/usr/lib/swi-prolog/library/aggregate.pl is in swi-prolog-nox 7.2.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 | /* Part of SWI-Prolog
Author: Jan Wielemaker
E-mail: J.Wielemaker@vu.nl
WWW: http://www.swi-prolog.org
Copyright (C): 2008-2014, University of Amsterdam
VU University Amsterdam
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, if you link this library with other files,
compiled with a Free Software compiler, to produce an executable, this
library does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
:- module(aggregate,
[ foreach/2, % :Generator, :Goal
aggregate/3, % +Templ, :Goal, -Result
aggregate/4, % +Templ, +Discrim, :Goal, -Result
aggregate_all/3, % +Templ, :Goal, -Result
aggregate_all/4, % +Templ, +Discrim, :Goal, -Result
free_variables/4 % :Generator, :Template, +Vars0, -Vars
]).
:- use_module(library(ordsets)).
:- use_module(library(pairs)).
:- use_module(library(error)).
:- use_module(library(lists)).
:- use_module(library(apply)).
:- meta_predicate
foreach(0,0),
aggregate(?,^,-),
aggregate(?,?,^,-),
aggregate_all(?,0,-),
aggregate_all(?,?,0,-).
/** <module> Aggregation operators on backtrackable predicates
This library provides aggregating operators over the solutions of a
predicate. The operations are a generalisation of the bagof/3, setof/3
and findall/3 built-in predicates. The defined aggregation operations
are counting, computing the sum, minimum, maximum, a bag of solutions
and a set of solutions. We first give a simple example, computing the
country with the smallest area:
==
smallest_country(Name, Area) :-
aggregate(min(A, N), country(N, A), min(Area, Name)).
==
There are four aggregation predicates (aggregate/3, aggregate/4, aggregate_all/3 and aggregate/4), distinguished on two properties.
$ aggregate vs. aggregate_all :
The aggregate predicates use setof/3 (aggregate/4) or bagof/3
(aggregate/3), dealing with existential qualified variables
(Var^Goal) and providing multiple solutions for the remaining free
variables in Goal. The aggregate_all/3 predicate uses findall/3,
implicitly qualifying all free variables and providing exactly one
solution, while aggregate_all/4 uses sort/2 over solutions that
Discriminator (see below) generated using findall/3.
$ The Discriminator argument :
The versions with 4 arguments deduplicate redundant solutions of
Goal. Solutions for which both the template variables and
Discriminator are identical will be treated as one solution. For
example, if we wish to compute the total population of all
countries, and for some reason =|country(belgium, 11000000)|= may
succeed twice, we can use the following to avoid counting the
population of Belgium twice:
==
aggregate(sum(P), Name, country(Name, P), Total)
==
All aggregation predicates support the following operators below in
Template. In addition, they allow for an arbitrary named compound term,
where each of the arguments is a term from the list below. For example,
the term r(min(X), max(X)) computes both the minimum and maximum binding
for X.
* count
Count number of solutions. Same as sum(1).
* sum(Expr)
Sum of Expr for all solutions.
* min(Expr)
Minimum of Expr for all solutions.
* min(Expr, Witness)
A term min(Min, Witness), where Min is the minimal version
of Expr over all solutions, and Witness is any other template
applied to solutions that produced Min. If multiple
solutions provide the same minimum, Witness corresponds to
the first solution.
* max(Expr)
Maximum of Expr for all solutions.
* max(Expr, Witness)
As min(Expr, Witness), but producing the maximum result.
* set(X)
An ordered set with all solutions for X.
* bag(X)
A list of all solutions for X.
*Acknowledgements*
_|The development of this library was sponsored by SecuritEase,
http://www.securitease.com
|_
@compat Quintus, SICStus 4. The forall/2 is a SWI-Prolog built-in and
term_variables/3 is a SWI-Prolog with a *|different definition|*.
@tbd Analysing the aggregation template and compiling a predicate
for the list aggregation can be done at compile time.
@tbd aggregate_all/3 can be rewritten to run in constant space using
non-backtrackable assignment on a term.
*/
/*******************************
* AGGREGATE *
*******************************/
%% aggregate(+Template, :Goal, -Result) is nondet.
