This file is indexed.

/usr/lib/swi-prolog/library/aggregate.pl is in swi-prolog-nox 7.2.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/*  Part of SWI-Prolog

    Author:        Jan Wielemaker
    E-mail:        J.Wielemaker@vu.nl
    WWW:           http://www.swi-prolog.org
    Copyright (C): 2008-2014, University of Amsterdam
			      VU University Amsterdam

    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License
    as published by the Free Software Foundation; either version 2
    of the License, or (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

    As a special exception, if you link this library with other files,
    compiled with a Free Software compiler, to produce an executable, this
    library does not by itself cause the resulting executable to be covered
    by the GNU General Public License. This exception does not however
    invalidate any other reasons why the executable file might be covered by
    the GNU General Public License.
*/

:- module(aggregate,
	  [ foreach/2,			% :Generator, :Goal
	    aggregate/3,		% +Templ, :Goal, -Result
	    aggregate/4,		% +Templ, +Discrim, :Goal, -Result
	    aggregate_all/3,		% +Templ, :Goal, -Result
	    aggregate_all/4,		% +Templ, +Discrim, :Goal, -Result
	    free_variables/4		% :Generator, :Template, +Vars0, -Vars
	  ]).
:- use_module(library(ordsets)).
:- use_module(library(pairs)).
:- use_module(library(error)).
:- use_module(library(lists)).
:- use_module(library(apply)).

:- meta_predicate
	foreach(0,0),
	aggregate(?,^,-),
	aggregate(?,?,^,-),
	aggregate_all(?,0,-),
	aggregate_all(?,?,0,-).

/** <module> Aggregation operators on backtrackable predicates

This library provides aggregating operators  over   the  solutions  of a
predicate. The operations are a generalisation   of the bagof/3, setof/3
and findall/3 built-in predicates. The   defined  aggregation operations
are counting, computing the sum, minimum,   maximum,  a bag of solutions
and a set of solutions. We first   give  a simple example, computing the
country with the smallest area:

==
smallest_country(Name, Area) :-
	aggregate(min(A, N), country(N, A), min(Area, Name)).
==

There are four aggregation predicates (aggregate/3, aggregate/4, aggregate_all/3 and aggregate/4), distinguished on two properties.

    $ aggregate vs. aggregate_all :
    The aggregate predicates use setof/3 (aggregate/4) or bagof/3
    (aggregate/3), dealing with existential qualified variables
    (Var^Goal) and providing multiple solutions for the remaining free
    variables in Goal. The aggregate_all/3 predicate uses findall/3,
    implicitly qualifying all free variables and providing exactly one
    solution, while aggregate_all/4 uses sort/2 over solutions that
    Discriminator (see below) generated using findall/3.

    $ The Discriminator argument :
    The versions with 4 arguments deduplicate redundant solutions of
    Goal. Solutions for which both the template variables and
    Discriminator are identical will be treated as one solution. For
    example, if we wish to compute the total population of all
    countries, and for some reason =|country(belgium, 11000000)|= may
    succeed twice, we can use the following to avoid counting the
    population of Belgium twice:

    ==
	aggregate(sum(P), Name, country(Name, P), Total)
    ==

All aggregation predicates support  the   following  operators  below in
Template. In addition, they allow for  an arbitrary named compound term,
where each of the arguments is a term  from the list below. For example,
the term r(min(X), max(X)) computes both the minimum and maximum binding
for X.

	* count
	Count number of solutions.  Same as sum(1).
	* sum(Expr)
	Sum of Expr for all solutions.
	* min(Expr)
	Minimum of Expr for all solutions.
	* min(Expr, Witness)
	A term min(Min, Witness), where Min is the minimal version
	of Expr over all solutions, and Witness is any other template
	applied to solutions that produced Min.  If multiple
	solutions provide the same minimum, Witness corresponds to
	the first solution.
	* max(Expr)
	Maximum of Expr for all solutions.
	* max(Expr, Witness)
	As min(Expr, Witness), but producing the maximum result.
	* set(X)
	An ordered set with all solutions for X.
	* bag(X)
	A list of all solutions for X.

