/usr/lib/swi-prolog/doc/Manual/threadcom.html is in swi-prolog-nox 7.2.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>SWI-Prolog 7.3.6 Reference Manual: Section 9.3</title><link rel="home" href="index.html">
<link rel="contents" href="Contents.html">
<link rel="index" href="DocIndex.html">
<link rel="summary" href="summary.html">
<link rel="previous" href="thmonitor.html">
<link rel="next" href="threadsync.html">
<style type="text/css">
/* Style sheet for SWI-Prolog latex2html
*/
dd.defbody
{ margin-bottom: 1em;
}
dt.pubdef, dt.multidef
{ color: #fff;
padding: 2px 10px 0px 10px;
margin-bottom: 5px;
font-size: 18px;
vertical-align: middle;
overflow: hidden;
}
dt.pubdef { background-color: #0c3d6e; }
dt.multidef { background-color: #ef9439; }
.bib dd
{ margin-bottom: 1em;
}
.bib dt
{ float: left;
margin-right: 1.3ex;
}
pre.code
{ margin-left: 1.5em;
margin-right: 1.5em;
border: 1px dotted;
padding-top: 5px;
padding-left: 5px;
padding-bottom: 5px;
background-color: #f8f8f8;
}
div.navigate
{ text-align: center;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
}
div.title
{ text-align: center;
padding-bottom: 1em;
font-size: 200%;
font-weight: bold;
}
div.author
{ text-align: center;
font-style: italic;
}
div.abstract
{ margin-top: 2em;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
margin-left: 10%; margin-right:10%;
}
div.abstract-title
{ text-align: center;
padding: 5px;
font-size: 120%;
font-weight: bold;
}
div.toc-h1
{ font-size: 200%;
font-weight: bold;
}
div.toc-h2
{ font-size: 120%;
font-weight: bold;
margin-left: 2em;
}
div.toc-h3
{ font-size: 100%;
font-weight: bold;
margin-left: 4em;
}
div.toc-h4
{ font-size: 100%;
margin-left: 6em;
}
span.sec-nr
{
}
span.sec-title
{
}
span.pred-ext
{ font-weight: bold;
}
span.pred-tag
{ float: right;
padding-top: 0.2em;
font-size: 80%;
font-style: italic;
color: #fff;
}
div.caption
{ width: 80%;
margin: auto;
text-align:center;
}
/* Footnotes */
.fn {
color: red;
font-size: 70%;
}
.fn-text, .fnp {
position: absolute;
top: auto;
left: 10%;
border: 1px solid #000;
box-shadow: 5px 5px 5px #888;
display: none;
background: #fff;
color: #000;
margin-top: 25px;
padding: 8px 12px;
font-size: larger;
}
sup:hover span.fn-text
{ display: block;
}
/* Lists */
dl.latex
{ margin-top: 1ex;
margin-bottom: 0.5ex;
}
dl.latex dl.latex dd.defbody
{ margin-bottom: 0.5ex;
}
/* PlDoc Tags */
dl.tags
{ font-size: 90%;
margin-left: 5ex;
margin-top: 1ex;
margin-bottom: 0.5ex;
}
dl.tags dt
{ margin-left: 0pt;
font-weight: bold;
}
dl.tags dd
{ margin-left: 3ex;
}
td.param
{ font-style: italic;
font-weight: bold;
}
/* Index */
dt.index-sep
{ font-weight: bold;
font-size: +1;
margin-top: 1ex;
}
/* Tables */
table.center
{ margin: auto;
}
table.latex
{ border-collapse:collapse;
}
table.latex tr
{ vertical-align: text-top;
}
table.latex td,th
{ padding: 2px 1em;
}
table.latex tr.hline td,th
{ border-top: 1px solid black;
}
table.frame-box
{ border: 2px solid black;
}
</style>
</head>
<body style="background:white">
<div class="navigate"><a class="nav" href="index.html"><img src="home.gif" alt="Home"></a>
<a class="nav" href="Contents.html"><img src="index.gif" alt="Contents"></a>
<a class="nav" href="DocIndex.html"><img src="yellow_pages.gif" alt="Index"></a>
<a class="nav" href="summary.html"><img src="info.gif" alt="Summary"></a>
<a class="nav" href="thmonitor.html"><img src="prev.gif" alt="Previous"></a>
<a class="nav" href="threadsync.html"><img src="next.gif" alt="Next"></a>
</div>
<h2 id="sec:threadcom"><a id="sec:9.3"><span class="sec-nr">9.3</span> <span class="sec-title">Thread
communication</span></a></h2>
<a id="sec:threadcom"></a>
<p><h3 id="sec:msgqueue"><a id="sec:9.3.1"><span class="sec-nr">9.3.1</span> <span class="sec-title">Message
queues</span></a></h3>
<a id="sec:msgqueue"></a>
<p>Prolog threads can exchange data using dynamic predicates, database
records, and other globally shared data. These provide no suitable means
to wait for data or a condition as they can only be checked in an
expensive polling loop. <em>Message queues</em> provide a means for
threads to wait for data or conditions without using the CPU.