%
% Aggregate bindings in Goal according to Template. The aggregate/3
% version performs bagof/3 on Goal.
aggregate(Template, Goal0, Result) :-
template_to_pattern(bag, Template, Pattern, Goal0, Goal, Aggregate),
bagof(Pattern, Goal, List),
aggregate_list(Aggregate, List, Result).
%% aggregate(+Template, +Discriminator, :Goal, -Result) is nondet.
%
% Aggregate bindings in Goal according to Template. The aggregate/4
% version performs setof/3 on Goal.
aggregate(Template, Discriminator, Goal0, Result) :-
template_to_pattern(bag, Template, Pattern, Goal0, Goal, Aggregate),
setof(Discriminator-Pattern, Goal, Pairs),
pairs_values(Pairs, List),
aggregate_list(Aggregate, List, Result).
%% aggregate_all(+Template, :Goal, -Result) is semidet.
%
% Aggregate bindings in Goal according to Template. The
% aggregate_all/3 version performs findall/3 on Goal. Note that
% this predicate fails if Template contains one or more of min(X),
% max(X), min(X,Witness) or max(X,Witness) and Goal has no
% solutions, i.e., the minumum and maximum of an empty set is
% undefined.
aggregate_all(Var, _, _) :-
var(Var), !,
instantiation_error(Var).
aggregate_all(count, Goal, Count) :- !,
aggregate_all(sum(1), Goal, Count).
aggregate_all(sum(X), Goal, Sum) :- !,
State = state(0),
( call(Goal),
arg(1, State, S0),
S is S0 + X,
nb_setarg(1, State, S),
fail
; arg(1, State, Sum)
).
aggregate_all(max(X), Goal, Max) :- !,
State = state(X),
( call(Goal),
arg(1, State, M0),
M is max(M0,X),
nb_setarg(1, State, M),
fail
; arg(1, State, Max),
nonvar(Max)
).
aggregate_all(min(X), Goal, Min) :- !,
State = state(X),
( call(Goal),
arg(1, State, M0),
M is min(M0,X),
nb_setarg(1, State, M),
fail
; arg(1, State, Min),
nonvar(Min)
).
aggregate_all(Template, Goal0, Result) :-
template_to_pattern(all, Template, Pattern, Goal0, Goal, Aggregate),
findall(Pattern, Goal, List),
aggregate_list(Aggregate, List, Result).
%% aggregate_all(+Template, +Discriminator, :Goal, -Result) is semidet.
%
% Aggregate bindings in Goal according to Template. The
% aggregate_all/4 version performs findall/3 followed by sort/2 on
% Goal. See aggregate_all/3 to understand why this predicate can
% fail.
aggregate_all(Template, Discriminator, Goal0, Result) :-
template_to_pattern(all, Template, Pattern, Goal0, Goal, Aggregate),
findall(Discriminator-Pattern, Goal, Pairs0),
sort(Pairs0, Pairs),
pairs_values(Pairs, List),
aggregate_list(Aggregate, List, Result).
template_to_pattern(All, Template, Pattern, Goal0, Goal, Aggregate) :-
template_to_pattern(Template, Pattern, Post, Vars, Aggregate),
existential_vars(Goal0, Goal1, AllVars, Vars),
clean_body((Goal1, Post), Goal2),
( All == bag
-> add_existential_vars(AllVars, Goal2, Goal)
; Goal = Goal2
).
existential_vars(Var, Var) -->
{ var(Var) }, !.
existential_vars(Var^G0, G) --> !,
[Var],
existential_vars(G0, G).
existential_vars(M:G0, M:G) --> !,
existential_vars(G0, G).
existential_vars(G, G) -->
[].
add_existential_vars([], G, G).
add_existential_vars([H|T], G0, H^G1) :-
add_existential_vars(T, G0, G1).
%% clean_body(+Goal0, -Goal) is det.
%
% Remove redundant =true= from Goal0.
clean_body((Goal0,Goal1), Goal) :- !,
clean_body(Goal0, GoalA),
clean_body(Goal1, GoalB),
( GoalA == true
-> Goal = GoalB
; GoalB == true
-> Goal = GoalA
; Goal = (GoalA,GoalB)
).
clean_body(Goal, Goal).
%% template_to_pattern(+Template, -Pattern, -Post, -Vars, -Aggregate)
%
% Determine which parts of the goal we must remember in the
% findall/3 pattern.
%
% @param Post is a body-term that evaluates expressions to reduce
% storage requirements.
