This file is indexed.

/usr/lib/swi-prolog/doc/Manual/dicts.html is in swi-prolog-nox 7.2.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>SWI-Prolog 7.3.6 Reference Manual: Section 5.4</title><link rel="home" href="index.html">
<link rel="contents" href="Contents.html">
<link rel="index" href="DocIndex.html">
<link rel="summary" href="summary.html">
<link rel="previous" href="ext-syntax.html">
<link rel="next" href="ext-integration.html">

<style type="text/css">

/* Style sheet for SWI-Prolog latex2html
*/

dd.defbody
{ margin-bottom: 1em;
}

dt.pubdef, dt.multidef
{ color: #fff;
padding: 2px 10px 0px 10px;
margin-bottom: 5px;
font-size: 18px;
vertical-align: middle;
overflow: hidden;
}

dt.pubdef { background-color: #0c3d6e; }
dt.multidef { background-color: #ef9439; }

.bib dd
{ margin-bottom: 1em;
}

.bib dt
{ float: left;
margin-right: 1.3ex;
}

pre.code
{ margin-left: 1.5em;
margin-right: 1.5em;
border: 1px dotted;
padding-top: 5px;
padding-left: 5px;
padding-bottom: 5px;
background-color: #f8f8f8;
}

div.navigate
{ text-align: center;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
}

div.title
{ text-align: center;
padding-bottom: 1em;
font-size: 200%;
font-weight: bold;
}

div.author
{ text-align: center;
font-style: italic;
}

div.abstract
{ margin-top: 2em;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
margin-left: 10%; margin-right:10%;
}

div.abstract-title
{ text-align: center;
padding: 5px;
font-size: 120%;
font-weight: bold;
}

div.toc-h1
{ font-size: 200%;
font-weight: bold;
}

div.toc-h2
{ font-size: 120%;
font-weight: bold;
margin-left: 2em;
}

div.toc-h3
{ font-size: 100%;
font-weight: bold;
margin-left: 4em;
}

div.toc-h4
{ font-size: 100%;
margin-left: 6em;
}

span.sec-nr
{
}

span.sec-title
{
}

span.pred-ext
{ font-weight: bold;
}

span.pred-tag
{ float: right;
padding-top: 0.2em;
font-size: 80%;
font-style: italic;
color: #fff;
}

div.caption
{ width: 80%;
margin: auto;
text-align:center;
}

/* Footnotes */
.fn {
color: red;
font-size: 70%;
}

.fn-text, .fnp {
position: absolute;
top: auto;
left: 10%;
border: 1px solid #000;
box-shadow: 5px 5px 5px #888;
display: none;
background: #fff;
color: #000;
margin-top: 25px;
padding: 8px 12px;
font-size: larger;
}

sup:hover span.fn-text
{ display: block;
}

/* Lists */

dl.latex
{ margin-top: 1ex;
margin-bottom: 0.5ex;
}

dl.latex dl.latex dd.defbody
{ margin-bottom: 0.5ex;
}

/* PlDoc Tags */

dl.tags
{ font-size: 90%;
margin-left: 5ex;
margin-top: 1ex;
margin-bottom: 0.5ex;
}

dl.tags dt
{ margin-left: 0pt;
font-weight: bold;
}

dl.tags dd
{ margin-left: 3ex;
}

td.param
{ font-style: italic;
font-weight: bold;
}

/* Index */

dt.index-sep
{ font-weight: bold;
font-size: +1;
margin-top: 1ex;
}

/* Tables */

table.center
{ margin: auto;
}

table.latex
{ border-collapse:collapse;
}

table.latex tr
{ vertical-align: text-top;
}

table.latex td,th
{ padding: 2px 1em;
}

table.latex tr.hline td,th
{ border-top: 1px solid black;
}

table.frame-box
{ border: 2px solid black;
}

</style>
</head>
<body style="background:white">
<div class="navigate"><a class="nav" href="index.html"><img src="home.gif" alt="Home"></a>
<a class="nav" href="Contents.html"><img src="index.gif" alt="Contents"></a>
<a class="nav" href="DocIndex.html"><img src="yellow_pages.gif" alt="Index"></a>
<a class="nav" href="summary.html"><img src="info.gif" alt="Summary"></a>
<a class="nav" href="ext-syntax.html"><img src="prev.gif" alt="Previous"></a>
<a class="nav" href="ext-integration.html"><img src="next.gif" alt="Next"></a>
</div>
<h2 id="sec:dicts"><a id="sec:5.4"><span class="sec-nr">5.4</span> <span class="sec-title">Dicts: 
structures with named arguments</span></a></h2>

