/usr/lib/swi-prolog/library/clp/clpb.pl is in swi-prolog-nox 7.2.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 | /* Part of SWI-Prolog
Author: Markus Triska
E-mail: triska@gmx.at
WWW: http://www.swi-prolog.org
Copyright (C): 2014, 2015 Markus Triska
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, if you link this library with other files,
compiled with a Free Software compiler, to produce an executable, this
library does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
CLP(B): Constraint Logic Programming over Boolean variables.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
:- module(clpb, [
op(300, fy, ~),
op(500, yfx, #),
sat/1,
taut/2,
labeling/1,
sat_count/2
]).
:- use_module(library(error)).
:- use_module(library(assoc)).
:- use_module(library(apply_macros)).
/** <module> Constraint Logic Programming over Boolean Variables
### Introduction {#clpb-intro}
Constraint programming is a declarative formalism that lets you state
relations between terms. This library provides CLP(B), Constraint
Logic Programming over Boolean Variables. It can be used to model and
solve combinatorial problems such as verification, allocation and
covering tasks.
The implementation is based on reduced and ordered Binary Decision
Diagrams (BDDs).
### Boolean expressions {#clpb-exprs}
A _Boolean expression_ is one of:
| `0` | false |
| `1` | true |
| _variable_ | unknown truth value |
| ~ _Expr_ | logical NOT |
| _Expr_ + _Expr_ | logical OR |
| _Expr_ * _Expr_ | logical AND |
| _Expr_ # _Expr_ | exclusive OR |
| _Var_ ^ _Expr_ | existential quantification |
| _Expr_ =:= _Expr_ | equality |
| _Expr_ =\= _Expr_ | disequality (same as #) |
| _Expr_ =< _Expr_ | less or equal (implication) |
| _Expr_ >= _Expr_ | greater or equal |
| _Expr_ < _Expr_ | less than |
| _Expr_ > _Expr_ | greater than |
| card(Is,Exprs) | _see below_ |
| `+(Exprs)` | _see below_ |
| `*(Exprs)` | _see below_ |
where _Expr_ again denotes a Boolean expression.
The Boolean expression card(Is,Exprs) is true iff the number of true
expressions in the list `Exprs` is a member of the list `Is` of
integers and integer ranges of the form `From-To`.
`+(Exprs)` and `*(Exprs)` denote, respectively, the disjunction and
conjunction of all elements in the list `Exprs` of Boolean
expressions.
### Interface predicates {#clpb-interface}
Important interface predicates of CLP(B) are:
* sat(+Expr)
True iff the Boolean expression Expr is satisfiable.
* taut(+Expr, -T)
If Expr is a tautology with respect to the posted constraints, succeeds
with *T = 1*. If Expr cannot be satisfied, succeeds with *T = 0*.
Otherwise, it fails.
* labeling(+Vs)
Assigns truth values to the variables Vs such that all constraints
are satisfied.
The unification of a CLP(B) variable _X_ with a term _T_ is equivalent
to posting the constraint sat(X=:=T).
### Examples {#clpb-examples}
Here is an example session with a few queries and their answers:
==
?- use_module(library(clpb)).
true.
?- sat(X*Y).
X = Y, Y = 1.
?- sat(X * ~X).
false.
?- taut(X * ~X, T).
T = 0,
sat(X=:=X).
?- sat(X^Y^(X+Y)).
sat(X=:=X),
sat(Y=:=Y).
?- sat(X*Y + X*Z), labeling([X,Y,Z]).
X = Z, Z = 1, Y = 0 ;
X = Y, Y = 1, Z = 0 ;
X = Y, Y = Z, Z = 1.
?- sat(X =< Y), sat(Y =< Z), taut(X =< Z, T).
T = 1,
sat(1#X#X*Y),
sat(1#Y#Y*Z).
==
The pending residual goals constrain remaining variables to Boolean
expressions and are declaratively equivalent to the original query.
@author Markus Triska
*/
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Each CLP(B) variable belongs to exactly one BDD. Each CLP(B)
variable gets an attribute (in module "clpb") of the form:
index_root(Index,Root)
where Index is the variable's unique integer index, and Root is the
root of the BDD that the variable belongs to.
Each CLP(B) variable also gets an attribute in module clpb_hash: an
association table node(LID,HID) -> Node, to keep the BDD reduced.
The association table of each variable must be rebuilt on occasion
to remove nodes that are no longer reachable. We rebuild the
association tables of involved variables after BDDs are merged to
build a new root. This only serves to reclaim memory: Keeping a
node in a local table even when it no longer occurs in any BDD does
not affect the solver's correctness. However, apply_shortcut/4
relies on the invariant that every node that occurs in the relevant
BDDs is also registered in the table of its branching variable.
A root is a logical variable with a single attribute ("clpb_bdd")
of the form:
Sat-BDD
where Sat is the SAT formula (in original form) that corresponds to
BDD. Sat is necessary to rebuild the BDD after variable aliasing,
and to project all remaining constraints to a list of sat/1 goals.
Finally, a BDD is either:
*) The integers 0 or 1, denoting false and true, respectively, or
*) A node of the form
node(ID, Var, Low, High, Aux)
Where ID is the node's unique integer ID, Var is the
node's branching variable, and Low and High are the
node's low (Var = 0) and high (Var = 1) children. Aux
is a free variable, one for each node, that can be used
to attach attributes and store intermediate results.