% @param Vars is a list of intermediate variables that must be
% added to the existential variables for bagof/3.
% @param Aggregate defines the aggregation operation to execute.
template_to_pattern(sum(X), X, true, [], sum) :- var(X), !.
template_to_pattern(sum(X0), X, X is X0, [X0], sum) :- !.
template_to_pattern(count, 1, true, [], count) :- !.
template_to_pattern(min(X), X, true, [], min) :- var(X), !.
template_to_pattern(min(X0), X, X is X0, [X0], min) :- !.
template_to_pattern(min(X0, Witness), X-Witness, X is X0, [X0], min_witness) :- !.
template_to_pattern(max(X0), X, X is X0, [X0], max) :- !.
template_to_pattern(max(X0, Witness), X-Witness, X is X0, [X0], max_witness) :- !.
template_to_pattern(set(X), X, true, [], set) :- !.
template_to_pattern(bag(X), X, true, [], bag) :- !.
template_to_pattern(Term, Pattern, Goal, Vars, term(MinNeeded, Functor, AggregateArgs)) :-
compound(Term), !,
Term =.. [Functor|Args0],
templates_to_patterns(Args0, Args, Goal, Vars, AggregateArgs),
needs_one(AggregateArgs, MinNeeded),
Pattern =.. [Functor|Args].
template_to_pattern(Term, _, _, _, _) :-
type_error(aggregate_template, Term).
templates_to_patterns([], [], true, [], []).
templates_to_patterns([H0], [H], G, Vars, [A]) :- !,
template_to_pattern(H0, H, G, Vars, A).
templates_to_patterns([H0|T0], [H|T], (G0,G), Vars, [A0|A]) :-
template_to_pattern(H0, H, G0, V0, A0),
append(V0, RV, Vars),
templates_to_patterns(T0, T, G, RV, A).
%% needs_one(+Ops, -OneOrZero)
%
% If one of the operations in Ops needs at least one answer,
% unify OneOrZero to 1. Else 0.
needs_one(Ops, 1) :-
member(Op, Ops),
needs_one(Op), !.
needs_one(_, 0).
needs_one(min).
needs_one(min_witness).
needs_one(max).
needs_one(max_witness).
%% aggregate_list(+Op, +List, -Answer) is semidet.
%
% Aggregate the answer from the list produced by findall/3,
% bagof/3 or setof/3. The latter two cases deal with compound
% answers.
%
% @tbd Compile code for incremental state update, which we will use
% for aggregate_all/3 as well. We should be using goal_expansion
% to generate these clauses.
aggregate_list(bag, List0, List) :- !,
List = List0.
aggregate_list(set, List, Set) :- !,
sort(List, Set).
aggregate_list(sum, List, Sum) :-
sum_list(List, Sum).
aggregate_list(count, List, Count) :-
length(List, Count).
aggregate_list(max, List, Sum) :-
max_list(List, Sum).
aggregate_list(max_witness, List, max(Max, Witness)) :-
max_pair(List, Max, Witness).
aggregate_list(min, List, Sum) :-
min_list(List, Sum).
aggregate_list(min_witness, List, min(Min, Witness)) :-
min_pair(List, Min, Witness).
aggregate_list(term(0, Functor, Ops), List, Result) :- !,
maplist(state0, Ops, StateArgs, FinishArgs),
State0 =.. [Functor|StateArgs],
aggregate_term_list(List, Ops, State0, Result0),
finish_result(Ops, FinishArgs, Result0, Result).
aggregate_list(term(1, Functor, Ops), [H|List], Result) :-
H =.. [Functor|Args],
maplist(state1, Ops, Args, StateArgs, FinishArgs),
State0 =.. [Functor|StateArgs],
aggregate_term_list(List, Ops, State0, Result0),
finish_result(Ops, FinishArgs, Result0, Result).
aggregate_term_list([], _, State, State).
aggregate_term_list([H|T], Ops, State0, State) :-
step_term(Ops, H, State0, State1),
aggregate_term_list(T, Ops, State1, State).
%% min_pair(+Pairs, -Key, -Value) is det.
%% max_pair(+Pairs, -Key, -Value) is det.
