This file is indexed.

/usr/lib/swi-prolog/doc/Manual/simplex.html is in swi-prolog-nox 7.2.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>SWI-Prolog 7.3.6 Reference Manual: Section A.31</title><link rel="home" href="index.html">
<link rel="contents" href="Contents.html">
<link rel="index" href="DocIndex.html">
<link rel="summary" href="summary.html">
<link rel="previous" href="registry.html">
<link rel="next" href="solutionsequences.html">

<style type="text/css">

/* Style sheet for SWI-Prolog latex2html
*/

dd.defbody
{ margin-bottom: 1em;
}

dt.pubdef, dt.multidef
{ color: #fff;
padding: 2px 10px 0px 10px;
margin-bottom: 5px;
font-size: 18px;
vertical-align: middle;
overflow: hidden;
}

dt.pubdef { background-color: #0c3d6e; }
dt.multidef { background-color: #ef9439; }

.bib dd
{ margin-bottom: 1em;
}

.bib dt
{ float: left;
margin-right: 1.3ex;
}

pre.code
{ margin-left: 1.5em;
margin-right: 1.5em;
border: 1px dotted;
padding-top: 5px;
padding-left: 5px;
padding-bottom: 5px;
background-color: #f8f8f8;
}

div.navigate
{ text-align: center;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
}

div.title
{ text-align: center;
padding-bottom: 1em;
font-size: 200%;
font-weight: bold;
}

div.author
{ text-align: center;
font-style: italic;
}

div.abstract
{ margin-top: 2em;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
margin-left: 10%; margin-right:10%;
}

div.abstract-title
{ text-align: center;
padding: 5px;
font-size: 120%;
font-weight: bold;
}

div.toc-h1
{ font-size: 200%;
font-weight: bold;
}

div.toc-h2
{ font-size: 120%;
font-weight: bold;
margin-left: 2em;
}

div.toc-h3
{ font-size: 100%;
font-weight: bold;
margin-left: 4em;
}

div.toc-h4
{ font-size: 100%;
margin-left: 6em;
}

span.sec-nr
{
}

span.sec-title
{
}

span.pred-ext
{ font-weight: bold;
}

span.pred-tag
{ float: right;
padding-top: 0.2em;
font-size: 80%;
font-style: italic;
color: #fff;
}

div.caption
{ width: 80%;
margin: auto;
text-align:center;
}

/* Footnotes */
.fn {
color: red;
font-size: 70%;
}

.fn-text, .fnp {
position: absolute;
top: auto;
left: 10%;
border: 1px solid #000;
box-shadow: 5px 5px 5px #888;
display: none;
background: #fff;
color: #000;
margin-top: 25px;
padding: 8px 12px;
font-size: larger;
}

sup:hover span.fn-text
{ display: block;
}

/* Lists */

dl.latex
{ margin-top: 1ex;
margin-bottom: 0.5ex;
}

dl.latex dl.latex dd.defbody
{ margin-bottom: 0.5ex;
}

/* PlDoc Tags */

dl.tags
{ font-size: 90%;
margin-left: 5ex;
margin-top: 1ex;
margin-bottom: 0.5ex;
}

dl.tags dt
{ margin-left: 0pt;
font-weight: bold;
}

dl.tags dd
{ margin-left: 3ex;
}

td.param
{ font-style: italic;
font-weight: bold;
}

/* Index */

dt.index-sep
{ font-weight: bold;
font-size: +1;
margin-top: 1ex;
}

/* Tables */

table.center
{ margin: auto;
}

table.latex
{ border-collapse:collapse;
}

table.latex tr
{ vertical-align: text-top;
}

table.latex td,th
{ padding: 2px 1em;
}

table.latex tr.hline td,th
{ border-top: 1px solid black;
}

table.frame-box
{ border: 2px solid black;
}

</style>
</head>
<body style="background:white">
<div class="navigate"><a class="nav" href="index.html"><img src="home.gif" alt="Home"></a>
<a class="nav" href="Contents.html"><img src="index.gif" alt="Contents"></a>
<a class="nav" href="DocIndex.html"><img src="yellow_pages.gif" alt="Index"></a>
<a class="nav" href="summary.html"><img src="info.gif" alt="Summary"></a>
<a class="nav" href="registry.html"><img src="prev.gif" alt="Previous"></a>
<a class="nav" href="solutionsequences.html"><img src="next.gif" alt="Next"></a>
</div>
<h2 id="sec:simplex"><a id="sec:A.31"><span class="sec-nr">A.31</span> <span class="sec-title">library(simplex): 
Solve linear programming problems</span></a></h2>

<a id="sec:simplex"></a>
<a id="sec:lib:simplex"></a>

<p>Author: <em>Markus Triska</em>

<p>A linear programming problem consists of a set of (linear) 
constraints, a number of variables and a linear objective function. The 
goal is to assign values to the variables so as to maximize (or 
minimize) the value of the objective function while satisfying all 
constraints.