Variable aliasing is treated as a conjunction of corresponding SAT
formulae.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Type checking.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
is_sat(V) :- var(V), !.
is_sat(I) :- integer(I), between(0, 1, I).
is_sat(~A) :- is_sat(A).
is_sat(A*B) :- is_sat(A), is_sat(B).
is_sat(A+B) :- is_sat(A), is_sat(B).
is_sat(A#B) :- is_sat(A), is_sat(B).
is_sat(A=:=B) :- is_sat(A), is_sat(B).
is_sat(A=\=B) :- is_sat(A), is_sat(B).
is_sat(A=<B) :- is_sat(A), is_sat(B).
is_sat(A>=B) :- is_sat(A), is_sat(B).
is_sat(A<B) :- is_sat(A), is_sat(B).
is_sat(A>B) :- is_sat(A), is_sat(B).
is_sat(+(Ls)) :- must_be(list, Ls), maplist(is_sat, Ls).
is_sat(*(Ls)) :- must_be(list, Ls), maplist(is_sat, Ls).
is_sat(X^F) :- var(X), is_sat(F).
is_sat(card(Is,Fs)) :-
must_be(list(ground), Is),
must_be(list, Fs),
maplist(is_sat, Fs).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Rewriting to canonical expressions.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
% elementary
sat_rewrite(V, V) :- var(V), !.
sat_rewrite(I, I) :- integer(I).
sat_rewrite(P0*Q0, P*Q) :- sat_rewrite(P0, P), sat_rewrite(Q0, Q).
sat_rewrite(P0+Q0, P+Q) :- sat_rewrite(P0, P), sat_rewrite(Q0, Q).
sat_rewrite(P0#Q0, P#Q) :- sat_rewrite(P0, P), sat_rewrite(Q0, Q).
sat_rewrite(X^F0, X^F) :- sat_rewrite(F0, F).
sat_rewrite(card(Is,Fs0), card(Is,Fs)) :-
maplist(sat_rewrite, Fs0, Fs).
% synonyms
sat_rewrite(~P, R) :- sat_rewrite(1 # P, R).
sat_rewrite(P =:= Q, R) :- sat_rewrite(~P # Q, R).
sat_rewrite(P =\= Q, R) :- sat_rewrite(P # Q, R).
sat_rewrite(P =< Q, R) :- sat_rewrite(~P + Q, R).
sat_rewrite(P >= Q, R) :- sat_rewrite(Q =< P, R).
sat_rewrite(P < Q, R) :- sat_rewrite(~P * Q, R).
sat_rewrite(P > Q, R) :- sat_rewrite(Q < P, R).
sat_rewrite(+(Ls), R) :- foldl(or, Ls, 0, F), sat_rewrite(F, R).
sat_rewrite(*(Ls), R) :- foldl(and, Ls, 1, F), sat_rewrite(F, R).
or(A, B, B + A).
and(A, B, B * A).
must_be_sat(Sat) :-
( is_sat(Sat) -> true
; no_truth_value(Sat)
).
no_truth_value(Term) :- domain_error(clpb_expr, Term).
parse_sat(Sat0, Sat) :-
must_be_sat(Sat0),
sat_rewrite(Sat0, Sat),
term_variables(Sat, Vs),
maplist(enumerate_variable, Vs).
enumerate_variable(V) :-
( var_index_root(V, _, _) -> true
; clpb_next_id('$clpb_next_var', Index),
put_attr(V, clpb, index_root(Index,_)),
put_empty_hash(V)
).
var_index(V, I) :- var_index_root(V, I, _).
var_index_root(V, I, Root) :- get_attr(V, clpb, index_root(I,Root)).
put_empty_hash(V) :-
empty_assoc(H0),
put_attr(V, clpb_hash, H0).
sat_roots(Sat, Roots) :-
term_variables(Sat, Vs),
maplist(var_index_root, Vs, _, Roots0),
term_variables(Roots0, Roots).
%% sat(+Expr) is semidet.
%
% True iff Expr is a satisfiable Boolean expression.
sat(Sat0) :-
( phrase(sat_ands(Sat0), Ands), Ands = [_,_|_] ->
maplist(sat, Ands)
; parse_sat(Sat0, Sat),
sat_bdd(Sat, BDD),
sat_roots(Sat, Roots),
roots_and(Roots, Sat0-BDD, And-BDD1),
maplist(del_bdd, Roots),
maplist(=(Root), Roots),
root_put_formula_bdd(Root, And, BDD1),
is_bdd(BDD1),
satisfiable_bdd(BDD1)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Posting many small sat/1 constraints is better than posting a huge
conjunction (or negated disjunction), because unneeded nodes are
removed from node tables after BDDs are merged. This is not
possible in sat_bdd/2 because the nodes may occur in other BDDs. A
better version of sat_bdd/2 or a proper implementation of a unique
table including garbage collection would make this obsolete and
also improve taut/2 and sat_count/2 in such cases.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
sat_ands(X) -->
( { var(X) } -> [X]
; { X = (A*B) } -> sat_ands(A), sat_ands(B)
; { X = *(Ls) } -> sat_ands_(Ls)
; { X = ~Y } -> not_ors(Y)
; [X]
).
sat_ands_([]) --> [].
sat_ands_([L|Ls]) --> [L], sat_ands_(Ls).
not_ors(X) -->
( { var(X) } -> [~X]
; { X = (A+B) } -> not_ors(A), not_ors(B)
; { X = +(Ls) } -> not_ors_(Ls)
; [~X]
).
not_ors_([]) --> [].