*Acknowledgements*

_|The development of this library was sponsored by SecuritEase,
  http://www.securitease.com
|_

@compat Quintus, SICStus 4. The forall/2 is a SWI-Prolog built-in and
	term_variables/3 is a SWI-Prolog with a *|different definition|*.
@tbd	Analysing the aggregation template and compiling a predicate
	for the list aggregation can be done at compile time.
@tbd	aggregate_all/3 can be rewritten to run in constant space using
	non-backtrackable assignment on a term.
*/

		 /*******************************
		 *	     AGGREGATE		*
		 *******************************/

%%	aggregate(+Template, :Goal, -Result) is nondet.
%
%	Aggregate bindings in Goal according to Template.  The aggregate/3
%	version performs bagof/3 on Goal.

aggregate(Template, Goal0, Result) :-
	template_to_pattern(bag, Template, Pattern, Goal0, Goal, Aggregate),
	bagof(Pattern, Goal, List),
	aggregate_list(Aggregate, List, Result).

%%	aggregate(+Template, +Discriminator, :Goal, -Result) is nondet.
%
%	Aggregate bindings in Goal according to Template.  The aggregate/4
%	version performs setof/3 on Goal.

aggregate(Template, Discriminator, Goal0, Result) :-
	template_to_pattern(bag, Template, Pattern, Goal0, Goal, Aggregate),
	setof(Discriminator-Pattern, Goal, Pairs),
	pairs_values(Pairs, List),
	aggregate_list(Aggregate, List, Result).

%%	aggregate_all(+Template, :Goal, -Result) is semidet.
%
%	Aggregate  bindings  in  Goal   according    to   Template.  The
%	aggregate_all/3 version performs findall/3 on   Goal.  Note that
%	this predicate fails if Template contains one or more of min(X),
%	max(X),  min(X,Witness)  or  max(X,Witness)  and   Goal  has  no
%	solutions, i.e., the minumum and  maximum   of  an  empty set is
%	undefined.

aggregate_all(Var, _, _) :-
	var(Var), !,
	instantiation_error(Var).
aggregate_all(count, Goal, Count) :- !,
	aggregate_all(sum(1), Goal, Count).
aggregate_all(sum(X), Goal, Sum) :- !,
	State = state(0),
	(  call(Goal),
	   arg(1, State, S0),
	   S is S0 + X,
	   nb_setarg(1, State, S),
	   fail
	;  arg(1, State, Sum)
	).
aggregate_all(max(X), Goal, Max) :- !,
	State = state(X),
	(  call(Goal),
	   arg(1, State, M0),
	   M is max(M0,X),
	   nb_setarg(1, State, M),
	   fail
	;  arg(1, State, Max),
	   nonvar(Max)
	).
aggregate_all(min(X), Goal, Min) :- !,
	State = state(X),
	(  call(Goal),
	   arg(1, State, M0),
	   M is min(M0,X),
	   nb_setarg(1, State, M),
	   fail
	;  arg(1, State, Min),
	   nonvar(Min)
	).
aggregate_all(Template, Goal0, Result) :-
	template_to_pattern(all, Template, Pattern, Goal0, Goal, Aggregate),
	findall(Pattern, Goal, List),
	aggregate_list(Aggregate, List, Result).

