/usr/lib/swi-prolog/doc/Manual/db.html is in swi-prolog-nox 7.2.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>SWI-Prolog 7.3.6 Reference Manual: Section 4.13</title><link rel="home" href="index.html">
<link rel="contents" href="Contents.html">
<link rel="index" href="DocIndex.html">
<link rel="summary" href="summary.html">
<link rel="previous" href="DCG.html">
<link rel="next" href="dynamic.html">
<style type="text/css">
/* Style sheet for SWI-Prolog latex2html
*/
dd.defbody
{ margin-bottom: 1em;
}
dt.pubdef, dt.multidef
{ color: #fff;
padding: 2px 10px 0px 10px;
margin-bottom: 5px;
font-size: 18px;
vertical-align: middle;
overflow: hidden;
}
dt.pubdef { background-color: #0c3d6e; }
dt.multidef { background-color: #ef9439; }
.bib dd
{ margin-bottom: 1em;
}
.bib dt
{ float: left;
margin-right: 1.3ex;
}
pre.code
{ margin-left: 1.5em;
margin-right: 1.5em;
border: 1px dotted;
padding-top: 5px;
padding-left: 5px;
padding-bottom: 5px;
background-color: #f8f8f8;
}
div.navigate
{ text-align: center;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
}
div.title
{ text-align: center;
padding-bottom: 1em;
font-size: 200%;
font-weight: bold;
}
div.author
{ text-align: center;
font-style: italic;
}
div.abstract
{ margin-top: 2em;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
margin-left: 10%; margin-right:10%;
}
div.abstract-title
{ text-align: center;
padding: 5px;
font-size: 120%;
font-weight: bold;
}
div.toc-h1
{ font-size: 200%;
font-weight: bold;
}
div.toc-h2
{ font-size: 120%;
font-weight: bold;
margin-left: 2em;
}
div.toc-h3
{ font-size: 100%;
font-weight: bold;
margin-left: 4em;
}
div.toc-h4
{ font-size: 100%;
margin-left: 6em;
}
span.sec-nr
{
}
span.sec-title
{
}
span.pred-ext
{ font-weight: bold;
}
span.pred-tag
{ float: right;
padding-top: 0.2em;
font-size: 80%;
font-style: italic;
color: #fff;
}
div.caption
{ width: 80%;
margin: auto;
text-align:center;
}
/* Footnotes */
.fn {
color: red;
font-size: 70%;
}
.fn-text, .fnp {
position: absolute;
top: auto;
left: 10%;
border: 1px solid #000;
box-shadow: 5px 5px 5px #888;
display: none;
background: #fff;
color: #000;
margin-top: 25px;
padding: 8px 12px;
font-size: larger;
}
sup:hover span.fn-text
{ display: block;
}
/* Lists */
dl.latex
{ margin-top: 1ex;
margin-bottom: 0.5ex;
}
dl.latex dl.latex dd.defbody
{ margin-bottom: 0.5ex;
}
/* PlDoc Tags */
dl.tags
{ font-size: 90%;
margin-left: 5ex;
margin-top: 1ex;
margin-bottom: 0.5ex;
}
dl.tags dt
{ margin-left: 0pt;
font-weight: bold;
}
dl.tags dd
{ margin-left: 3ex;
}
td.param
{ font-style: italic;
font-weight: bold;
}
/* Index */
dt.index-sep
{ font-weight: bold;
font-size: +1;
margin-top: 1ex;
}
/* Tables */
table.center
{ margin: auto;
}
table.latex
{ border-collapse:collapse;
}
table.latex tr
{ vertical-align: text-top;
}
table.latex td,th
{ padding: 2px 1em;
}
table.latex tr.hline td,th
{ border-top: 1px solid black;
}
table.frame-box
{ border: 2px solid black;
}
</style>
</head>
<body style="background:white">
<div class="navigate"><a class="nav" href="index.html"><img src="home.gif" alt="Home"></a>
<a class="nav" href="Contents.html"><img src="index.gif" alt="Contents"></a>
<a class="nav" href="DocIndex.html"><img src="yellow_pages.gif" alt="Index"></a>
<a class="nav" href="summary.html"><img src="info.gif" alt="Summary"></a>
<a class="nav" href="DCG.html"><img src="prev.gif" alt="Previous"></a>