<p>Each thread has a message queue attached to it that is identified by
the thread. Additional queues are created using <a id="idx:messagequeuecreate1:1742"></a><a class="pred" href="threadcom.html#message_queue_create/1">message_queue_create/1</a>.
Explicitly created queues come in two flavours. When given an
<em>alias</em>, they must be destroyed by the user. <em>Anonymous</em>
message queues are identified by a <em>blob</em> (see <a class="sec" href="foreigninclude.html">section
10.4.7</a>) and subject to garbage collection.
<dl class="latex">
<dt class="pubdef"><a id="thread_send_message/2"><strong>thread_send_message</strong>(<var>+QueueOrThreadId,
+Term</var>)</a></dt>
<dd class="defbody">
Place <var>Term</var> in the given queue or default queue of the
indicated thread (which can even be the message queue of itself, see
<a id="idx:threadself1:1743"></a><a class="pred" href="threadcreate.html#thread_self/1">thread_self/1</a>).
Any term can be placed in a message queue, but note that the term is
copied to the receiving thread and variable bindings are thus lost. This
call returns immediately.
<p>If more than one thread is waiting for messages on the given queue
and at least one of these is waiting with a partially instantiated
<var>Term</var>, the waiting threads are <em>all</em> sent a wake-up
signal, starting a rush for the available messages in the queue. This
behaviour can seriously harm performance with many threads waiting on
the same queue as all-but-the-winner perform a useless scan of the
queue. If there is only one waiting thread or all waiting threads wait
with an unbound variable, an arbitrary thread is restarted to scan the
queue.<sup class="fn">145<span class="fn-text">See the documentation for
the POSIX thread functions pthread_cond_signal() v.s. pthread_cond_broadcast()
for background information.</span></sup></dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="thread_send_message/3"><strong>thread_send_message</strong>(<var>+Queue,
+Term, +Options</var>)</a></dt>
<dd class="defbody">
As <a id="idx:threadsendmessage2:1744"></a><a class="pred" href="threadcom.html#thread_send_message/2">thread_send_message/2</a>,
but providing additional <var>Options</var>. These are to deal with the
case that the queue has a finite maximum size and is full: whereas <a id="idx:threadsendmessage2:1745"></a><a class="pred" href="threadcom.html#thread_send_message/2">thread_send_message/2</a>
will block until the queue has drained sufficiently to accept a new
message, <a id="idx:threadsendmessage3:1746"></a><a class="pred" href="threadcom.html#thread_send_message/3">thread_send_message/3</a>
can accept a time-out or deadline analogously to <a id="idx:threadgetmessage3:1747"></a><a class="pred" href="threadcom.html#thread_get_message/3">thread_get_message/3</a>.