%
% True if Key-Value has the smallest/largest key in Pairs. If
% multiple pairs share the smallest/largest key, the first pair is
% returned.
min_pair([M0-W0|T], M, W) :-
min_pair(T, M0, W0, M, W).
min_pair([], M, W, M, W).
min_pair([M0-W0|T], M1, W1, M, W) :-
( M0 < M1
-> min_pair(T, M0, W0, M, W)
; min_pair(T, M1, W1, M, W)
).
max_pair([M0-W0|T], M, W) :-
max_pair(T, M0, W0, M, W).
max_pair([], M, W, M, W).
max_pair([M0-W0|T], M1, W1, M, W) :-
( M0 > M1
-> max_pair(T, M0, W0, M, W)
; max_pair(T, M1, W1, M, W)
).
%% step(+AggregateAction, +New, +State0, -State1).
step(bag, X, [X|L], L).
step(set, X, [X|L], L).
step(count, _, X0, X1) :-
succ(X0, X1).
step(sum, X, X0, X1) :-
X1 is X0+X.
step(max, X, X0, X1) :-
X1 is max(X0, X).
step(min, X, X0, X1) :-
X1 is min(X0, X).
step(max_witness, X-W, X0-W0, X1-W1) :-
( X > X0
-> X1 = X, W1 = W
; X1 = X0, W1 = W0
).
step(min_witness, X-W, X0-W0, X1-W1) :-
( X < X0
-> X1 = X, W1 = W
; X1 = X0, W1 = W0
).
step(term(Ops), Row, Row0, Row1) :-
step_term(Ops, Row, Row0, Row1).
step_term(Ops, Row, Row0, Row1) :-
functor(Row, Name, Arity),
functor(Row1, Name, Arity),
step_list(Ops, 1, Row, Row0, Row1).
step_list([], _, _, _, _).
step_list([Op|OpT], Arg, Row, Row0, Row1) :-
arg(Arg, Row, X),
arg(Arg, Row0, X0),
arg(Arg, Row1, X1),
step(Op, X, X0, X1),
succ(Arg, Arg1),
step_list(OpT, Arg1, Row, Row0, Row1).
finish_result(Ops, Finish, R0, R) :-
functor(R0, Functor, Arity),
functor(R, Functor, Arity),
finish_result(Ops, Finish, 1, R0, R).
finish_result([], _, _, _, _).
finish_result([Op|OpT], [F|FT], I, R0, R) :-
arg(I, R0, A0),
arg(I, R, A),
finish_result1(Op, F, A0, A),
succ(I, I2),
finish_result(OpT, FT, I2, R0, R).
finish_result1(bag, Bag0, [], Bag) :- !,
Bag = Bag0.
finish_result1(set, Bag, [], Set) :- !,
sort(Bag, Set).
finish_result1(max_witness, _, M-W, R) :- !,
R = max(M,W).
finish_result1(min_witness, _, M-W, R) :- !,
R = min(M,W).
finish_result1(_, _, A, A).
%% state0(+Op, -State, -Finish)
state0(bag, L, L).
state0(set, L, L).
state0(count, 0, _).
state0(sum, 0, _).
%% state1(+Op, +First, -State, -Finish)
state1(bag, X, L, [X|L]) :- !.
state1(set, X, L, [X|L]) :- !.
state1(_, X, X, _).
/*******************************
* FOREACH *
*******************************/
%% foreach(:Generator, :Goal)
%
% True if conjunction of results is true. Unlike forall/2, which
% runs a failure-driven loop that proves Goal for each solution of
% Generator, foreach/2 creates a conjunction. Each member of the
% conjunction is a copy of Goal, where the variables it shares
% with Generator are filled with the values from the corresponding
% solution.
%
% The implementation executes forall/2 if Goal does not contain
% any variables that are not shared with Generator.
%
% Here is an example:
%
% ==
% ?- foreach(between(1,4,X), dif(X,Y)), Y = 5.
% Y = 5.
% ?- foreach(between(1,4,X), dif(X,Y)), Y = 3.
% false.
