU General Public License. This exception does not however
    invalidate any other reasons why the executable file might be covered by
    the GNU General Public License.
*/

:- module(protobufs,
	  [
	   protobuf_message/2,   % ?Template ?Codes
	   protobuf_message/3	 % ?Template ?Codes ?Rest
	  ]).

/** <module> Google's Protocol Buffers

Protocol  buffers  are  Google's    language-neutral,  platform-neutral,
extensible mechanism for serializing structured data  --  think XML, but
smaller, faster, and simpler. You define how   you  want your data to be
structured once. This takes the form of   a  template that describes the
data structure. You use this template  to   encode  and decode your data
structure into wire-streams that may be sent-to or read-from your peers.
The underlying wire stream is platform independent, lossless, and may be
used to interwork with a variety of  languages and systems regardless of
word size or endianness. Techniques  exist   to  safely extend your data
structure without breaking deployed programs   that are compiled against
the "old" format.

The idea behind Google's  Protocol  Buffers   is  that  you  define your
structured messages using a domain-specific language   and  tool set. In
SWI-Prolog, you define your message  template   as  a list of predefined
Prolog terms that correspond to production  rules in the Definite Clause
Grammar (DCG) that realizes the interpreter. Each production rule has an
equivalent rule in the  protobuf  grammar.   The  process  is not unlike
specifiying the format of a regular  expression. To encode a template to
a wire-stream, you pass a grounded template, =X=, and  variable, =Y=, to
protobuf_message/2. To decode a wire-stream, =Y=, you pass an ungrounded
template, =X=,  along  with  a   grounded    wire-stream,   =Y=,  to
protobuf_message/2. The interpreter will unify  the unbound variables in
the template with values decoded from the wire-stream.

For an overview and tutorial  with examples, see protobufs_overview.txt.
Examples of usage may also be found by inspecting test_protobufs.pl.

@see http://code.google.com/apis/protocolbuffers
@author: Jeffrey Rosenwald (JeffRose@acm.org)
@license: LGPL2 (w/SWIPL library exception)
@compat: SWI-Prolog
*/

:- require([ use_foreign_library/1
	   , atom_codes/2
	   , call/2
	   , float32_codes/2
	   , float64_codes/2
	   , int32_codes/2
	   , int64_codes/2
	   , integer_zigzag/2
	   , string_codes/2
	   , succ/2
	   , between/3
	   ]).

:- use_foreign_library(foreign(protobufs)).
:- use_module(library(utf8)).

wire_type(varint, 0).
wire_type(fixed64, 1).
wire_type(length_delimited, 2).
wire_type(start_group, 3).
wire_type(end_group, 4).
wire_type(fixed32, 5).

%
% deal with Google's method of encoding 2's complement integers
% such that packed length is proportional to magnitude. We can handle up
% to 63 bits, plus sign. Essentially moves sign-bit from MSB to LSB.
%
:- if(false).  % now done in the C-support code
zig_zag(Int, X) :-
	integer(Int), !,
	X is (Int << 1) xor (Int >> 63).

zig_zag(Int, X) :-
	integer(X),
	Y is -1 * (X /\ 1),
	Int is (X >> 1) xor Y.
:- endif.
%
%  basic wire-type processing handled by C-support code
%

fixed_int32(X, [A0, A1, A2, A3 | Rest], Rest) :-
	int32_codes(X, [A0, A1, A2, A3]).

fixed_int64(X, [A0, A1, A2, A3, A4, A5, A6, A7 | Rest], Rest) :-
	int64_codes(X, [A0, A1, A2, A3, A4, A5, A6, A7]).

fixed_float64(X, [A0, A1, A2, A3, A4, A5, A6, A7 | Rest], Rest) :-
	float64_codes(X, [A0, A1, A2, A3, A4, A5, A6, A7]).

fixed_float32(X, [A0, A1, A2, A3 | Rest], Rest) :-
	float32_codes(X, [A0, A1, A2, A3]).

%
%   Start of the DCG
%

code_string(N, Codes, Rest, Rest1) :-
	length(Codes, N),
	append(Codes, Rest1, Rest), !.
/*
code_string(N, Codes) -->
	{ length(Codes, N)},
	Codes, !.
*/
%
% deal with Google's method of packing unsigned integers in variable
% length, modulo 128 strings.
%
% var_int and tag_type productions were rewritten in straight Prolog for
% speed's sake.
%

var_int(A, [A | Rest], Rest) :-
	A < 128, !.

var_int(X, [A | Rest], Rest1) :-
	nonvar(X),
	X1 is X >> 7,
	A is 128 + (X /\ 0x7f),
	var_int(X1, Rest, Rest1), !.

var_int(X, [A | Rest], Rest1) :-
	var_int(X1, Rest, Rest1),
	X is (X1 << 7) + A - 128, !.
%
%

tag_type(Tag, Type, Rest, Rest1) :-
	nonvar(Tag), nonvar(Type),
	wire_type(Type, X),
	A is Tag << 3 \/ X,
	var_int(A, Rest, Rest1), !.