not_ors_([L|Ls]) --> [~L], not_ors_(Ls).
del_bdd(Root) :- del_attr(Root, clpb_bdd).
root_get_formula_bdd(Root, F, BDD) :- get_attr(Root, clpb_bdd, F-BDD).
root_put_formula_bdd(Root, F, BDD) :- put_attr(Root, clpb_bdd, F-BDD).
roots_and(Roots, Sat0-BDD0, Sat-BDD) :-
foldl(root_and, Roots, Sat0-BDD0, Sat-BDD),
rebuild_hashes(BDD).
root_and(Root, Sat0-BDD0, Sat-BDD) :-
( root_get_formula_bdd(Root, F, B) ->
Sat = F*Sat0,
bdd_and(B, BDD0, BDD)
; Sat = Sat0,
BDD = BDD0
).
bdd_and(NA, NB, And) :-
apply(*, NA, NB, And),
is_bdd(And).
%% taut(+Expr, -T) is semidet
%
% Succeeds with T = 0 if the Boolean expression Expr cannot be
% satisfied, and with T = 1 if Expr is always true with respect to the
% current constraints. Fails otherwise.
taut(Sat0, T) :-
parse_sat(Sat0, Sat),
( T = 0, \+ sat(Sat) -> true
; T = 1, tautology(Sat) -> true
; false
).
tautology(Sat) :-
( phrase(sat_ands(Sat), Ands), Ands = [_,_|_] ->
maplist(tautology, Ands)
; \+ sat(1#Sat)
).
satisfiable_bdd(BDD) :-
( BDD == 0 -> false
; BDD == 1 -> true
; ( bdd_nodes(var_unbound, BDD, Nodes) ->
bdd_variables_classification(BDD, Nodes, Classes),
partition(var_class, Classes, Eqs, Bs, Ds),
domain_consistency(Eqs, Goal),
aliasing_consistency(Bs, Ds, Goals),
maplist(unification, [Goal|Goals])
; % if any variable is instantiated, we do not perform
% any propagation for now
true
)
).
var_class(_=_, <).
var_class(further_branching(_,_), =).
var_class(negative_decisive(_), >).
unification(true).
unification(A=B) :- A = B. % safe_goal/1 detects safety of this call
var_unbound(Node) :-
node_var_low_high(Node, Var, _, _),
var(Var).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
By aliasing consistency, we mean that all unifications X=Y, where
taut(X=:=Y, 1) holds, are posted.
To detect this, we distinguish two kinds of variables among those
variables that are not skipped in any branch: further-branching and
negative-decisive. X is negative-decisive iff every node where X
appears as a branching variable has 0 as one of its children. X is
further-branching iff 1 is not a direct child of any node where X
appears as a branching variable.
Any potential aliasing must involve one further-branching, and one
negative-decisive variable. X=Y must hold if, for each low branch
of nodes with X as branching variable, Y has high branch 0, and for
each high branch of nodes involving X, Y has low branch 0.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
aliasing_consistency(Bs, Ds, Goals) :-
phrase(aliasings(Bs, Ds), Goals).
aliasings([], _) --> [].
aliasings([further_branching(B,Nodes)|Bs], Ds) -->
{ var_index(B, BI) },
aliasings_(Ds, B, BI, Nodes),
aliasings(Bs, Ds).
aliasings_([], _, _, _) --> [].
aliasings_([negative_decisive(D)|Ds], B, BI, Nodes) -->
{ var_index(D, DI) },
( { DI > BI,
always_false(high, DI, Nodes),
always_false(low, DI, Nodes) } ->
[D=B]
; []
),
aliasings_(Ds, B, BI, Nodes).
always_false(Which, DI, Nodes) :-
phrase(nodes_always_false(Nodes, Which, DI), Opposites),
maplist(with_aux(unvisit), Opposites).
nodes_always_false([], _, _) --> [].
nodes_always_false([Node|Nodes], Which, DI) -->
{ which_node_child(Which, Node, Child),
opposite(Which, Opposite) },
opposite_always_false(Opposite, DI, Child),
nodes_always_false(Nodes, Which, DI).
which_node_child(low, Node, Child) :-
node_var_low_high(Node, _, Child, _).
which_node_child(high, Node, Child) :-
node_var_low_high(Node, _, _, Child).
opposite(low, high).
opposite(high, low).
opposite_always_false(Opposite, DI, Node) -->
( { node_visited(Node) } -> []
; { node_var_low_high(Node, Var, Low, High),
with_aux(put_visited, Node),
var_index(Var, VI) },
[Node],
( { VI =:= DI } ->
{ which_node_child(Opposite, Node, Child),
Child == 0 }
; opposite_always_false(Opposite, DI, Low),
opposite_always_false(Opposite, DI, High)
)
).
further_branching(Node) :-
node_var_low_high(Node, _, Low, High),
Low \== 1,
High \== 1.
negative_decisive(Node) :-
node_var_low_high(Node, _, Low, High),
( Low == 0 -> true
; High == 0 -> true
; false
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Instantiate all variables that only admit a single Boolean value.
This is the case if: The variable is not skipped in any branch
leading to 1 (its being skipped means that it may be assigned
either 0 or 1 and can thus not be fixed yet), and all nodes where
it occurs as a branching variable have either lower or upper child
fixed to 0 consistently.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
domain_consistency(Eqs, Goal) :-
maplist(eq_a_b, Eqs, Vs, Values),
Goal = (Vs = Values). % propagate all assignments at once
eq_a_b(A=B, A, B).
consistently_false_(Which, Node) :-
which_node_child(Which, Node, Child),
Child == 0.
