/usr/lib/swi-prolog/library/chr/binomialheap.pl is in swi-prolog-nox 7.2.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | /* $Id$
Part of CHR (Constraint Handling Rules)
Author: Tom Schrijvers
E-mail: Tom.Schrijvers@cs.kuleuven.be
WWW: http://www.swi-prolog.org
Copyright (C): 2003-2004, K.U. Leuven
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, if you link this library with other files,
compiled with a Free Software compiler, to produce an executable, this
library does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Binomial Heap imlementation based on
%
% Functional Binomial Queues
% James F. King
% University of Glasgow
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
:- module(binomialheap,
[
empty_q/1,
insert_q/3,
insert_list_q/3,
delete_min_q/3,
find_min_q/2
]).
:- use_module(library(lists),[reverse/2]).
% data Tree a = Node a [Tree a]
% type BinQueue a = [Maybe (Tree a)]
% data Maybe a = Zero | One a
% type Item = (Entry,Key)
key(_-Key,Key).
empty_q([]).
meld_q(P,Q,R) :-
meld_qc(P,Q,zero,R).
meld_qc([],Q,zero,Q) :- !.
meld_qc([],Q,C,R) :- !,
meld_q(Q,[C],R).
meld_qc(P,[],C,R) :- !,
meld_qc([],P,C,R).
meld_qc([zero|Ps],[zero|Qs],C,R) :- !,
R = [C | Rs],
meld_q(Ps,Qs,Rs).
meld_qc([one(node(X,Xs))|Ps],[one(node(Y,Ys))|Qs],C,R) :- !,
key(X,KX),
key(Y,KY),
( KX < KY ->
T = node(X,[node(Y,Ys)|Xs])
;
T = node(Y,[node(X,Xs)|Ys])
),
R = [C|Rs],
meld_qc(Ps,Qs,one(T),Rs).
meld_qc([P|Ps],[Q|Qs],C,Rs) :-
meld_qc([Q|Ps],[C|Qs],P,Rs).
insert_q(Q,I,NQ) :-
meld_q([one(node(I,[]))],Q,NQ).
insert_list_q([],Q,Q).
insert_list_q([I|Is],Q,NQ) :-
insert_q(Q,I,Q1),
insert_list_q(Is,Q1,NQ).
min_tree([T|Ts],MT) :-
min_tree_acc(Ts,T,MT).
min_tree_acc([],MT,MT).
min_tree_acc([T|Ts],Acc,MT) :-
least(T,Acc,NAcc),
min_tree_acc(Ts,NAcc,MT).
least(zero,T,T) :- !.
least(T,zero,T) :- !.
least(one(node(X,Xs)),one(node(Y,Ys)),T) :-
key(X,KX),
key(Y,KY),
( KX < KY ->
T = one(node(X,Xs))
;
T = one(node(Y,Ys))
).
remove_tree([],_,[]).
remove_tree([T|Ts],I,[NT|NTs]) :-
( T == zero ->
NT = T
;
T = one(node(X,_)),
( X == I ->
NT = zero
;
NT = T
)
),
remove_tree(Ts,I,NTs).
delete_min_q(Q,NQ,Min) :-
min_tree(Q,one(node(Min,Ts))),
remove_tree(Q,Min,Q1),
reverse(Ts,RTs),
make_ones(RTs,Q2),
meld_q(Q2,Q1,NQ).
make_ones([],[]).
make_ones([N|Ns],[one(N)|RQ]) :-
make_ones(Ns,RQ).
find_min_q(Q,I) :-
min_tree(Q,one(node(I,_))).
|