%%	aggregate_all(+Template, +Discriminator, :Goal, -Result) is semidet.
%
%	Aggregate  bindings  in  Goal   according    to   Template.  The
%	aggregate_all/4 version performs findall/3 followed by sort/2 on
%	Goal. See aggregate_all/3 to understand   why this predicate can
%	fail.

aggregate_all(Template, Discriminator, Goal0, Result) :-
	template_to_pattern(all, Template, Pattern, Goal0, Goal, Aggregate),
	findall(Discriminator-Pattern, Goal, Pairs0),
	sort(Pairs0, Pairs),
	pairs_values(Pairs, List),
	aggregate_list(Aggregate, List, Result).

template_to_pattern(All, Template, Pattern, Goal0, Goal, Aggregate) :-
	template_to_pattern(Template, Pattern, Post, Vars, Aggregate),
	existential_vars(Goal0, Goal1, AllVars, Vars),
	clean_body((Goal1, Post), Goal2),
	(   All == bag
	->  add_existential_vars(AllVars, Goal2, Goal)
	;   Goal = Goal2
	).

existential_vars(Var, Var) -->
	{ var(Var) }, !.
existential_vars(Var^G0, G) --> !,
	[Var],
	existential_vars(G0, G).
existential_vars(M:G0, M:G) --> !,
	existential_vars(G0, G).
existential_vars(G, G) -->
	[].

add_existential_vars([], G, G).
add_existential_vars([H|T], G0, H^G1) :-
	add_existential_vars(T, G0, G1).


%%	clean_body(+Goal0, -Goal) is det.
%
%	Remove redundant =true= from Goal0.

clean_body((Goal0,Goal1), Goal) :- !,
	clean_body(Goal0, GoalA),
	clean_body(Goal1, GoalB),
	(   GoalA == true
	->  Goal = GoalB
	;   GoalB == true
	->  Goal = GoalA
	;   Goal = (GoalA,GoalB)
	).
clean_body(Goal, Goal).


%%	template_to_pattern(+Template, -Pattern, -Post, -Vars, -Aggregate)
%
%	Determine which parts of the goal we must remember in the
%	findall/3 pattern.
%
%	@param Post is a body-term that evaluates expressions to reduce
%		    storage requirements.
%	@param Vars is a list of intermediate variables that must be
%		    added to the existential variables for bagof/3.
%	@param Aggregate defines the aggregation operation to execute.

template_to_pattern(sum(X),	      X,	 true,	  [],   sum) :- var(X), !.
template_to_pattern(sum(X0),	      X,	 X is X0, [X0], sum) :- !.
template_to_pattern(count,	      1,	 true,    [],   count) :- !.
template_to_pattern(min(X),	      X,	 true,    [],   min) :- var(X), !.
template_to_pattern(min(X0),	      X,	 X is X0, [X0], min) :- !.
template_to_pattern(min(X0, Witness), X-Witness, X is X0, [X0], min_witness) :- !.
template_to_pattern(max(X0),	      X,	 X is X0, [X0], max) :- !.
template_to_pattern(max(X0, Witness), X-Witness, X is X0, [X0], max_witness) :- !.
template_to_pattern(set(X),	      X,	 true,    [],   set) :- !.
template_to_pattern(bag(X),	      X,	 true,    [],   bag) :- !.
template_to_pattern(Term, Pattern, Goal, Vars, term(MinNeeded, Functor, AggregateArgs)) :-
	compound(Term), !,
	Term =.. [Functor|Args0],
	templates_to_patterns(Args0, Args, Goal, Vars, AggregateArgs),
	needs_one(AggregateArgs, MinNeeded),
	Pattern =.. [Functor|Args].
template_to_pattern(Term, _, _, _, _) :-
	type_error(aggregate_template, Term).

templates_to_patterns([], [], true, [], []).
templates_to_patterns([H0], [H], G, Vars, [A]) :- !,
	template_to_pattern(H0, H, G, Vars, A).
templates_to_patterns([H0|T0], [H|T], (G0,G), Vars, [A0|A]) :-
	template_to_pattern(H0, H, G0, V0, A0),
	append(V0, RV, Vars),
	templates_to_patterns(T0, T, G, RV, A).