<a id="sec:dicts"></a>

<p>SWI-Prolog version&nbsp;7 introduces dicts as an abstract object with 
a concrete modern syntax and functional notation for accessing members 
and as well as access functions defined by the user. The syntax for a 
dict is illustrated below. <var>Tag</var> is either a variable or an 
atom. As with compound terms, there is <b>no</b> space between the tag 
and the opening brace. The keys are either atoms or small integers (up 
to
<a class="flag" href="flags.html#flag:max_tagged_integer">max_tagged_integer</a>). 
The values are arbitrary Prolog terms which are parsed using the same 
rules as used for arguments in compound terms.
<blockquote> Tag{Key1:Value1, Key2:Value2, ...}
</blockquote>

<p>A dict can <em>not</em> hold duplicate keys. The dict is transformed 
into an opaque internal representation that does <em>not</em> respect 
the order in which the key-value pairs appear in the input text. If a 
dict is written, the keys are written according to the standard order of 
terms (see <a class="sec" href="compare.html">section 4.7.1</a>). Here 
are some examples, where the second example illustrates that the order 
is not maintained and the third illustrates an anonymous dict.

<pre class="code">
?- A = point{x:1, y:2}.
A = point{x:1, y:2}.

?- A = point{y:2, x:1}.
A = point{x:1, y:2}.

?- A = _{first_name:"Mel", last_name:"Smith"}.
A = _G1476{first_name:"Mel", last_name:"Smith"}.
</pre>

<p>Dicts can be unified following the standard symmetric Prolog 
unification rules. As dicts use an internal canonical form, the order in 
which the named keys are represented is not relevant. This behaviour is 
illustrated by the following example.

<pre class="code">
?- point{x:1, y:2} = Tag{y:2, x:X}.
Tag = point,
X = 1.
</pre>

<p><b>Note</b> In the current implementation, two dicts unify only if 
they have the same set of keys and the tags and values associated with 
the keys unify. In future versions, the notion of unification between 
dicts could be modified such that two dicts unify if their tags and the 
values associated with <em>common</em> keys unify, turning both dicts 
into a new dict that has the union of the keys of the two original 
dicts.

<p><h3 id="sec:ext-dict-functions"><a id="sec:5.4.1"><span class="sec-nr">5.4.1</span> <span class="sec-title">Functions 
on dicts</span></a></h3>

<a id="sec:ext-dict-functions"></a>

<p>The infix operator dot (<code>op(100, yfx, .)</code> is used to 
extract values and evaluate functions on dicts. Functions are recognised 
if they appear in the argument of a <em>goal</em> in the source text, 
possibly nested in a term. The keys act as field selector, which is 
illustrated in this example.

<pre class="code">
?- X = point{x:1,y:2}.x.
X = 1.

?- Pt = point{x:1,y:2}, write(Pt.y).
2
Pt = point{x:1,y:2}.

?- X = point{x:1,y:2}.C.
X = 1,
C = x ;
X = 2,
C = y.
</pre>

<p>The compiler translates a goal that contains <a class="function" href="arith.html#f-./2">./2</a> 
terms in its arguments into a conjunction of calls to <a class="pred" href="dicts.html#./3">./3</a> 
defined in the
<code>system</code> module. Terms funcref<code>.</code>2 that appears in 
the head are replaced with a variable and calls to <a class="pred" href="dicts.html#./3">./3</a> 
are inserted at the start of the body. Below are two examples, where the 
first extracts the
<code>x</code> key from a dict and the second extends a dict containing 
an address with the postal code, given a find_postal_code/4 predicate.