% ==
%
% @bug Goal is copied repeatedly, which may cause problems if
% attributed variables are involved.
foreach(Generator, Goal) :-
term_variables(Generator, GenVars0), sort(GenVars0, GenVars),
term_variables(Goal, GoalVars0), sort(GoalVars0, GoalVars),
ord_subtract(GoalVars, GenVars, SharedGoalVars),
( SharedGoalVars == []
-> \+ (Generator, \+Goal) % = forall(Generator, Goal)
; ord_intersection(GenVars, GoalVars, SharedVars),
Templ =.. [v|SharedVars],
SharedTempl =.. [v|SharedGoalVars],
findall(Templ, Generator, List),
prove_list(List, Templ, SharedTempl, Goal)
).
prove_list([], _, _, _).
prove_list([H|T], Templ, SharedTempl, Goal) :-
copy_term(Templ+SharedTempl+Goal,
H+SharedTempl+Copy),
Copy,
prove_list(T, Templ, SharedTempl, Goal).
%% free_variables(:Generator, +Template, +VarList0, -VarList) is det.
%
% Find free variables in bagof/setof template. In order to handle
% variables properly, we have to find all the universally
% quantified variables in the Generator. All variables as yet
% unbound are universally quantified, unless
%
% 1. they occur in the template
% 2. they are bound by X^P, setof/3, or bagof/3
%
% free_variables(Generator, Template, OldList, NewList) finds this
% set using OldList as an accumulator.
%
% @author Richard O'Keefe
% @author Jan Wielemaker (made some SWI-Prolog enhancements)
% @license Public domain (from DEC10 library).
% @tbd Distinguish between control-structures and data terms.
% @tbd Exploit our built-in term_variables/2 at some places?
free_variables(Term, Bound, VarList, [Term|VarList]) :-
var(Term),
term_is_free_of(Bound, Term),
list_is_free_of(VarList, Term), !.
free_variables(Term, _Bound, VarList, VarList) :-
var(Term), !.
free_variables(Term, Bound, OldList, NewList) :-
explicit_binding(Term, Bound, NewTerm, NewBound), !,
free_variables(NewTerm, NewBound, OldList, NewList).
free_variables(Term, Bound, OldList, NewList) :-
functor(Term, _, N),
free_variables(N, Term, Bound, OldList, NewList).
free_variables(0, _, _, VarList, VarList) :- !.
free_variables(N, Term, Bound, OldList, NewList) :-
arg(N, Term, Argument),
free_variables(Argument, Bound, OldList, MidList),
M is N-1, !,
free_variables(M, Term, Bound, MidList, NewList).
% explicit_binding checks for goals known to existentially quantify
% one or more variables. In particular \+ is quite common.
explicit_binding(\+ _Goal, Bound, fail, Bound ) :- !.
explicit_binding(not(_Goal), Bound, fail, Bound ) :- !.
explicit_binding(Var^Goal, Bound, Goal, Bound+Var) :- !.
explicit_binding(setof(Var,Goal,Set), Bound, Goal-Set, Bound+Var) :- !.
explicit_binding(bagof(Var,Goal,Bag), Bound, Goal-Bag, Bound+Var) :- !.
%% term_is_free_of(+Term, +Var) is semidet.
%
% True if Var does not appear in Term. This has been rewritten
% from the DEC10 library source to exploit our non-deterministic
% arg/3.
term_is_free_of(Term, Var) :-
\+ var_in_term(Term, Var).
var_in_term(Term, Var) :-
Var == Term, !.
var_in_term(Term, Var) :-
compound(Term),
arg(_, Term, Arg),
var_in_term(Arg, Var), !.
%% list_is_free_of(+List, +Var) is semidet.
%
% True if Var is not in List.
list_is_free_of([Head|Tail], Var) :-
Head \== Var, !,
list_is_free_of(Tail, Var).
list_is_free_of([], _).
% term_variables(+Term, +Vars0, -Vars) is det.
%
% True if Vars is the union of variables in Term and Vars0.
% We cannot have this as term_variables/3 is already defined
% as a difference-list version of term_variables/2.
%term_variables(Term, Vars0, Vars) :-
% term_variables(Term+Vars0, Vars).
%% sandbox:safe_meta(+Goal, -Called) is semidet.
%
% Declare the aggregate meta-calls safe. This cannot be proven due
% to the manipulations of the argument Goal.
:- multifile sandbox:safe_meta_predicate/1.
sandbox:safe_meta_predicate(aggregate:foreach/2).
sandbox:safe_meta_predicate(aggregate:aggregate/3).
sandbox:safe_meta_predicate(aggregate:aggregate/4).
sandbox:safe_meta_predicate(aggregate:aggregate_all/3).
sandbox:safe_meta_predicate(aggregate:aggregate_all/4).
|