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
In essentially one sweep of the BDD, all variables can be classified:
Unification with 0 or 1, further branching and/or negative decisive.
Strategy: Breadth-first traversal of the BDD, failing (and thus
clearing all attributes) if the variable is skipped in some branch,
and moving the frontier along each time.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
bdd_variables_classification(BDD, Nodes, Classes) :-
nodes_variables(Nodes, Vs0),
variables_in_index_order(Vs0, Vs),
phrase(variables_classification(Vs, [BDD]), Classes),
maplist(with_aux(unvisit), Nodes).
variables_classification([], _) --> [].
variables_classification([V|Vs], Nodes0) -->
{ var_index(V, Index) },
( { phrase(nodes_with_variable(Nodes0, Index), Nodes) } ->
( { maplist(consistently_false_(low), Nodes) } -> [V=1]
; { maplist(consistently_false_(high), Nodes) } -> [V=0]
; []
),
( { maplist(further_branching, Nodes) } ->
[further_branching(V, Nodes)]
; []
),
( { maplist(negative_decisive, Nodes) } ->
[negative_decisive(V)]
; []
),
{ maplist(with_aux(unvisit), Nodes) },
variables_classification(Vs, Nodes)
; variables_classification(Vs, Nodes0)
).
nodes_with_variable([], _) --> [].
nodes_with_variable([Node|Nodes], VI) -->
{ Node \== 1 },
( { node_visited(Node) } -> nodes_with_variable(Nodes, VI)
; { with_aux(put_visited, Node),
node_var_low_high(Node, OVar, Low, High),
var_index(OVar, OVI) },
{ OVI =< VI },
( { OVI =:= VI } -> [Node]
; nodes_with_variable([Low,High], VI)
),
nodes_with_variable(Nodes, VI)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Node management. Always use an existing node, if there is one.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
make_node(Var, Low, High, Node) :-
( Low == High -> Node = Low
; low_high_key(Low, High, Key),
( lookup_node(Var, Key, Node) -> true
; clpb_next_id('$clpb_next_node', ID),
Node = node(ID,Var,Low,High,_Aux),
register_node(Var, Key, Node)
)
).
make_node(Var, Low, High, Node) -->
% make it conveniently usable within DCGs
{ make_node(Var, Low, High, Node) }.
% The key of a node for hashing is determined by the IDs of its
% children.
low_high_key(Low, High, node(LID,HID)) :-
node_id(Low, LID),
node_id(High, HID).
rebuild_hashes(BDD) :-
bdd_nodes(nodevar_put_empty_hash, BDD, Nodes),
maplist(re_register_node, Nodes).
nodevar_put_empty_hash(Node) :-
node_var_low_high(Node, Var, _, _),
empty_assoc(H0),
put_attr(Var, clpb_hash, H0).
re_register_node(Node) :-
node_var_low_high(Node, Var, Low, High),
low_high_key(Low, High, Key),
register_node(Var, Key, Node).
register_node(Var, Key, Node) :-
get_attr(Var, clpb_hash, H0),
put_assoc(Key, H0, Node, H),
put_attr(Var, clpb_hash, H).
lookup_node(Var, Key, Node) :-
get_attr(Var, clpb_hash, H0),
get_assoc(Key, H0, Node).
node_id(0, false).
node_id(1, true).
node_id(node(ID,_,_,_,_), ID).
node_aux(Node, Aux) :- arg(5, Node, Aux).
node_var_low_high(Node, Var, Low, High) :-
Node = node(_,Var,Low,High,_).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
sat_bdd/2 converts a SAT formula in canonical form to an ordered
and reduced BDD.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
sat_bdd(V, Node) :- var(V), !, make_node(V, 0, 1, Node).
sat_bdd(I, I) :- integer(I), !.
sat_bdd(V^Sat, Node) :- !, sat_bdd(Sat, BDD), existential(V, BDD, Node).
sat_bdd(card(Is,Fs), Node) :- !, counter_network(Is, Fs, Node).
sat_bdd(Sat, Node) :- !,
Sat =.. [F,A,B],
sat_bdd(A, NA),
sat_bdd(B, NB),
apply(F, NA, NB, Node).
existential(V, BDD, Node) :-
var_index(V, Index),
bdd_restriction(BDD, Index, 0, NA),
bdd_restriction(BDD, Index, 1, NB),
apply(+, NA, NB, Node).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Counter network for card(Is,Fs).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
counter_network(Cs, Fs, Node) :-
same_length([_|Fs], Indicators),
fill_indicators(Indicators, 0, Cs),
phrase(formulas_variables(Fs, Vars0), ExBDDs),
maplist(unvisit, Vars0),
% The counter network is built bottom-up, so variables with
% highest index must be processed first.
variables_in_index_order(Vars0, Vars1),
reverse(Vars1, Vars),
counter_network_(Vars, Indicators, Node0),
foldl(existential_and, ExBDDs, Node0, Node).
% Introduce fresh variables for expressions that are not variables.
% These variables are later existentially quantified to remove them.