<p>Many optimization problems can be modeled in this way. Consider 
having a knapsack with fixed capacity C, and a number of items with 
sizes s(i) and values v(i). The goal is to put as many items as possible 
in the knapsack (not exceeding its capacity) while maximizing the sum of 
their values.

<p>As another example, suppose you are given a set of coins with certain 
values, and you are to find the minimum number of coins such that their 
values sum up to a fixed amount. Instances of these problems are solved 
below.

<p>The <code>library(simplex)</code> module provides the following 
predicates:

<dl class="latex">
<dt class="pubdef"><a id="assignment/2"><strong>assignment</strong>(<var>+Cost, 
-Assignment</var>)</a></dt>
<dd class="defbody">
Solves an assignment problem.
<var>Cost</var> is a list of lists representing the quadratic cost 
matrix, where element (i,j) denotes the integer cost of assigning entity <var>i</var> 
to entity <var>j</var>. An assignment with minimal cost is computed and 
unified with <var>Assignment</var> as a list of lists, representing an 
adjacency matrix.</dd>
<dt class="pubdef"><a id="constraint/3"><strong>constraint</strong>(<var>+Constraint, 
+S0, -S</var>)</a></dt>
<dd class="defbody">
Adds a linear or integrality constraint to the linear program 
corresponding to state <var>S0</var>. A linear constraint is of the form 
"Left Op C", where "Left" is a list of Coefficient*Variable terms 
(variables in the context of linear programs can be atoms or compound 
terms) and C is a non-negative numeric constant. The list represents the 
sum of its elements. <var>Op</var> can be =, =&lt; or &gt;=. The 
coefficient "1" can be omitted. An integrality constraint is of the form 
integral(Variable) and constrains Variable to an integral value.</dd>
<dt class="pubdef"><a id="constraint/4"><strong>constraint</strong>(<var>+Name, 
+Constraint, +S0, -S</var>)</a></dt>
<dd class="defbody">
Like <a id="idx:constraint3:1981"></a><a class="pred" href="simplex.html#constraint/3">constraint/3</a>, 
and attaches the name <var>Name</var> (an atom or compound term) to the 
new constraint.</dd>
<dt class="pubdef"><a id="constraint_add/4"><strong>constraint_add</strong>(<var>+Name, 
+Left, +S0, -S</var>)</a></dt>
<dd class="defbody">
<var>Left</var> is a list of Coefficient*Variable terms. The terms are 
added to the left-hand side of the constraint named
<var>Name</var>. <var>S</var> is unified with the resulting state.</dd>
<dt class="pubdef"><a id="gen_state/1"><strong>gen_state</strong>(<var>-State</var>)</a></dt>
<dd class="defbody">
Generates an initial state corresponding to an empty linear program.</dd>
<dt class="pubdef"><a id="maximize/3"><strong>maximize</strong>(<var>+Objective, 
+S0, -S</var>)</a></dt>
<dd class="defbody">
Maximizes the objective function, stated as a list of 
"Coefficient*Variable" terms that represents the sum of its elements, 
with respect to the linear program corresponding to state <var>S0</var>. <var>S</var> 
is unified with an internal representation of the solved instance.</dd>
<dt class="pubdef"><a id="minimize/3"><strong>minimize</strong>(<var>+Objective, 
+S0, -S</var>)</a></dt>
<dd class="defbody">
Analogous to <a id="idx:maximize3:1982"></a><a class="pred" href="simplex.html#maximize/3">maximize/3</a>.</dd>
<dt class="pubdef"><a id="objective/2"><strong>objective</strong>(<var>+State, 
-Objective</var>)</a></dt>
<dd class="defbody">
Unifies <var>Objective</var> with the result of the objective function 
at the obtained extremum. <var>State</var> must correspond to a solved 
instance.</dd>
<dt class="pubdef"><a id="shadow_price/3"><strong>shadow_price</strong>(<var>+State, 
+Name, -Value</var>)</a></dt>
<dd class="defbody">
Unifies <var>Value</var> with the shadow price corresponding to the 
linear constraint whose name is <var>Name</var>. <var>State</var> must 
correspond to a solved instance.</dd>
<dt class="pubdef"><a id="transportation/4"><strong>transportation</strong>(<var>+Supplies, 
+Demands, +Costs, -Transport</var>)</a></dt>
<dd class="defbody">
Solves a transportation problem.
<var>Supplies</var> and <var>Demands</var> must be lists of non-negative 
integers. Their respective sums must be equal. <var>Costs</var> is a 
list of lists representing the cost matrix, where an entry (i,j) denotes 
the integer cost of transporting one unit from&nbsp;<var>i</var> to&nbsp;<var>j</var>. 
A transportation plan having minimum cost is computed and unified with <var>Transport</var> 
in the form of a list of lists that represents the transportation 
matrix, where element&nbsp;(i,j) denotes how many units to ship from&nbsp;<var>i</var> 
to&nbsp;<var>j</var>.</dd>
<dt class="pubdef"><a id="variable_value/3"><strong>variable_value</strong>(<var>+State, 
+Variable, -Value</var>)</a></dt>
<dd class="defbody">
<var>Value</var> is unified with the value obtained for
<var>Variable</var>. <var>State</var> must correspond to a solved 
instance.