<a class="nav" href="dynamic.html"><img src="next.gif" alt="Next"></a>
</div>
<h2 id="sec:db"><a id="sec:4.13"><span class="sec-nr">4.13</span> <span class="sec-title">Database</span></a></h2>
<a id="sec:db"></a>
<p>SWI-Prolog offers three different database mechanisms. The first one
is the common assert/retract mechanism for manipulating the clause
database. As facts and clauses asserted using <a id="idx:assert1:716"></a><a class="pred" href="db.html#assert/1">assert/1</a>
or one of its derivatives become part of the program, these predicates
compile the term given to them. <a id="idx:retract1:717"></a><a class="pred" href="db.html#retract/1">retract/1</a>
and <a id="idx:retractall1:718"></a><a class="pred" href="db.html#retractall/1">retractall/1</a>
have to unify a term and therefore have to decompile the program. For
these reasons the assert/retract mechanism is expensive. On the other
hand, once compiled, queries to the database are faster than querying
the recorded database discussed below. See also <a id="idx:dynamic1:719"></a><a class="pred" href="dynamic.html#dynamic/1">dynamic/1</a>.
<p>The second way of storing arbitrary terms in the database is using
the `recorded database'. In this database terms are associated with a
<var>key</var>. A key can be an atom, small integer or term. In the last
case only the functor and arity determine the key. Each key has a chain
of terms associated with it. New terms can be added either at the head
or at the tail of this chain.
<p>Following the Edinburgh tradition, SWI-Prolog provides database keys
to clauses and records in the recorded database. As of 5.9.10, these
keys are represented by non-textual atoms (`blobs', see <a class="sec" href="foreigninclude.html">section
10.4.7</a>), which makes accessing the database through references safe.
<p>The third mechanism is a special-purpose one. It associates an
integer or atom with a key, which is an atom, integer or term. Each key
can only have one atom or integer associated with it.
<dl class="latex">
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="abolish/1"><strong>abolish</strong>(<var>:PredicateIndicator</var>)</a></dt>
<dd class="defbody">
Removes all clauses of a predicate with functor <var>Functor</var> and
arity
<var>Arity</var> from the database. All predicate attributes (dynamic,
multifile, index, etc.) are reset to their defaults. Abolishing an
imported predicate only removes the import link; the predicate will keep
its old definition in its definition module.
<p>According to the ISO standard, <a id="idx:abolish1:720"></a><a class="pred" href="db.html#abolish/1">abolish/1</a>
can only be applied to dynamic procedures. This is odd, as for dealing
with dynamic procedures there is already <a id="idx:retract1:721"></a><a class="pred" href="db.html#retract/1">retract/1</a>
and <a id="idx:retractall1:722"></a><a class="pred" href="db.html#retractall/1">retractall/1</a>.
The <a id="idx:abolish1:723"></a><a class="pred" href="db.html#abolish/1">abolish/1</a>
predicate was introduced in DEC-10 Prolog precisely for dealing with
static procedures. In SWI-Prolog, <a id="idx:abolish1:724"></a><a class="pred" href="db.html#abolish/1">abolish/1</a>
works on static procedures, unless the Prolog flag <a class="flag" href="flags.html#flag:iso">iso</a>
is set to <code>true</code>.