% Also, new variables are introduced for variables that are used more
% than once, as in card([0,1],[X,X,Y]), to keep the BDD ordered.
formulas_variables([], []) --> [].
formulas_variables([F|Fs], [V|Vs]) -->
( { var(F), \+ is_visited(F) } ->
{ V = F,
put_visited(F) }
; { enumerate_variable(V),
sat_rewrite(V =:= F, Sat),
sat_bdd(Sat, BDD) },
[V-BDD]
),
formulas_variables(Fs, Vs).
counter_network_([], [Node], Node).
counter_network_([Var|Vars], [I|Is0], Node) :-
foldl(indicators_pairing(Var), Is0, Is, I, _),
counter_network_(Vars, Is, Node).
indicators_pairing(Var, I, Node, Prev, I) :- make_node(Var, Prev, I, Node).
fill_indicators([], _, _).
fill_indicators([I|Is], Index0, Cs) :-
( memberchk(Index0, Cs) -> I = 1
; member(A-B, Cs), between(A, B, Index0) -> I = 1
; I = 0
),
Index1 is Index0 + 1,
fill_indicators(Is, Index1, Cs).
existential_and(Ex-BDD, Node0, Node) :-
bdd_and(BDD, Node0, Node1),
existential(Ex, Node1, Node),
% remove attributes to avoid residual goals for variables that
% are only used as substitutes for formulas
del_attrs(Ex).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Compute F(NA, NB).
We use a DCG to thread through an implicit argument G0, an
association table F(IDA,IDB) -> Node, used for memoization.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
apply(F, NA, NB, Node) :-
empty_assoc(G0),
phrase(apply(F, NA, NB, Node), [G0], _).
apply(F, NA, NB, Node) -->
( { integer(NA), integer(NB) } -> { once(bool_op(F, NA, NB, Node)) }
; { apply_shortcut(F, NA, NB, Node) } -> []
; { node_id(NA, IDA), node_id(NB, IDB), Key =.. [F,IDA,IDB] },
( state(G0), { get_assoc(Key, G0, Node) } -> []
; apply_(F, NA, NB, Node),
state(G0, G),
{ put_assoc(Key, G0, Node, G) }
)
).
apply_shortcut(+, NA, NB, Node) :-
( NA == 0 -> Node = NB
; NA == 1 -> Node = 1
; NB == 0 -> Node = NA
; NB == 1 -> Node = 1
; false
).
apply_shortcut(*, NA, NB, Node) :-
( NA == 0 -> Node = 0
; NA == 1 -> Node = NB
; NB == 0 -> Node = 0
; NB == 1 -> Node = NA
; false
).
apply_(F, NA, NB, Node) -->
{ var_less_than(NA, NB),
!,
node_var_low_high(NA, VA, LA, HA) },
apply(F, LA, NB, Low),
apply(F, HA, NB, High),
make_node(VA, Low, High, Node).
apply_(F, NA, NB, Node) -->
{ node_var_low_high(NA, VA, LA, HA),
node_var_low_high(NB, VB, LB, HB),
VA == VB },
!,
apply(F, LA, LB, Low),
apply(F, HA, HB, High),
make_node(VA, Low, High, Node).
apply_(F, NA, NB, Node) --> % NB < NA
{ node_var_low_high(NB, VB, LB, HB) },
apply(F, NA, LB, Low),
apply(F, NA, HB, High),
make_node(VB, Low, High, Node).
node_varindex(Node, VI) :-
node_var_low_high(Node, V, _, _),
var_index(V, VI).
var_less_than(NA, NB) :-
( integer(NB) -> true
; node_varindex(NA, VAI),
node_varindex(NB, VBI),
VAI < VBI
).
bool_op(+, 0, 0, 0).
bool_op(+, 0, 1, 1).
bool_op(+, 1, 0, 1).
bool_op(+, 1, 1, 1).
bool_op(*, 0, 0, 0).
bool_op(*, 0, 1, 0).
bool_op(*, 1, 0, 0).
bool_op(*, 1, 1, 1).
bool_op(#, 0, 0, 0).
bool_op(#, 0, 1, 1).
bool_op(#, 1, 0, 1).
bool_op(#, 1, 1, 0).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Access implicit state in DCGs.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
state(S) --> state(S, S).
state(S0, S), [S] --> [S0].
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Unification. X = Expr is equivalent to sat(X =:= Expr).
Current limitation:
===================
The current interface of attributed variables is not general enough
to express what we need. For example,
?- sat(A + B), A = A + 1.
should be equivalent to
?- sat(A + B), sat(A =:= A + 1).
However, attr_unify_hook/2 is only called *after* the unification
of A with A + 1 has already taken place and turned A into a cyclic
ground term, raised an error or failed (depending on the flag
occurs_check), making it impossible to reason about the variable A
in the unification hook. Therefore, a more general interface for
attributed variables should replace the current one. In particular,
unification filters should be able to reason about terms before
they are unified with anything.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
attr_unify_hook(index_root(I,Root), Other) :-
( integer(Other) ->
( between(0, 1, Other) ->
root_get_formula_bdd(Root, Sat, BDD0),
bdd_restriction(BDD0, I, Other, BDD),
root_put_formula_bdd(Root, Sat, BDD),
satisfiable_bdd(BDD)
; no_truth_value(Other)
)
; % due to variable aliasing, any BDDs may now be unordered,
% so we need to rebuild the new BDD from the conjunction.
root_get_formula_bdd(Root, Sat0, _),
Sat = Sat0*OtherSat,
( var(Other), var_index_root(Other, _, OtherRoot),
OtherRoot \== Root ->
root_get_formula_bdd(OtherRoot, OtherSat, _),
parse_sat(Sat, Sat1),
sat_bdd(Sat1, BDD1),
And = Sat1,
sat_roots(Sat, Roots)
; parse_sat(Other, OtherSat),
sat_roots(Sat, Roots),
maplist(root_rebuild_bdd, Roots),
roots_and(Roots, 1-1, And-BDD1)
),
maplist(del_bdd, Roots),
maplist(=(NewRoot), Roots),
root_put_formula_bdd(NewRoot, And, BDD1),
is_bdd(BDD1),
satisfiable_bdd(BDD1)
).
root_rebuild_bdd(Root) :-
( root_get_formula_bdd(Root, F0, _) ->
parse_sat(F0, Sat),
sat_bdd(Sat, BDD),
root_put_formula_bdd(Root, F0, BDD)
; true
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Support for project_attributes/2.