<pre class="code">
dict_x(X, X.x).

add_postal_code(Dict, Dict.put(postal_code, Code)) :-
        find_postal_code(Dict.city,
                         Dict.street,
                         Dict.house_number,
                         Code).
</pre>

<p>Note that expansion of <a class="function" href="arith.html#f-./2">./2</a> 
terms implies that such terms cannot be created by writing them 
explicitly in your source code. Such terms can still be created with <a id="idx:functor3:1486"></a><a class="pred" href="manipterm.html#functor/3">functor/3</a>, <a class="pred" href="manipterm.html#=../2">=../2</a>,
<a id="idx:compoundnamearity3:1487"></a><a class="pred" href="manipterm.html#compound_name_arity/3">compound_name_arity/3</a> 
and
<a id="idx:compoundnamearguments3:1488"></a><a class="pred" href="manipterm.html#compound_name_arguments/3">compound_name_arguments/3</a>.<sup class="fn">134<span class="fn-text">Traditional 
code is unlikely to use <a class="function" href="arith.html#f-./2">./2</a> 
terms because they were practically reserved for usage in lists. We do 
not provide a quoting mechanism as found in functional languages because 
it would only be needed to quote <a class="function" href="arith.html#f-./2">./2</a> 
terms, such terms are rare and term manipulation provides an escape 
route.</span></sup>

<dl class="latex">
<dt class="pubdef"><a id="./3"><strong>.</strong>(<var>+Dict, +Function, 
-Result</var>)</a></dt>
<dd class="defbody">
This predicate is called to evaluate <a class="function" href="arith.html#f-./2">./2</a> 
terms found in the arguments of a goal. This predicate evaluates the 
field extraction described above, which is mapped to <a id="idx:getdictex3:1489"></a><span class="pred-ext">get_dict_ex/3</span>. 
If <var>Function</var> is a compound term, it checks for the predefined 
functions on dicts described in <a class="sec" href="dicts.html">section 
5.4.1.2</a> or executes a user defined function as described in <a class="sec" href="dicts.html">section 
5.4.1.1</a>.
</dd>
</dl>

<p><h4 id="sec:ext-dict-user-functions"><a id="sec:5.4.1.1"><span class="sec-nr">5.4.1.1</span> <span class="sec-title">User 
defined functions on dicts</span></a></h4>

<a id="sec:ext-dict-user-functions"></a>

<p>The tag of a dict associates the dict to a module. If the dot 
notation uses a compound term, this calls the goal below.
<blockquote>
&lt;<var>module</var>&gt;:&lt;<var>name</var>&gt;(Arg1, ..., +Dict, 
-Value)
</blockquote>

<p>Functions are normal Prolog predicates. The dict infrastructure 
provides a more convenient syntax for representing the head of such 
predicates without worrying about the argument calling conventions. The 
code below defines a function <code>multiply(Times)</code> on a point 
that creates a new point by multiplying both coordinates. and <code>len()</code><sup class="fn">135<span class="fn-text">as <code>length()</code> 
would result in a predicate <a id="idx:length2:1490"></a><a class="pred" href="builtinlist.html#length/2">length/2</a>, 
this name cannot be used. This might change in future versions.</span></sup> 
to compute the length from the origin. The . and <code>:=</code> 
operators are used to abstract the location of the predicate arguments. 
It is allowed to define multiple a function with multiple clauses, 
providing overloading and non-determinism.

<pre class="code">
:- module(point, []).

M.multiply(F) := point{x:X, y:Y} :-
        X is M.x*F,
        Y is M.y*F.

M.len() := Len :-
        Len is sqrt(M.x**2 + M.y**2).
</pre>

<p>After these definitions, we can evaluate the following functions:

<pre class="code">
?- X = point{x:1, y:2}.multiply(2).
X = point{x:2, y:4}.

?- X = point{x:1, y:2}.multiply(2).len().
X = 4.47213595499958.
</pre>

<p><h4 id="sec:ext-dicts-predefined"><a id="sec:5.4.1.2"><span class="sec-nr">5.4.1.2</span> <span class="sec-title">Predefined 
functions on dicts</span></a></h4>

<a id="sec:ext-dicts-predefined"></a>

<p>Dicts currently define the following reserved functions:

<dl class="latex">
<dt class="pubdef"><a id="m-get-1"><strong>get</strong>(<var>?Key</var>)</a></dt>
<dd class="defbody">
Same as <var>Dict</var>.<var>Key</var>, but maps to <a id="idx:getdict3:1491"></a><a class="pred" href="dicts.html#get_dict/3">get_dict/3</a> 
instead of
<a id="idx:getdictex3:1492"></a><span class="pred-ext">get_dict_ex/3</span>. 
This implies that the function evaluation fails silently if <var>Key</var> 
does not appear in <var>Dict</var>. See also
<a class="pred" href="dicts.html#:</2">:&lt;/2</a>, which can be used to 
test for existence and unify multiple key values from a dict. For 
example:

<pre class="code">
?- write(t{a:x}.get(a)).
x
?- write(t{a:x}.get(b)).
false.
</pre>

</dd>
<dt class="pubdef"><a id="m-put-1"><strong>put</strong>(<var>+New</var>)</a></dt>
<dd class="defbody">
Evaluates to a new dict where the key-values in <var>New</var> replace 
or extend the key-values in the original dict. See <a id="idx:putdict3:1493"></a><a class="pred" href="dicts.html#put_dict/3">put_dict/3</a>.</dd>
<dt class="pubdef"><a id="m-put-2"><strong>put</strong>(<var>+KeyPath, 
+Value</var>)</a></dt>
<dd class="defbody">
Evaluates to a new dict where the <var>KeyPath</var>-<var>Value</var> 
replaces or extends the key-values in the original dict. <var>KeyPath</var> 
is either a key or a term <var>KeyPath</var>/<var>Key</var>,<sup class="fn">136<span class="fn-text">Note 
that we do not use the '.' functor here, because the <a class="function" href="arith.html#f-./2">./2</a> 
would <em>evaluate</em>.</span></sup> replacing the value associated 
with <var>Key</var> in a sub-dict of the dict on which the function 
operates. See <a id="idx:putdict4:1494"></a><a class="pred" href="dicts.html#put_dict/4">put_dict/4</a>. 
Below are some examples:

<pre class="code">
?- A = _{}.put(a, 1).
A = _G7359{a:1}.

?- A = _{a:1}.put(a, 2).
A = _G7377{a:2}.

?- A = _{a:1}.put(b/c, 2).
A = _G1395{a:1, b:_G1584{c:2}}.

?- A = _{a:_{b:1}}.put(a/b, 2).
A = _G1429{a:_G1425{b:2}}.

?- A = _{a:1}.put(a/b, 2).
A = _G1395{a:_G1578{b:2}}.
</pre>

<p></dd>
</dl>

<p><h3 id="sec:ext-dict-predicates"><a id="sec:5.4.2"><span class="sec-nr">5.4.2</span> <span class="sec-title">Predicates 
for managing dicts</span></a></h3>

<a id="sec:ext-dict-predicates"></a>

<p>This section documents the predicates that are defined on dicts. We 
use the naming and argument conventions of the traditional <code>library(assoc)</code>.

<dl class="latex">
<dt class="pubdef"><a id="is_dict/1"><strong>is_dict</strong>(<var>@Term</var>)</a></dt>
<dd class="defbody">
True if <var>Term</var> is a dict. This is the same as <code>is_dict(Term,_)</code>.</dd>
<dt class="pubdef"><a id="is_dict/2"><strong>is_dict</strong>(<var>@Term, 
-Tag</var>)</a></dt>
<dd class="defbody">
True if <var>Term</var> is a dict of <var>Tag</var>.</dd>
<dt class="pubdef"><a id="get_dict/3"><strong>get_dict</strong>(<var>?Key, 
+Dict, -Value</var>)</a></dt>
<dd class="defbody">
Unify the value associated with <var>Key</var> in dict with <var>Value</var>. 
If
<var>Key</var> is unbound, all associations in <var>Dict</var> are 
returned on backtracking. The order in which the associations are 
returned is undefined. This predicate is normally accessed using the 
functional notation <code>Dict.Key</code>. See <a class="sec" href="dicts.html">section 
5.4.1</a>.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="get_dict/5"><strong>get_dict</strong>(<var>+Key, 
+Dict, -Value, -NewDict, +NewValue</var>)</a></dt>
<dd class="defbody">
Create a new dict after updating the value for <var>Key</var>. Fails if
<var>Value</var> does not unify with the current value associated with
<var>Key</var>. Acts according to the following below. <var>Dict</var> 
is either a dict or a list the can be converted into a dict.