The options are:
<dl class="latex">
<dt><strong>deadline</strong>(<var>+AbsTime</var>)</dt>
<dd class="defbody">
The call fails (silently) if no space has become available before
<var>AbsTime</var>. See <a id="idx:gettime1:1748"></a><a class="pred" href="system.html#get_time/1">get_time/1</a>
for the representation of absolute time. If <var>AbsTime</var> is
earlier then the current time, <a id="idx:threadsendmessage3:1749"></a><a class="pred" href="threadcom.html#thread_send_message/3">thread_send_message/3</a>
fails immediately. Both resolution and maximum wait time is
platform-dependent.<sup class="fn">146<span class="fn-text">The
implementation uses MsgWaitForMultipleObjects() on MS-Windows and
pthread_cond_timedwait() on other systems.</span></sup></dd>
<dt><strong>timeout</strong>(<var>+Time</var>)</dt>
<dd class="defbody">
<var>Time</var> is a float or integer and specifies the maximum time to
wait in seconds. This is a relative-time version of the <code>deadline</code>
option. If both options are provided, the earlier time is effective.
<p>If <var>Time</var> is 0 or 0.0, <a id="idx:threadsendmessage3:1750"></a><a class="pred" href="threadcom.html#thread_send_message/3">thread_send_message/3</a>
examines the queue and sends the message if space is availabel, but does
not suspend if no space is available, failing immediately instead.
<p>If <var>Time</var> <var>< 0</var>, <a id="idx:threadsendmessage3:1751"></a><a class="pred" href="threadcom.html#thread_send_message/3">thread_send_message/3</a>
fails immediately without sending the message.
</dd>
</dl>
</dd>
<dt class="pubdef"><a id="thread_get_message/1"><strong>thread_get_message</strong>(<var>?Term</var>)</a></dt>
<dd class="defbody">
Examines the thread message queue and if necessary blocks execution
until a term that unifies to <var>Term</var> arrives in the queue. After
a term from the queue has been unified to <var>Term</var>, the term is
deleted from the queue.
<p>Please note that non-unifying messages remain in the queue. After the
following has been executed, thread 1 has the term <code>b(gnu)</code>
in its queue and continues execution using <var>A</var> = <code>gnat</code>.
<pre class="code">
<thread 1>
thread_get_message(a(A)),
<thread 2>
thread_send_message(Thread_1, b(gnu)),
thread_send_message(Thread_1, a(gnat)),
</pre>
<p>See also <a id="idx:threadpeekmessage1:1752"></a><a class="pred" href="threadcom.html#thread_peek_message/1">thread_peek_message/1</a>.</dd>
<dt class="pubdef"><a id="thread_peek_message/1"><strong>thread_peek_message</strong>(<var>?Term</var>)</a></dt>
<dd class="defbody">
Examines the thread message queue and compares the queued terms with <var>Term</var>
until one unifies or the end of the queue has been reached. In the first
case the call succeeds, possibly instantiating
<var>Term</var>. If no term from the queue unifies, this call fails.
I.e.,
<a id="idx:threadpeekmessage1:1753"></a><a class="pred" href="threadcom.html#thread_peek_message/1">thread_peek_message/1</a>
never waits and does not remove any term from the queue. See also <a id="idx:threadgetmessage3:1754"></a><a class="pred" href="threadcom.html#thread_get_message/3">thread_get_message/3</a>.</dd>
<dt class="pubdef"><a id="message_queue_create/1"><strong>message_queue_create</strong>(<var>?Queue</var>)</a></dt>
<dd class="defbody">
Equivalent to <code>message_queue_create(Queue,[])</code>. For
compatibility, calling <code>message_queue_create(+Atom)</code> is
equivalent to
<code>message_queue_create(Queue, [alias(Atom)])</code>. New code should
use
<a id="idx:messagequeuecreate2:1755"></a><a class="pred" href="threadcom.html#message_queue_create/2">message_queue_create/2</a>
to create a named queue.</dd>
<dt class="pubdef"><a id="message_queue_create/2"><strong>message_queue_create</strong>(<var>-Queue,
+Options</var>)</a></dt>
<dd class="defbody">
Create a message queue from <var>Options</var>. Defined options are:
<dl class="latex">
<dt><strong>alias</strong>(<var>+Alias</var>)</dt>
<dd class="defbody">
Create a message queue that is identified by the atom <var>Alias</var>.