This is called by the toplevel as
project_attributes(+QueryVars, +AttrVars)
in order to project all remaining constraints onto QueryVars.
All CLP(B) variables that do not occur in QueryVars or AttrVars
need to be existentially quantified, so that they do not occur in
residual goals. This is very easy to do in the case of CLP(B).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
project_attributes(QueryVars0, AttrVars) :-
append(QueryVars0, AttrVars, QueryVars1),
include(clpb_variable, QueryVars1, QueryVars),
maplist(var_index_root, QueryVars, _, Roots0),
sort(Roots0, Roots),
maplist(remove_hidden_variables(QueryVars), Roots).
clpb_variable(Var) :- var_index(Var, _).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
All CLP(B) variables occurring in BDDs but not in query variables
become existentially quantified. This must also be reflected in the
formula. In addition, an attribute is attached to these variables
to suppress superfluous sat(V=:=V) goals.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
remove_hidden_variables(QueryVars, Root) :-
root_get_formula_bdd(Root, Formula, BDD0),
maplist(put_visited, QueryVars),
bdd_variables(BDD0, HiddenVars),
maplist(unvisit, QueryVars),
foldl(existential, HiddenVars, BDD0, BDD),
foldl(quantify_existantially, HiddenVars, Formula, ExFormula),
root_put_formula_bdd(Root, ExFormula, BDD).
quantify_existantially(E, E0, E^E0) :- put_attr(E, clpb_omit_boolean, true).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
BDD restriction.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
bdd_restriction(Node, VI, Value, Res) :-
empty_assoc(G0),
phrase(bdd_restriction_(Node, VI, Value, Res), [G0], _),
is_bdd(Res).
bdd_restriction_(Node, VI, Value, Res) -->
( { integer(Node) } -> { Res = Node }
; { node_var_low_high(Node, Var, Low, High) } ->
( { integer(Var) } ->
( { Var =:= 0 } -> bdd_restriction_(Low, VI, Value, Res)
; { Var =:= 1 } -> bdd_restriction_(High, VI, Value, Res)
; { no_truth_value(Var) }
)
; { var_index(Var, I0),
node_id(Node, ID) },
( { I0 =:= VI } ->
( { Value =:= 0 } -> { Res = Low }
; { Value =:= 1 } -> { Res = High }
)
; { I0 > VI } -> { Res = Node }
; state(G0), { get_assoc(ID, G0, Res) } -> []
; bdd_restriction_(Low, VI, Value, LRes),
bdd_restriction_(High, VI, Value, HRes),
make_node(Var, LRes, HRes, Res),
state(G0, G),
{ put_assoc(ID, G0, Res, G) }
)
)
; { domain_error(node, Node) }
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Relating a BDD to its elements (nodes and variables).
Note that BDDs can become quite big (easily millions of nodes), and
memory space is a major bottleneck for many problems. If possible,
we therefore do not duplicate the entire BDD in memory (as in
bdd_ites/2), but only extract its features as needed.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
bdd_nodes(BDD, Ns) :- bdd_nodes(ignore_node, BDD, Ns).
ignore_node(_).
% VPred is a unary predicate that is called for each node that has a
% branching variable (= each inner node).
bdd_nodes(VPred, BDD, Ns) :-
phrase(bdd_nodes_(VPred, BDD), Ns),
maplist(with_aux(unvisit), Ns).
bdd_nodes_(VPred, Node) -->
( { node_visited(Node) } -> []
; { call(VPred, Node),
with_aux(put_visited, Node),
node_var_low_high(Node, _, Low, High) },
[Node],
bdd_nodes_(VPred, Low),
bdd_nodes_(VPred, High)
).
node_visited(Node) :- integer(Node).
node_visited(Node) :- with_aux(is_visited, Node).
bdd_variables(BDD, Vs) :-
bdd_nodes(BDD, Nodes),
nodes_variables(Nodes, Vs).
nodes_variables(Nodes, Vs) :-
phrase(nodes_variables_(Nodes), Vs),
maplist(unvisit, Vs).
nodes_variables_([]) --> [].
nodes_variables_([Node|Nodes]) -->
{ node_var_low_high(Node, Var, _, _) },
( { integer(Var) } -> []
; { is_visited(Var) } -> []
; { put_visited(Var) },
[Var]
),
nodes_variables_(Nodes).
unvisit(V) :- del_attr(V, clpb_visited).
is_visited(V) :- get_attr(V, clpb_visited, true).
put_visited(V) :- put_attr(V, clpb_visited, true).
with_aux(Pred, Node) :-
node_aux(Node, Aux),
call(Pred, Aux).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Internal consistency checks.