tag_type(Tag, Type, Rest, Rest1) :-
	var_int(A, Rest, Rest1),
	X is A /\ 0x07,
	wire_type(Type, X),
	Tag is A >> 3.
%
prolog_type(Tag, double) -->     tag_type(Tag, fixed64).
prolog_type(Tag, integer64) -->	 tag_type(Tag, fixed64).
prolog_type(Tag, float) -->      tag_type(Tag, fixed32).
prolog_type(Tag, integer32) -->  tag_type(Tag, fixed32).
prolog_type(Tag, integer) -->    tag_type(Tag, varint).
prolog_type(Tag, unsigned) -->	 tag_type(Tag, varint).
prolog_type(Tag, boolean) -->    tag_type(Tag, varint).
prolog_type(Tag, enum) -->       tag_type(Tag, varint).
prolog_type(Tag, atom) -->       tag_type(Tag, length_delimited).
prolog_type(Tag, codes) -->      tag_type(Tag, length_delimited).
prolog_type(Tag, utf8_codes) --> tag_type(Tag, length_delimited).
prolog_type(Tag, string) -->     tag_type(Tag, length_delimited).
prolog_type(Tag, embedded) -->   tag_type(Tag, length_delimited).
%
%   The protobuf-2.1.0 grammar allows negative values in enums.
%   But they are encoded as unsigned in the  golden message.
%   Encode as integer and lose. Encode as unsigned and win.
%
:- meta_predicate enumeration(1,*,*).

enumeration(Type) -->
	{ call(Type, Value) },
	payload(unsigned, Value).

payload(enum, A) -->
	enumeration(A).

payload(double,  A) -->
	fixed_float64(A).

payload(integer64, A) -->
	fixed_int64(A).

payload(float, A) -->
	fixed_float32(A).

payload(integer32, A) -->
	fixed_int32(A).

payload(integer, A) -->
	{ nonvar(A), integer_zigzag(A,X) }, !,
	var_int(X).

payload(integer, A) -->
	var_int(X),
	{ integer_zigzag(A, X) }.

payload(unsigned, A) -->
	{ nonvar(A) -> A >= 0; true },
	var_int(A).

payload(codes, A) -->
	{ nonvar(A), !, length(A, Len)},
	var_int(Len),
	code_string(Len, A).

payload(codes, A) -->
	var_int(Len),
	code_string(Len, A).

payload(utf8_codes, A) -->
	{ nonvar(A), !,
	  phrase(utf8_codes(A), B)
	},
	payload(codes, B).

payload(utf8_codes, A) -->
	payload(codes, B),
	{ phrase(utf8_codes(A), B) }.

payload(atom, A) -->
	{ nonvar(A), atom_codes(A, Codes) },
	payload(utf8_codes, Codes), !.

payload(atom, A) -->
	payload(utf8_codes, Codes),
	{ atom_codes(A, Codes) }.

payload(boolean, true) -->
	payload(unsigned, 1).

payload(boolean, false) -->
	payload(unsigned, 0).

payload(string, A) -->
	{ nonvar(A) -> string_codes(A, Codes); true },

	payload(codes, Codes),

	{ string_codes(A, Codes) }.

payload(embedded, protobuf(A)) -->
	{ ground(A), phrase(protobuf(A), Codes) },
	payload(codes, Codes), !.

payload(embedded, protobuf(A)) -->
	payload(codes, Codes),
	{ phrase(protobuf(A), Codes) }.

start_group(Tag) -->		tag_type(Tag, start_group).

end_group(Tag) -->		tag_type(Tag, end_group).
%
%
nothing([]) --> [], !.

protobuf([A | B]) -->
	{ A =.. [ Type, Tag, Payload] },
	message_sequence(Type, Tag, Payload), !,
	(   protobuf(B); nothing(B)).


repeated_message_sequence(repeated_enum, Tag, Type, [A | B]) -->
	{ Compound =.. [Type, A] },
	message_sequence(enum, Tag, Compound),
	(   repeated_message_sequence(repeated_enum, Tag, Type, B);
	    nothing(B)).

repeated_message_sequence(Type, Tag, [A | B]) -->
	message_sequence(Type, Tag, A),
	repeated_message_sequence(Type, Tag, B).

repeated_message_sequence(_Type, _Tag, A) -->
	nothing(A).
%
%

message_sequence(repeated, Tag, enum(Compound)) -->
	{ Compound =.. [ Type, List] },
	repeated_message_sequence(repeated_enum, Tag, Type, List).

message_sequence(repeated, Tag, Compound) -->
	{ Compound =.. [Type, A] },
	repeated_message_sequence(Type, Tag, A).

message_sequence(group, Tag, A) -->
	start_group(Tag),
	protobuf(A),
	end_group(Tag), !.

message_sequence(PrologType, Tag, Payload) -->
	prolog_type(Tag, PrologType),
        payload(PrologType, Payload).


%%	protobuf_message(?Template, ?Wire_stream) is semidet.
%%	protobuf_message(?Template, ?Wire_stream, ?Rest) is nondet.
%
%  marshalls  and  unmarshalls  byte  streams   encoded  using  Google's
%  Protobuf  grammars.  protobuf_message/2  provides   a  bi-directional
%  parser that marshalls a Prolog structure to Wire_stream, according to
%  rules specified by Template. It can  also unmarshall Wire_stream into
%  a Prolog structure according to  the same grammar. protobuf_message/3
%  provides a difference list version.
%
%  @param Template is  a  protobuf   grammar  specification.  On decode,
%  unbound variables in the Template are   unified with their respective
%  values in the Wire_stream. On encode, Template must be ground.
%
%  @param Wire_stream is a code list that was generated by a protobuf
%  encoder using an equivalent template.
%
protobuf_message(protobuf(Template), Wirestream) :-
	must_be(list, Template),
	phrase(protobuf(Template), Wirestream), !.

protobuf_message(protobuf(Template), Wirestream, Residue) :-
	must_be(list, Template),
	phrase(protobuf(Template), Wirestream, Residue).