Message queues created this way must be explicitly destroyed by the
user. If the alias option is omitted, an <em>Anonymous</em> queue is
created that is indentified by a <em>blob</em> (see <a class="sec" href="foreigninclude.html">section
10.4.7</a>) and subject to garbage collection.<sup class="fn">147<span class="fn-text">Garbage
collecting anonymous message queues is not part of the ISO proposal and
most likely not a widely implemented feature.</span></sup></dd>
<dt><strong>max_size</strong>(<var>+Size</var>)</dt>
<dd class="defbody">
Maximum number of terms in the queue. If this number is reached,
<a id="idx:threadsendmessage2:1756"></a><a class="pred" href="threadcom.html#thread_send_message/2">thread_send_message/2</a>
will suspend until the queue is drained. The option can be used if the
source, sending messages to the queue, is faster than the drain,
consuming the messages.
</dd>
</dl>
</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="message_queue_destroy/1"><strong>message_queue_destroy</strong>(<var>+Queue</var>)</a></dt>
<dd class="defbody">
Destroy a message queue created with <a id="idx:messagequeuecreate1:1757"></a><a class="pred" href="threadcom.html#message_queue_create/1">message_queue_create/1</a>.
A permission error is raised if <var>Queue</var> refers to (the default
queue of) a thread. Other threads that are waiting for <var>Queue</var>
using
<a id="idx:threadgetmessage2:1758"></a><a class="pred" href="threadcom.html#thread_get_message/2">thread_get_message/2</a>
receive an existence error.</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="thread_get_message/2"><strong>thread_get_message</strong>(<var>+Queue,
?Term</var>)</a></dt>
<dd class="defbody">
As <a id="idx:threadgetmessage1:1759"></a><a class="pred" href="threadcom.html#thread_get_message/1">thread_get_message/1</a>,
operating on a given queue. It is allowed (but not advised) to get
messages from the queue of other threads. This predicate raises an
existence error exception if <var>Queue</var> doesn't exist or is
destroyed using <a id="idx:messagequeuedestroy1:1760"></a><a class="pred" href="threadcom.html#message_queue_destroy/1">message_queue_destroy/1</a>
while this predicate is waiting.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="thread_get_message/3"><strong>thread_get_message</strong>(<var>+Queue,
?Term, +Options</var>)</a></dt>
<dd class="defbody">
As <a id="idx:threadgetmessage2:1761"></a><a class="pred" href="threadcom.html#thread_get_message/2">thread_get_message/2</a>,
but providing additional <var>Options</var>:
<dl class="latex">
<dt><strong>deadline</strong>(<var>+AbsTime</var>)</dt>
<dd class="defbody">
The call fails (silently) if no message has arrived before
<var>AbsTime</var>. See <a id="idx:gettime1:1762"></a><a class="pred" href="system.html#get_time/1">get_time/1</a>
for the representation of absolute time. If <var>AbsTime</var> is
earlier then the current time, <a id="idx:threadgetmessage3:1763"></a><a class="pred" href="threadcom.html#thread_get_message/3">thread_get_message/3</a>
fails immediately. Both resolution and maximum wait time is
platform-dependent.<sup class="fn">148<span class="fn-text">The
implementation uses MsgWaitForMultipleObjects() on MS-Windows and
pthread_cond_timedwait() on other systems.</span></sup></dd>
<dt><strong>timeout</strong>(<var>+Time</var>)</dt>
<dd class="defbody">
<var>Time</var> is a float or integer and specifies the maximum time to
wait in seconds. This is a relative-time version of the <code>deadline</code>
option. If both options are provided, the earlier time is effective.
<p>If <var>Time</var> is 0 or 0.0, <a id="idx:threadgetmessage3:1764"></a><a class="pred" href="threadcom.html#thread_get_message/3">thread_get_message/3</a>
examines the queue but does not suspend if no matching term is
available. Note that unlike
<a id="idx:threadpeekmessage2:1765"></a><a class="pred" href="threadcom.html#thread_peek_message/2">thread_peek_message/2</a>,
a matching term is removed from the queue.