%%	needs_one(+Ops, -OneOrZero)
%
%	If one of the operations in Ops needs at least one answer,
%	unify OneOrZero to 1.  Else 0.

needs_one(Ops, 1) :-
	member(Op, Ops),
	needs_one(Op), !.
needs_one(_, 0).

needs_one(min).
needs_one(min_witness).
needs_one(max).
needs_one(max_witness).

%%	aggregate_list(+Op, +List, -Answer) is semidet.
%
%	Aggregate the answer  from  the   list  produced  by  findall/3,
%	bagof/3 or setof/3. The latter  two   cases  deal  with compound
%	answers.
%
%	@tbd	Compile code for incremental state update, which we will use
%		for aggregate_all/3 as well.  We should be using goal_expansion
%		to generate these clauses.

aggregate_list(bag, List0, List) :- !,
	List = List0.
aggregate_list(set, List, Set) :- !,
	sort(List, Set).
aggregate_list(sum, List, Sum) :-
	sum_list(List, Sum).
aggregate_list(count, List, Count) :-
	length(List, Count).
aggregate_list(max, List, Sum) :-
	max_list(List, Sum).
aggregate_list(max_witness, List, max(Max, Witness)) :-
	max_pair(List, Max, Witness).
aggregate_list(min, List, Sum) :-
	min_list(List, Sum).
aggregate_list(min_witness, List, min(Min, Witness)) :-
	min_pair(List, Min, Witness).
aggregate_list(term(0, Functor, Ops), List, Result) :- !,
	maplist(state0, Ops, StateArgs, FinishArgs),
	State0 =.. [Functor|StateArgs],
	aggregate_term_list(List, Ops, State0, Result0),
	finish_result(Ops, FinishArgs, Result0, Result).
aggregate_list(term(1, Functor, Ops), [H|List], Result) :-
	H =.. [Functor|Args],
	maplist(state1, Ops, Args, StateArgs, FinishArgs),
	State0 =.. [Functor|StateArgs],
	aggregate_term_list(List, Ops, State0, Result0),
	finish_result(Ops, FinishArgs, Result0, Result).

aggregate_term_list([], _, State, State).
aggregate_term_list([H|T], Ops, State0, State) :-
	step_term(Ops, H, State0, State1),
	aggregate_term_list(T, Ops, State1, State).


%%	min_pair(+Pairs, -Key, -Value) is det.
%%	max_pair(+Pairs, -Key, -Value) is det.
%
%	True if Key-Value has the  smallest/largest   key  in  Pairs. If
%	multiple pairs share the smallest/largest key, the first pair is
%	returned.

min_pair([M0-W0|T], M, W) :-
	min_pair(T, M0, W0, M, W).

min_pair([], M, W, M, W).
min_pair([M0-W0|T], M1, W1, M, W) :-
	(   M0 < M1
	->  min_pair(T, M0, W0, M, W)
	;   min_pair(T, M1, W1, M, W)
	).

max_pair([M0-W0|T], M, W) :-
	max_pair(T, M0, W0, M, W).

max_pair([], M, W, M, W).
max_pair([M0-W0|T], M1, W1, M, W) :-
	(   M0 > M1
	->  max_pair(T, M0, W0, M, W)
	;   max_pair(T, M1, W1, M, W)
	).

%%	step(+AggregateAction, +New, +State0, -State1).

step(bag,   X, [X|L], L).
step(set,   X, [X|L], L).
step(count, _, X0, X1) :-
	succ(X0, X1).
step(sum,   X, X0, X1) :-
	X1 is X0+X.
step(max,   X, X0, X1) :-
	X1 is max(X0, X).
step(min,   X, X0, X1) :-
	X1 is min(X0, X).
step(max_witness, X-W, X0-W0, X1-W1) :-
	(   X > X0
	->  X1 = X, W1 = W
	;   X1 = X0, W1 = W0
	).
step(min_witness, X-W, X0-W0, X1-W1) :-
	(   X < X0
	->  X1 = X, W1 = W
	;   X1 = X0, W1 = W0
	).
step(term(Ops), Row, Row0, Row1) :-
	step_term(Ops, Row, Row0, Row1).