<pre class="code">
get_dict(Key, Dict, Value, NewDict, NewDict) :-
        get_dict(Key, Dict, Value),
        put_dict(Key, Dict, NewDict, NewDict).
</pre>

</dd>
<dt class="pubdef"><a id="dict_create/3"><strong>dict_create</strong>(<var>-Dict, 
+Tag, +Data</var>)</a></dt>
<dd class="defbody">
Create a dict in <var>Tag</var> from <var>Data</var>. <var>Data</var> is 
a list of attribute-value pairs using the syntax <code>Key:Value</code>,
<code>Key=Value</code>, <code>Key-Value</code> or <code>Key(Value)</code>. 
An exception is raised if <var>Data</var> is not a proper list, one of 
the elements is not of the shape above, a key is neither an atom nor a 
small integer or there is a duplicate key.</dd>
<dt class="pubdef"><a id="dict_pairs/3"><strong>dict_pairs</strong>(<var>?Dict, 
?Tag, ?Pairs</var>)</a></dt>
<dd class="defbody">
Bi-directional mapping between a dict and an ordered list of pairs (see <a class="sec" href="pairs.html">section 
A.20</a>).</dd>
<dt class="pubdef"><a id="put_dict/3"><strong>put_dict</strong>(<var>+New, 
+DictIn, -DictOut</var>)</a></dt>
<dd class="defbody">
<var>DictOut</var> is a new dict created by replacing or adding 
key-value pairs from <var>New</var> to <var>Dict</var>. <var>New</var> 
is either a dict or a valid input for <a id="idx:dictcreate3:1495"></a><a class="pred" href="dicts.html#dict_create/3">dict_create/3</a>. 
This predicate is normally accessed using the functional notation. Below 
are some examples:

<pre class="code">
?- A = point{x:1, y:2}.put(_{x:3}).
A = point{x:3, y:2}.

?- A = point{x:1, y:2}.put([x=3]).
A = point{x:3, y:2}.

?- A = point{x:1, y:2}.put([x=3,z=0]).
A = point{x:3, y:2, z:0}.
</pre>

</dd>
<dt class="pubdef"><a id="put_dict/4"><strong>put_dict</strong>(<var>+Key, 
+DictIn, +Value, -DictOut</var>)</a></dt>
<dd class="defbody">
<var>DictOut</var> is a new dict created by replacing or adding
<var>Key</var>-<var>Value</var> to <var>DictIn</var>. This predicate is 
normally accessed using the functional notation. Below is an example:

<pre class="code">
?- A = point{x:1, y:2}.put(x, 3).
A = point{x:3, y:2}.
</pre>

</dd>
<dt class="pubdef"><a id="del_dict/4"><strong>del_dict</strong>(<var>+Key, 
+DictIn, ?Value, -DictOut</var>)</a></dt>
<dd class="defbody">
True when <var>Key</var>-<var>Value</var> is in <var>DictIn</var> and <var>DictOut</var> 
contains all associations of <var>DictIn</var> except for <var>Key</var>.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id=":</2"><var>+Select</var> <strong>:&lt;</strong> <var>+From</var></a></dt>
<dd class="defbody">
True when <var>Select</var> is a `sub dict' of <var>From</var>: the 
tages must unify and all keys in <var>Select</var> must appear with 
unifying values in <var>From</var>. <var>From</var> may contain keys 
that are not in
<var>Select</var>. This operation is frequently used to <em>match</em> a 
dict and at the same time extract relevant values from it. For example:

<pre class="code">
plot(Dict, On) :-
        _{x:X, y:Y, z:Z} :&lt; Dict, !,
        plot_xyz(X, Y, Z, On).
plot(Dict, On) :-
        _{x:X, y:Y} :&lt; Dict, !,
        plot_xy(X, Y, On).
</pre>

<p>The goal <code>Select :&lt; From</code> is equivalent to
<code>select_dict(Select, From, _)</code>.</dd>
<dt class="pubdef"><span class="pred-tag">[semidet]</span><a id="select_dict/3"><strong>select_dict</strong>(<var>+Select, 
+From, -Rest</var>)</a></dt>
<dd class="defbody">
True when the tags of <var>Select</var> and <var>From</var> have been 
unified, all keys in <var>Select</var> appear in <var>From</var> and the 
corresponding values have been unified. The key-value pairs of <var>From</var> 
that do not appear in <var>Select</var> are used to form an anonymous 
dict, which us unified with <var>Rest</var>. For example:

<pre class="code">
?- select_dict(P{x:0, y:Y}, point{x:0, y:1, z:2}, R).
P = point,
Y = 1,
R = _G1705{z:2}.
</pre>