<p>If <var>Time</var> <var>< 0</var>, <a id="idx:threadgetmessage3:1766"></a><a class="pred" href="threadcom.html#thread_get_message/3">thread_get_message/3</a>
fails immediately without removing any message from the queue.
</dd>
</dl>
</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="thread_peek_message/2"><strong>thread_peek_message</strong>(<var>+Queue,
?Term</var>)</a></dt>
<dd class="defbody">
As <a id="idx:threadpeekmessage1:1767"></a><a class="pred" href="threadcom.html#thread_peek_message/1">thread_peek_message/1</a>,
operating on a given queue. It is allowed to peek into another thread's
message queue, an operation that can be used to check whether a thread
has swallowed a message sent to it.</dd>
<dt class="pubdef"><a id="message_queue_property/2"><strong>message_queue_property</strong>(<var>?Queue,
?Property</var>)</a></dt>
<dd class="defbody">
True if <var>Property</var> is a property of <var>Queue</var>. Defined
properties are:
<dl class="latex">
<dt><strong>alias</strong>(<var>Alias</var>)</dt>
<dd class="defbody">
Queue has the given alias name.
</dd>
<dt><strong>max_size</strong>(<var>Size</var>)</dt>
<dd class="defbody">
Maximum number of terms that can be in the queue. See
<a id="idx:messagequeuecreate2:1768"></a><a class="pred" href="threadcom.html#message_queue_create/2">message_queue_create/2</a>.
This property is not present if there is no limit (default).
</dd>
<dt><strong>size</strong>(<var>Size</var>)</dt>
<dd class="defbody">
Queue currently contains <var>Size</var> terms. Note that due to
concurrent access the returned value may be outdated before it is
returned. It can be used for debugging purposes as well as work
distribution purposes.
</dd>
</dl>
<p>The <code>size(Size)</code> property is always present and may be
used to enumerate the created message queues. Note that this predicate
does
<em>not enumerate</em> threads, but can be used to query the properties
of the default queue of a thread.
</dd>
</dl>
<p>Explicit message queues are designed with the <em>worker-pool</em>
model in mind, where multiple threads wait on a single queue and pick up
the first goal to execute. Below is a simple implementation where the
workers execute arbitrary Prolog goals. Note that this example provides
no means to tell when all work is done. This must be realised using
additional synchronisation.
<pre class="code">
%% create_workers(?Id, +N)
%
% Create a pool with Id and number of workers.
% After the pool is created, post_job/1 can be used to
% send jobs to the pool.
create_workers(Id, N) :-
message_queue_create(Id),
forall(between(1, N, _),
thread_create(do_work(Id), _, [])).
do_work(Id) :-
repeat,
thread_get_message(Id, Goal),
( catch(Goal, E, print_message(error, E))
-> true
; print_message(error, goal_failed(Goal, worker(Id)))
),
fail.
%% post_job(+Id, +Goal)
%
% Post a job to be executed by one of the pool's workers.
post_job(Id, Goal) :-
thread_send_message(Id, Goal).
</pre>
<p><h3 id="sec:thread-signal"><a id="sec:9.3.2"><span class="sec-nr">9.3.2</span> <span class="sec-title">Signalling
threads</span></a></h3>
<a id="sec:thread-signal"></a>
<p>These predicates provide a mechanism to make another thread execute
some goal as an <em>interrupt</em>. Signalling threads is safe as these
interrupts are only checked at safe points in the virtual machine.
Nevertheless, signalling in multithreaded environments should be handled
with care as the receiving thread may hold a <em>mutex</em> (see <a id="idx:withmutex2:1769"></a><a class="pred" href="threadsync.html#with_mutex/2">with_mutex/2</a>).
Signalling probably only makes sense to start debugging threads and to
cancel no-longer-needed threads with <a id="idx:throw1:1770"></a><a class="pred" href="exception.html#throw/1">throw/1</a>,
where the receiving thread should be designed carefully to handle
exceptions at any point.