To enable these checks, set the flag clpb_validation to true.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
is_bdd(BDD) :-
( current_prolog_flag(clpb_validation, true) ->
bdd_ites(BDD, ITEs),
pairs_values(ITEs, Ls0),
sort(Ls0, Ls1),
( same_length(Ls0, Ls1) -> true
; domain_error(reduced_ites, (ITEs,Ls0,Ls1))
),
( member(ITE, ITEs), \+ registered_node(ITE) ->
domain_error(registered_node, ITE)
; true
),
( member(I, ITEs), \+ ordered(I) ->
domain_error(ordered_node, I)
; true
)
; true
).
ordered(_-ite(Var,High,Low)) :-
( var_index(Var, VI) ->
greater_varindex_than(High, VI),
greater_varindex_than(Low, VI)
; true
).
greater_varindex_than(Node, VI) :-
( integer(Node) -> true
; node_var_low_high(Node, Var, _, _),
( var_index(Var, OI) ->
OI > VI
; true
)
).
registered_node(Node-ite(Var,High,Low)) :-
( var(Var) ->
low_high_key(Low, High, Key),
lookup_node(Var, Key, Node0),
Node == Node0
; true
).
bdd_ites(BDD, ITEs) :-
bdd_nodes(BDD, Nodes),
maplist(node_ite, Nodes, ITEs).
node_ite(Node, Node-ite(Var,High,Low)) :-
node_var_low_high(Node, Var, Low, High).
%% labeling(+Vs) is multi.
%
% Assigns truth values to the Boolean variables Vs such that all
% stated constraints are satisfied.
labeling(Vs0) :-
must_be(list, Vs0),
variables_in_index_order(Vs0, Vs),
maplist(indomain, Vs).
variables_in_index_order(Vs0, Vs) :-
maplist(var_with_index, Vs0, IVs0),
keysort(IVs0, IVs),
pairs_values(IVs, Vs).
var_with_index(V, I-V) :-
( var_index_root(V, I, _) -> true
; I = 0
).
indomain(0).
indomain(1).
%% sat_count(+Expr, -N) is det.
%
% N is the number of different assignments of truth values to the
% variables in the Boolean expression Expr, such that Expr is true and
% all posted constraints are satisfiable.
%
% Example:
%
% ==
% ?- length(Vs, 120), sat_count(+Vs, CountOr), sat_count(*(Vs), CountAnd).
% Vs = [...],
% CountOr = 1329227995784915872903807060280344575,
% CountAnd = 1.
% ==
sat_count(Sat0, N) :-
catch((parse_sat(Sat0, Sat),
sat_bdd(Sat, BDD),
sat_roots(Sat, Roots),
roots_and(Roots, _-BDD, _-BDD1),
% we mark variables that occur in Sat0 as visited ...
term_variables(Sat0, Vs),
maplist(put_visited, Vs),
% ... so that they do not appear in Vs1 ...
bdd_variables(BDD1, Vs1),
% ... and then remove remaining variables:
foldl(existential, Vs1, BDD1, BDD2),
variables_in_index_order(Vs, IVs),
foldl(renumber_variable, IVs, 1, VNum),
bdd_count(BDD2, VNum, Count0),
var_u(BDD2, VNum, P),
% Do not unify N directly, because we are not prepared
% for propagation here in case N is a CLP(B) variable.
N0 is 2^(P - 1)*Count0,
% reset all attributes and Aux variables
throw(count(N0))),
count(N0),
N = N0).
renumber_variable(V, I0, I) :-
put_attr(V, clpb, index_root(I0,_)),
I is I0 + 1.
bdd_count(Node, VNum, Count) :-
( integer(Node) -> Count = Node
; node_aux(Node, Count),
( integer(Count) -> true
; node_var_low_high(Node, V, Low, High),
bdd_count(Low, VNum, LCount),
bdd_count(High, VNum, HCount),
bdd_pow(Low, V, VNum, LPow),
bdd_pow(High, V, VNum, HPow),
Count is LPow*LCount + HPow*HCount
)
).
bdd_pow(Node, V, VNum, Pow) :-
var_index(V, Index),
var_u(Node, VNum, P),
Pow is 2^(P - Index - 1).
var_u(Node, VNum, Index) :-
( integer(Node) -> Index = VNum
; node_varindex(Node, Index)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Pick a solution in such a way that each solution is equally likely.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
random_solution(Seed, Vars) :-
must_be(list, Vars),
set_random(seed(Seed)),
( ground(Vars) -> true
; catch((sat(+[1|Vars]), % capture all variables with a single BDD
once((member(Var, Vars),var(Var))),
var_index_root(Var, _, Root),
root_get_formula_bdd(Root, _, BDD),
bdd_variables(BDD, Vs),
variables_in_index_order(Vs, IVs),
foldl(renumber_variable, IVs, 1, VNum),
phrase(random_bindings(VNum, BDD), Bs),
maplist(del_attrs, Vs),
% reset all attribute modifications
throw(randsol(Vars, Bs))),
randsol(Vars, Bs),
true),
maplist(call, Bs),
% set remaining variables to 0 or 1 with equal probability
include(var, Vars, Remaining),
maplist(maybe_one, Remaining)
).
maybe_one(Var) :-
( maybe -> Var = 0
; Var = 1
).
random_bindings(_, Node) --> { Node == 1 }, !.