<p>See also <a id="idx:selectdict2:1496"></a><span class="pred-ext">select_dict/2</span> 
to ignore <var>Rest</var> and <a class="pred" href="dicts.html#>:</2">&gt;:&lt;/2</a> 
for a symmetric partial unification of two dicts.</dd>
<dt class="pubdef"><a id=">:</2"><var>+Dict1</var> <strong>&gt;:&lt;</strong> <var>+Dict2</var></a></dt>
<dd class="defbody">
This operator specifies a <em>partial unification</em> between
<var>Dict1</var> and <var>Dict2</var>. It is true when the tags and the 
values associated with all <em>common</em> keys have been unified. The 
values associated to keys that do not appear in the other dict are 
ignored. Partial unification is symmetric. For example, given a list of 
dicts, find dicts that represent a point with X equal to zero:

<pre class="code">
    member(Dict, List),
    Dict &gt;:&lt; point{x:0, y:Y}.
</pre>

<p>See also <a class="pred" href="dicts.html#:</2">:&lt;/2</a> and <a id="idx:selectdict3:1497"></a><a class="pred" href="dicts.html#select_dict/3">select_dict/3</a>.
</dd>
</dl>

<p><h4 id="sec:ext-dict-assignment"><a id="sec:5.4.2.1"><span class="sec-nr">5.4.2.1</span> <span class="sec-title">Destructive 
assignment in dicts</span></a></h4>

<a id="sec:ext-dict-assignment"></a>

<p>This section describes the destructive update operations defined on 
dicts. These actions can only <em>update</em> keys and not add or remove 
keys. If the requested key does not exist the predicate raises
<code>existence_error(key, Key, Dict)</code>. Note the additional 
argument.

<p>Destructive assignment is a non-logical operation and should be used 
with care because identical Prolog terms may be copied or shared add 
will of the system. Some of this behaviour can be avoided by adding an 
additional unbound value to the dict. This prevents unwanted sharing and 
ensures that <a id="idx:copyterm2:1498"></a><a class="pred" href="manipterm.html#copy_term/2">copy_term/2</a> 
actually copies the dict. This pitfall is demonstrated in the example 
below:

<pre class="code">
?- A = a{a:1}, copy_term(A,B), b_set_dict(a, A, 2).
A = B, B = a{a:2}.

?- A = a{a:1,dummy:_}, copy_term(A,B), b_set_dict(a, A, 2).
A = a{a:2, dummy:_G3195},
B = a{a:1, dummy:_G3391}.
</pre>

<dl class="latex">
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="b_set_dict/3"><strong>b_set_dict</strong>(<var>+Key, 
!Dict, +Value</var>)</a></dt>
<dd class="defbody">
Destructively update the value associated with <var>Key</var> in <var>Dict</var> 
to
<var>Value</var>. The update is trailed and undone on backtracking. This 
predicate raises an existence error if <var>Key</var> does not appear in
<var>Dict</var>. The update semantics are equivalent to <a id="idx:setarg3:1499"></a><a class="pred" href="manipterm.html#setarg/3">setarg/3</a> 
and
<a id="idx:bsetval2:1500"></a><a class="pred" href="gvar.html#b_setval/2">b_setval/2</a>.</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="nb_set_dict/3"><strong>nb_set_dict</strong>(<var>+Key, 
!Dict, +Value</var>)</a></dt>
<dd class="defbody">
Destructively update the value associated with <var>Key</var> in <var>Dict</var> 
to a copy of <var>Value</var>. The update is <em>not</em> undone on 
backtracking. This predicate raises an existence error if <var>Key</var> 
does not appear in
<var>Dict</var>. The update semantics are equivalent to <a id="idx:nbsetarg3:1501"></a><a class="pred" href="manipterm.html#nb_setarg/3">nb_setarg/3</a> 
and
<a id="idx:nbsetval2:1502"></a><a class="pred" href="gvar.html#nb_setval/2">nb_setval/2</a>.</dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="nb_link_dict/3"><strong>nb_link_dict</strong>(<var>+Key, 
!Dict, +Value</var>)</a></dt>
<dd class="defbody">
Destructively update the value associated with <var>Key</var> in <var>Dict</var> 
to
<var>Value</var>. The update is <em>not</em> undone on backtracking. 
This predicate raises an existence error if <var>Key</var> does not 
appear in
<var>Dict</var>. The update semantics are equivalent to <a id="idx:blinkarg3:1503"></a><span class="pred-ext">b_linkarg/3</span> 
and
<a id="idx:nblinkval2:1504"></a><a class="pred" href="gvar.html#nb_linkval/2">nb_linkval/2</a>. 
Use with extreme care and consult the documentation of
<a id="idx:nblinkval2:1505"></a><a class="pred" href="gvar.html#nb_linkval/2">nb_linkval/2</a> 
before use.
</dd>
</dl>