step_term(Ops, Row, Row0, Row1) :-
	functor(Row, Name, Arity),
	functor(Row1, Name, Arity),
	step_list(Ops, 1, Row, Row0, Row1).

step_list([], _, _, _, _).
step_list([Op|OpT], Arg, Row, Row0, Row1) :-
	arg(Arg, Row, X),
	arg(Arg, Row0, X0),
	arg(Arg, Row1, X1),
	step(Op, X, X0, X1),
	succ(Arg, Arg1),
	step_list(OpT, Arg1, Row, Row0, Row1).

finish_result(Ops, Finish, R0, R) :-
	functor(R0, Functor, Arity),
	functor(R, Functor, Arity),
	finish_result(Ops, Finish, 1, R0, R).

finish_result([], _, _, _, _).
finish_result([Op|OpT], [F|FT], I, R0, R) :-
	arg(I, R0, A0),
	arg(I, R, A),
	finish_result1(Op, F, A0, A),
	succ(I, I2),
	finish_result(OpT, FT, I2, R0, R).

finish_result1(bag, Bag0, [], Bag) :- !,
	Bag = Bag0.
finish_result1(set, Bag,  [], Set) :- !,
	sort(Bag, Set).
finish_result1(max_witness, _, M-W, R) :- !,
	R = max(M,W).
finish_result1(min_witness, _, M-W, R) :- !,
	R = min(M,W).
finish_result1(_, _, A, A).

%%	state0(+Op, -State, -Finish)

state0(bag,   L, L).
state0(set,   L, L).
state0(count, 0, _).
state0(sum,   0, _).

%%	state1(+Op, +First, -State, -Finish)

state1(bag, X, L, [X|L]) :- !.
state1(set, X, L, [X|L]) :- !.
state1(_,   X, X, _).


		 /*******************************
		 *	       FOREACH		*
		 *******************************/

%%	foreach(:Generator, :Goal)
%
%	True if conjunction of results is   true. Unlike forall/2, which
%	runs a failure-driven loop that proves Goal for each solution of
%	Generator, foreach/2 creates a conjunction.   Each member of the
%	conjunction is a copy of  Goal,   where  the variables it shares
%	with Generator are filled with the values from the corresponding
%	solution.
%
%	The implementation executes forall/2 if   Goal  does not contain
%	any variables that are not shared with Generator.
%
%	Here is an example:
%
%	==
%	?- foreach(between(1,4,X), dif(X,Y)), Y = 5.
%	Y = 5.
%	?- foreach(between(1,4,X), dif(X,Y)), Y = 3.
%	false.
%	==
%
%	@bug	Goal is copied repeatedly, which may cause problems if
%		attributed variables are involved.

foreach(Generator, Goal) :-
	term_variables(Generator, GenVars0), sort(GenVars0, GenVars),
	term_variables(Goal, GoalVars0), sort(GoalVars0, GoalVars),
	ord_subtract(GoalVars, GenVars, SharedGoalVars),
	(   SharedGoalVars == []
	->  \+ (Generator, \+Goal)	% = forall(Generator, Goal)
	;   ord_intersection(GenVars, GoalVars, SharedVars),
	    Templ =.. [v|SharedVars],
	    SharedTempl =.. [v|SharedGoalVars],
	    findall(Templ, Generator, List),
	    prove_list(List, Templ, SharedTempl, Goal)
	).

prove_list([], _, _, _).
prove_list([H|T], Templ, SharedTempl, Goal) :-
	copy_term(Templ+SharedTempl+Goal,
		  H+SharedTempl+Copy),
	Copy,
	prove_list(T, Templ, SharedTempl, Goal).