random_bindings(VNum, Node) -->
{ node_var_low_high(Node, Var, Low, High),
bdd_count(Node, VNum, Total),
bdd_count(Low, VNum, LCount) },
( { maybe(LCount, Total) } ->
[Var=0], random_bindings(VNum, Low)
; [Var=1], random_bindings(VNum, High)
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Projection to residual goals.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
attribute_goals(Var) -->
{ var_index_root(Var, _, Root) },
( { root_get_formula_bdd(Root, Formula, BDD) } ->
{ del_bdd(Root) },
( { current_prolog_flag(clpb_residuals, bdd) } ->
{ bdd_nodes(BDD, Nodes) },
nodes(Nodes)
; { phrase(sat_ands(Formula), Ands),
maplist(formula_anf, Ands, ANFs0),
sort(ANFs0, ANFs1),
exclude(eq_1, ANFs1, ANFs) },
sats(ANFs)
),
% formula variables not occurring in the BDD should be booleans
{ bdd_variables(BDD, Vs),
maplist(del_clpb, Vs),
term_variables(Formula, RestVs0),
include(clpb_variable, RestVs0, RestVs) },
booleans(RestVs)
; boolean(Var) % the variable may have occurred only in taut/2
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Set the Prolog flag clpb_residuals to bdd to obtain the BDD nodes
as residuals. Note that they cannot be used as regular goals.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
nodes([]) --> [].
nodes([Node|Nodes]) -->
{ node_var_low_high(Node, Var, Low, High),
maplist(node_projection, [Node,High,Low], [ID,HID,LID]),
var_index(Var, VI) },
[ID-(v(Var,VI) -> HID ; LID)],
nodes(Nodes).
node_projection(Node, Projection) :-
node_id(Node, ID),
( integer(ID) -> Projection = node(ID)
; Projection = ID
).
del_clpb(Var) :- del_attr(Var, clpb).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
By default, residual goals are sat/1 calls of the remaining formulas,
using (mostly) algebraic normal form.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
sats([]) --> [].
sats([A|As]) -->
{ copy_term_nat(A, Copy) },
( { Copy =@= X#Y, A = X#Y } -> [sat(X=\=Y)]
; { Copy =@= 1#X#Y, A = 1#X#Y } -> [sat(X=:=Y)]
; [sat(A)]
),
sats(As).
booleans([]) --> [].
booleans([B|Bs]) --> boolean(B), { del_clpb(B) }, booleans(Bs).
boolean(Var) -->
( { get_attr(Var, clpb_omit_boolean, true) } -> []
; [sat(Var =:= Var)]
).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Relate a formula to its algebraic normal form (ANF).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
formula_anf(Formula0, ANF) :-
sat_rewrite(Formula0, Formula),
sat_bdd(Formula, Node),
node_xors(Node, Xors),
maplist(list_to_conjunction, Xors, [Conj|Conjs]),
foldl(xor, Conjs, Conj, ANF).
list_to_conjunction([], 1).
list_to_conjunction([L|Ls], Conj) :- foldl(and, Ls, L, Conj).
xor(A, B, B # A).
eq_1(V) :- V == 1.
node_xors(Node, Xors) :-
phrase(xors(Node), Xors0),
% we remove elements that occur an even number of times (A#A --> 0)
maplist(sort, Xors0, Xors1),
pairs_keys_values(Pairs0, Xors1, _),
keysort(Pairs0, Pairs),
group_pairs_by_key(Pairs, Groups),
exclude(even_occurrences, Groups, Odds),
pairs_keys(Odds, Xors2),
maplist(exclude(eq_1), Xors2, Xors).
even_occurrences(_-Ls) :- length(Ls, L), L mod 2 =:= 0.
xors(Node) -->
( { Node == 0 } -> []
; { Node == 1 } -> [[1]]
; { node_var_low_high(Node, Var, Low, High),
node_xors(Low, Ls0),
node_xors(High, Hs0),
maplist(with_var(Var), Ls0, Ls),
maplist(with_var(Var), Hs0, Hs) },
list(Ls0),
list(Ls),
list(Hs)
).
list([]) --> [].
list([L|Ls]) --> [L], list(Ls).
with_var(Var, Ls, [Var|Ls]).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Global variables for unique node and variable IDs.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
make_clpb_var('$clpb_next_var') :- nb_setval('$clpb_next_var', 0).
make_clpb_var('$clpb_next_node') :- nb_setval('$clpb_next_node', 0).
:- multifile user:exception/3.
user:exception(undefined_global_variable, Name, retry) :-
make_clpb_var(Name), !.
clpb_next_id(Var, ID) :-
b_getval(Var, ID),
Next is ID + 1,
b_setval(Var, Next).
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The variable attributes below are not used as constraints by this
library. Project remaining attributes to empty lists of residuals.
Because accessing these hooks is basically a cross-module call, we
must declare them public.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
:- public
clpb_hash:attr_unify_hook/2,
clpb_bdd:attribute_goals//1,
clpb_hash:attribute_goals//1,
clpb_omit_boolean:attribute_goals//1.
clpb_hash:attr_unify_hook(_,_). % this unification is always admissible
clpb_bdd:attribute_goals(_) --> [].
clpb_hash:attribute_goals(_) --> [].
clpb_omit_boolean:attribute_goals(_) --> [].
% clpb_hash:attribute_goals(Var) -->
% { get_attr(Var, clpb_hash, Assoc),
% assoc_to_list(Assoc, List0),
% maplist(node_portray, List0, List) }, [Var-List].
% node_portray(Key-Node, Key-Node-ite(Var,High,Low)) :-
% node_var_low_high(Node, Var, Low, High).
:- multifile
sandbox:safe_global_variable/1.
sandbox:safe_global_variable('$clpb_next_var').
sandbox:safe_global_variable('$clpb_next_node').
|