<p></dd>
</dl>

All numeric quantities are converted to rationals via
<a class="function" href="arith.html#f-rationalize/1">rationalize/1</a>, 
and rational arithmetic is used throughout solving linear programs. In 
the current implementation, all variables are implicitly constrained to 
be non-negative. This may change in future versions, and non-negativity 
constraints should therefore be stated explicitly.

<p><h3 id="sec:simplex-ex-1"><a id="sec:A.31.1"><span class="sec-nr">A.31.1</span> <span class="sec-title">Example 
1</span></a></h3>

<a id="sec:simplex-ex-1"></a>

<p>This is the "radiation therapy" example, taken from "Introduction to 
Operations Research" by Hillier and Lieberman. DCG notation is used to 
implicitly thread the state through posting the constraints:

<pre class="code">
:- use_module(library(simplex)).

post_constraints --&gt;
        constraint([0.3*x1, 0.1*x2] =&lt; 2.7),
        constraint([0.5*x1, 0.5*x2] = 6),
        constraint([0.6*x1, 0.4*x2] &gt;= 6),
        constraint([x1] &gt;= 0),
        constraint([x2] &gt;= 0).

radiation(S) :-
        gen_state(S0),
        post_constraints(S0, S1),
        minimize([0.4*x1, 0.5*x2], S1, S).
</pre>

<p>An example query:

<pre class="code">
?- radiation(S), variable_value(S, x1, Val1),
                 variable_value(S, x2, Val2).

Val1 = 15 rdiv 2
Val2 = 9 rdiv 2 ;
</pre>

<p><h3 id="sec:simplex-ex-2"><a id="sec:A.31.2"><span class="sec-nr">A.31.2</span> <span class="sec-title">Example 
2</span></a></h3>

<a id="sec:simplex-ex-2"></a>

<p>Here is an instance of the knapsack problem described above, where C 
= 8, and we have two types of items: One item with value 7 and size 6, 
and 2 items each having size 4 and value 4. We introduce two variables, 
x(1) and x(2) that denote how many items to take of each type.

<pre class="code">
knapsack_constrain(S) :-
        gen_state(S0),
        constraint([6*x(1), 4*x(2)] =&lt; 8, S0, S1),
        constraint([x(1)] =&lt; 1, S1, S2),
        constraint([x(2)] =&lt; 2, S2, S).

knapsack(S) :-
        knapsack_constrain(S0),
        maximize([7*x(1), 4*x(2)], S0, S).
</pre>

<p>An example query yields:

<pre class="code">
?- knapsack(S), variable_value(S, x(1), X1),
                variable_value(S, x(2), X2).

X1 = 1
X2 = 1 rdiv 2 ;
</pre>

<p>That is, we are to take the one item of the first type, and half of 
one of the items of the other type to maximize the total value of items 
in the knapsack.

<p>If items can not be split, integrality constraints have to be 
imposed:

<pre class="code">
knapsack_integral(S) :-
        knapsack_constrain(S0),
        constraint(integral(x(1)), S0, S1),
        constraint(integral(x(2)), S1, S2),
        maximize([7*x(1), 4*x(2)], S2, S).
</pre>

<p>Now the result is different:

<pre class="code">
?- knapsack_integral(S), variable_value(S, x(1), X1),
                         variable_value(S, x(2), X2).

X1 = 0
X2 = 2
</pre>

<p>That is, we are to take only the two items of the second type. Notice 
in particular that always choosing the remaining item with best 
performance (ratio of value to size) that still fits in the knapsack 
does not necessarily yield an optimal solution in the presence of 
integrality constraints.

<p><h3 id="sec:simplex-ex-3"><a id="sec:A.31.3"><span class="sec-nr">A.31.3</span> <span class="sec-title">Example 
3</span></a></h3>

<a id="sec:simplex-ex-3"></a>

<p>We are given 3 coins each worth 1, 20 coins each worth 5, and 10 
coins each worth 20 units of money. The task is to find a minimal number 
of these coins that amount to 111 units of money. We introduce variables 
c(1), c(5) and c(20) denoting how many coins to take of the respective 
type:

<pre class="code">
coins --&gt;
        constraint([c(1), 5*c(5), 20*c(20)] = 111),
        constraint([c(1)] =&lt; 3),
        constraint([c(5)] =&lt; 20),
        constraint([c(20)] =&lt; 10),
        constraint([c(1)] &gt;= 0),
        constraint([c(5)] &gt;= 0),
        constraint([c(20)] &gt;= 0),
        constraint(integral(c(1))),
        constraint(integral(c(5))),
        constraint(integral(c(20))),
        minimize([c(1), c(5), c(20)]).

coins(S) :-
        gen_state(S0),
        coins(S0, S).
</pre>

<p>An example query:

<pre class="code">
?- coins(S), variable_value(S, c(1), C1),
             variable_value(S, c(5), C5),
             variable_value(S, c(20), C20).

C1 = 1
C5 = 2
C20 = 5
</pre>

<p></body></html>