<dl class="latex">
<dt class="pubdef"><a id="thread_signal/2"><strong>thread_signal</strong>(<var>+ThreadId,
:Goal</var>)</a></dt>
<dd class="defbody">
Make thread <var>ThreadId</var> execute <var>Goal</var> at the first
opportunity. In the current implementation, this implies at the first
pass through the <em>Call port</em>. The predicate <a id="idx:threadsignal2:1771"></a><a class="pred" href="threadcom.html#thread_signal/2">thread_signal/2</a>
itself places <var>Goal</var> into the signalled thread's signal queue
and returns immediately.
<p>Signals (interrupts) do not cooperate well with the world of
multithreading, mainly because the status of mutexes cannot be
guaranteed easily. At the call port, the Prolog virtual machine holds no
locks and therefore the asynchronous execution is safe.
<p><var>Goal</var> can be any valid Prolog goal, including <a id="idx:throw1:1772"></a><a class="pred" href="exception.html#throw/1">throw/1</a>
to make the receiving thread generate an exception, and <a id="idx:trace0:1773"></a><a class="pred" href="debugger.html#trace/0">trace/0</a>
to start tracing the receiving thread.
<p>In the Windows version, the receiving thread immediately executes the
signal if it reaches a Windows GetMessage() call, which generally
happens if the thread is waiting for (user) input.
</dd>
</dl>
<p><h3 id="sec:threadlocal"><a id="sec:9.3.3"><span class="sec-nr">9.3.3</span> <span class="sec-title">Threads
and dynamic predicates</span></a></h3>
<a id="sec:threadlocal"></a>
<p>Besides queues (<a class="sec" href="threadcom.html">section 9.3.1</a>)
threads can share and exchange data using dynamic predicates. The
multithreaded version knows about two types of dynamic predicates. By
default, a predicate declared
<em>dynamic</em> (see <a id="idx:dynamic1:1774"></a><a class="pred" href="dynamic.html#dynamic/1">dynamic/1</a>)
is shared by all threads. Each thread may assert, retract and run the
dynamic predicate. Synchronisation inside Prolog guarantees the
consistency of the predicate. Updates are
<em>logical</em>: visible clauses are not affected by assert/retract
after a query started on the predicate. In many cases primitives from
<a class="sec" href="threadsync.html">section 9.4</a> should be used to
ensure that application invariants on the predicate are maintained.
<p>Besides shared predicates, dynamic predicates can be declared with
the
<a id="idx:threadlocal1:1775"></a><a class="pred" href="threadcom.html#thread_local/1">thread_local/1</a>
directive. Such predicates share their attributes, but the clause list
is different in each thread.
<dl class="latex">
<dt class="pubdef"><a id="thread_local/1"><strong>thread_local</strong> <var>+Functor/+Arity,
...</var></a></dt>
<dd class="defbody">
This directive is related to the <a id="idx:dynamic1:1776"></a><a class="pred" href="dynamic.html#dynamic/1">dynamic/1</a>
directive. It tells the system that the predicate may be modified using <a id="idx:assert1:1777"></a><a class="pred" href="db.html#assert/1">assert/1</a>, <a id="idx:retract1:1778"></a><a class="pred" href="db.html#retract/1">retract/1</a>,
etc., during execution of the program. Unlike normal shared dynamic
data, however, each thread has its own clause list for the predicate. As
a thread starts, this clause list is empty. If there are still clauses
when the thread terminates, these are automatically reclaimed by the
system (see also <a id="idx:volatile1:1779"></a><a class="pred" href="runtime.html#volatile/1">volatile/1</a>).
The thread_local property implies the properties <em>dynamic</em> and <em>volatile</em>.
<p>Thread-local dynamic predicates are intended for maintaining
thread-specific state or intermediate results of a computation.
<p>It is not recommended to put clauses for a thread-local predicate
into a file, as in the example below, because the clause is only visible
from the thread that loaded the source file. All other threads start
with an empty clause list.
<pre class="code">
:- thread_local
foo/1.
foo(gnat).
</pre>
<p><b>DISCLAIMER</b> Whether or not this declaration is appropriate in
the sense of the proper mechanism to reach the goal is still debated. If
you have strong feelings in favour or against, please share them in the
SWI-Prolog mailing list.
</dd>
</dl>
<p></body></html>
|