<p><h3 id="sec:ext-dicts-usage"><a id="sec:5.4.3"><span class="sec-nr">5.4.3</span> <span class="sec-title">When 
to use dicts?</span></a></h3>

<a id="sec:ext-dicts-usage"></a>

<p>Dicts are a new type in the Prolog world. They compete with several 
other types and libraries. In the list below we have a closer look at 
these relations. We will see that dicts are first of all a good 
replacement for compound terms with a high or not clearly fixed arity, 
library
<code>library(record)</code> and option processing.

<dl class="latex">
<dt><b>Compound terms</b></dt>
<dd>
Compound terms with positional arguments form the traditional way to 
package data in Prolog. This representation is well understood, fast and 
compound terms are stored efficiently. Compound terms are still the 
representation of choice, provided that the number of arguments is low 
and fixed or compactness or performance are of utmost importance.

<p>A good example of a compound term is the representation of RDF 
triples using the term <code>rdf(Subject, Predicate, Object)</code> 
because RDF triples are defined to have precisely these three arguments 
and they are always referred to in this order. An application processing 
information about persons should probably use dicts because the 
information that is related to a person is not so fixed. Typically we 
see first and last name. But there may also be title, middle name, 
gender, date of birth, etc. The number of arguments becomes unmanagable 
when using a compound term, while adding or removing an argument leads 
to many changes in the program.</dd>
<dt><b>Library <code>library(record)</code></b></dt>
<dd>
Using library <code>library(record)</code> relieves the maintenance 
issues associated with using compound terms significantly. The library 
generates access and modification predicates for each field in a 
compound term from a declaration. The library provides sound access to 
compound terms with many arguments. One of its problems is the verbose 
syntax needed to access or modify fields which results from long names 
for the generated predicates and the restriction that each field needs 
to be extracted with a separate goal. Consider the example below, where 
the first uses library <code>library(record)</code> and the second uses 
dicts.

<pre class="code">
    ...,
    person_first_name(P, FirstName),
    person_last_name(P, LastName),
    format('Dear ~w ~w,~n~n', [FirstName, LastName]).

    ...,
    format('Dear ~w ~w,~n~n', [Dict.first_name, Dict.last_name]).
</pre>

<p>Records have a fixed number of arguments and (non-)existence of an 
argument must be represented using a value that is outside the normal 
domain. This lead to unnatural code. For example, suppose our person 
also has a title. If we know the first name we use this and else we use 
the title. The code samples below illustrate this.

<pre class="code">
salutation(P) :-
    person_first_name(P, FirstName), nonvar(FirstName), !,
    person_last_name(P, LastName),
    format('Dear ~w ~w,~n~n', [FirstName, LastName]).
salutation(P) :-
    person_title(P, Title), nonvar(Title), !,
    person_last_name(P, LastName),
    format('Dear ~w ~w,~n~n', [Title, LastName]).

salutation(P) :-
    _{first_name:FirstName, last_name:LastName} :&lt; P, !,
    format('Dear ~w ~w,~n~n', [FirstName, LastName]).
salutation(P) :-
    _{title:Title, last_name:LastName} :&lt; P, !,
    format('Dear ~w ~w,~n~n', [Title, LastName]).
</pre>