%%	free_variables(:Generator, +Template, +VarList0, -VarList) is det.
%
%	Find free variables in bagof/setof template.  In order to handle
%	variables  properly,  we  have  to   find  all  the  universally
%	quantified variables in the  Generator.   All  variables  as yet
%	unbound are universally quantified, unless
%
%	    1. they occur in the template
%	    2. they are bound by X^P, setof/3, or bagof/3
%
%	free_variables(Generator, Template, OldList, NewList) finds this
%	set using OldList as an accumulator.
%
%	@author Richard O'Keefe
%	@author Jan Wielemaker (made some SWI-Prolog enhancements)
%	@license Public domain (from DEC10 library).
%	@tbd Distinguish between control-structures and data terms.
%	@tbd Exploit our built-in term_variables/2 at some places?

free_variables(Term, Bound, VarList, [Term|VarList]) :-
	var(Term),
	term_is_free_of(Bound, Term),
	list_is_free_of(VarList, Term), !.
free_variables(Term, _Bound, VarList, VarList) :-
	var(Term), !.
free_variables(Term, Bound, OldList, NewList) :-
	explicit_binding(Term, Bound, NewTerm, NewBound), !,
	free_variables(NewTerm, NewBound, OldList, NewList).
free_variables(Term, Bound, OldList, NewList) :-
	functor(Term, _, N),
	free_variables(N, Term, Bound, OldList, NewList).

free_variables(0, _, _, VarList, VarList) :- !.
free_variables(N, Term, Bound, OldList, NewList) :-
	arg(N, Term, Argument),
	free_variables(Argument, Bound, OldList, MidList),
	M is N-1, !,
	free_variables(M, Term, Bound, MidList, NewList).

%   explicit_binding checks for goals known to existentially quantify
%   one or more variables.  In particular \+ is quite common.

explicit_binding(\+ _Goal,	       Bound, fail,	Bound      ) :- !.
explicit_binding(not(_Goal),	       Bound, fail,	Bound	   ) :- !.
explicit_binding(Var^Goal,	       Bound, Goal,	Bound+Var) :- !.
explicit_binding(setof(Var,Goal,Set),  Bound, Goal-Set, Bound+Var) :- !.
explicit_binding(bagof(Var,Goal,Bag),  Bound, Goal-Bag, Bound+Var) :- !.

%%	term_is_free_of(+Term, +Var) is semidet.
%
%	True if Var does not appear  in   Term.  This has been rewritten
%	from the DEC10 library source   to exploit our non-deterministic
%	arg/3.

term_is_free_of(Term, Var) :-
	\+ var_in_term(Term, Var).

var_in_term(Term, Var) :-
	Var == Term, !.
var_in_term(Term, Var) :-
	compound(Term),
	arg(_, Term, Arg),
	var_in_term(Arg, Var), !.


%%	list_is_free_of(+List, +Var) is semidet.
%
%	True if Var is not in List.

list_is_free_of([Head|Tail], Var) :-
	Head \== Var, !,
	list_is_free_of(Tail, Var).
list_is_free_of([], _).


%	term_variables(+Term, +Vars0, -Vars) is det.
%
%	True if Vars is the union of variables in Term and Vars0.
%	We cannot have this as term_variables/3 is already defined
%	as a difference-list version of term_variables/2.

%term_variables(Term, Vars0, Vars) :-
%	term_variables(Term+Vars0, Vars).


%%	sandbox:safe_meta(+Goal, -Called) is semidet.
%
%	Declare the aggregate meta-calls safe. This cannot be proven due
%	to the manipulations of the argument Goal.

:- multifile sandbox:safe_meta_predicate/1.

sandbox:safe_meta_predicate(aggregate:foreach/2).
sandbox:safe_meta_predicate(aggregate:aggregate/3).
sandbox:safe_meta_predicate(aggregate:aggregate/4).
sandbox:safe_meta_predicate(aggregate:aggregate_all/3).
sandbox:safe_meta_predicate(aggregate:aggregate_all/4).