</dd>
<dt><b>Library <code>library(assoc)</code></b></dt>
<dd>
This library implements a balanced binary tree. Dicts can replace the 
use of this library if the association is fairly static (i.e., there are 
few update operations), all keys are atoms or (small) integers and the 
code does not rely on ordered operations.</dd>
<dt><b>Library <code>library(option)</code></b></dt>
<dd>
Option lists are introduced by ISO Prolog, for example for <a id="idx:readterm3:1506"></a><a class="pred" href="termrw.html#read_term/3">read_term/3</a>,
<a id="idx:open4:1507"></a><a class="pred" href="IO.html#open/4">open/4</a>, 
etc. The <code>library(option)</code> library provides operations to 
extract options, merge options lists, etc. Dicts are well suited to 
replace option lists because they are cheaper, can be processed faster 
and have a more natural syntax.</dd>
<dt><b>Library <code>library(pairs)</code></b></dt>
<dd>
This library is commonly used to process large name-value associations. 
In many cases this concerns short-lived datastructures that result from
<a id="idx:findall3:1508"></a><a class="pred" href="allsolutions.html#findall/3">findall/3</a>, <a id="idx:maplist3:1509"></a><a class="pred" href="apply.html#maplist/3">maplist/3</a> 
and similar list processing predicates. Dicts may play a role if 
frequent random key lookups are needed on the resulting association. For 
example, the skeleton `create a pairs list', `use
<a id="idx:listtoassoc2:1510"></a><a class="pred" href="assoc.html#list_to_assoc/2">list_to_assoc/2</a> 
to create an assoc', followed by frequent usage of
<a id="idx:getassoc2:1511"></a><span class="pred-ext">get_assoc/2</span> 
to extract key values can be replaced using <a id="idx:dictpairs2:1512"></a><span class="pred-ext">dict_pairs/2</span> 
and the dict access functions. Using dicts in this scenario is more 
efficient and provides a more pleasant access syntax.
</dd>
</dl>

<p><h3 id="sec:ext-dicts-motivation"><a id="sec:5.4.4"><span class="sec-nr">5.4.4</span> <span class="sec-title">A 
motivation for dicts as primary citizens</span></a></h3>

<a id="sec:ext-dicts-motivation"></a>

<p>Dicts, or key-value associations, are a common data structure. A good 
old example are <em>property lists</em> as found in Lisp, while a good 
recent example is formed by JavaScript <em>objects</em>. Traditional 
Prolog does not offer native property lists. As a result, people are 
using a wide range of data structures for key-value associations:

<p>
<ul class="latex">
<li>Using compound terms and positional arguments, e.g.,
<code>point(1,2)</code>.
<li>Using compound terms with library <code>library(record)</code>, 
which generates access predicates for a term using positional arguments 
from a description.
<li>Using lists of terms <code>Name=Value</code>, <code>Name-Value</code>,
<code>Name:Value</code> or <code>Name(Value)</code>.
<li>Using library <code>library(assoc)</code> which represents the 
associations as a balanced binary tree.
</ul>

<p>This situation is unfortunate. Each of these have their advantages 
and disadvantages. E.g., compound terms are compact and fast, but 
inflexible and using positional arguments quickly breaks down. Library
<code>library(record)</code> fixes this, but the syntax is considered 
hard to use. Lists are flexible, but expensive and the alternative 
key-value representations that are used complicate the matter even more. 
Library
<code>library(assoc)</code> allows for efficient manipulation of 
changing associations, but the syntactical representation of an assoc is 
complex, which makes them unsuitable for e.g., <em>options lists</em> as 
seen in predicates such as <a id="idx:open4:1513"></a><a class="pred" href="IO.html#open/4">open/4</a>.

<p><h3 id="sec:ext-dicts-implementation"><a id="sec:5.4.5"><span class="sec-nr">5.4.5</span> <span class="sec-title">Implementation 
notes about dicts</span></a></h3>

<a id="sec:ext-dicts-implementation"></a>

<p>Although dicts are designed as an abstract data type and we 
deliberately reserve the possibility to change the representation and 
even use multiple representations, this section describes the current 
implementation.

<p>Dicts are currently represented as a compound term using the functor
<code>`dict`</code>. The first argument is the tag. The remaining 
arguments create an array of sorted key-value pairs. This representation 
is compact and guarantees good locality. Lookup is order <var>log( N )</var>, 
while adding values, deleting values and merging with other dicts has 
order
<var>N</var>. The main disadvantage is that changing values in large 
dicts is costly, both in terms of memory and time.

<p>Future versions may share keys in a separate structure or use a 
binary trees to allow for cheaper updates. One of the issues is that the 
representation must either be kept cannonical or unification must be 
extended to compensate for alternate representations.

<p></body></html>