<p>It is advised to use <a id="idx:retractall1:725"></a><a class="pred" href="db.html#retractall/1">retractall/1</a>
for erasing all clauses of a dynamic predicate.</dd>
<dt class="pubdef"><a id="abolish/2"><strong>abolish</strong>(<var>+Name,
+Arity</var>)</a></dt>
<dd class="defbody">
Same as <code>abolish(Name/Arity)</code>. The predicate <a id="idx:abolish2:726"></a><a class="pred" href="db.html#abolish/2">abolish/2</a>
conforms to the Edinburgh standard, while <a id="idx:abolish1:727"></a><a class="pred" href="db.html#abolish/1">abolish/1</a>
is ISO compliant.</dd>
<dt class="pubdef"><a id="copy_predicate_clauses/2"><strong>copy_predicate_clauses</strong>(<var>:From,
:To</var>)</a></dt>
<dd class="defbody">
Copy all clauses of predicate <var>From</var> to <var>To</var>. The
predicate
<var>To</var> must be dynamic or undefined. If <var>To</var> is
undefined, it is created as a dynamic predicate holding a copy of the
clauses of
<var>From</var>. If <var>To</var> is a dynamic predicate, the clauses of
<var>From</var> are added (as in <a id="idx:assertz1:728"></a><a class="pred" href="db.html#assertz/1">assertz/1</a>)
to the clauses of <var>To</var>.
<var>To</var> and <var>From</var> must have the same arity. Acts as if
defined by the program below, but at a much better performance by
avoiding decompilation and compilation.
<pre class="code">
copy_predicate_clauses(From, To) :-
head(From, MF:FromHead),
head(To, MT:ToHead),
FromHead =.. [_|Args],
ToHead =.. [_|Args],
forall(clause(MF:FromHead, Body),
assertz(MT:ToHead, Body)).
head(From, M:Head) :-
strip_module(From, M, Name/Arity),
functor(Head, Name, Arity).
</pre>
</dd>
<dt class="pubdef"><a id="redefine_system_predicate/1"><strong>redefine_system_predicate</strong>(<var>+Head</var>)</a></dt>
<dd class="defbody">
This directive may be used both in module <code>user</code> and in
normal modules to redefine any system predicate. If the system
definition is redefined in module <code>user</code>, the new definition
is the default definition for all sub-modules. Otherwise the
redefinition is local to the module. The system definition remains in
the module <code>system</code>.
<p>Redefining system predicate facilitates the definition of
compatibility packages. Use in other contexts is discouraged.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="retract/1"><strong>retract</strong>(<var>+Term</var>)</a></dt>
<dd class="defbody">
When <var>Term</var> is an atom or a term it is unified with the first
unifying fact or clause in the database. The fact or clause is removed
from the database.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="retractall/1"><strong>retractall</strong>(<var>+Head</var>)</a></dt>
<dd class="defbody">
All facts or clauses in the database for which the <var>head</var>
unifies with <var>Head</var> are removed. If <var>Head</var> refers to a
predicate that is not defined, it is implicitly created as a dynamic
predicate. See also <a id="idx:dynamic1:729"></a><a class="pred" href="dynamic.html#dynamic/1">dynamic/1</a>.<sup class="fn">62<span class="fn-text">The
ISO standard only allows using <a id="idx:dynamic1:730"></a><a class="pred" href="dynamic.html#dynamic/1">dynamic/1</a>
as a <em>directive</em>.</span></sup></dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="asserta/1"><strong>asserta</strong>(<var>+Term</var>)</a></dt>
<dd class="defbody">
Assert a fact or clause in the database. <var>Term</var> is asserted as
the first fact or clause of the corresponding predicate. Equivalent to
<a id="idx:assert1:731"></a><a class="pred" href="db.html#assert/1">assert/1</a>,
but <var>Term</var> is asserted as first clause or fact of the
predicate. If the program space for the target module is limited (see <a id="idx:setmodule1:732"></a><a class="pred" href="manipmodule.html#set_module/1">set_module/1</a>), <a id="idx:asserta1:733"></a><a class="pred" href="db.html#asserta/1">asserta/1</a>
can raise a
<code>resource_error(program_space)</code>.</dd>
<dt class="pubdef"><span class="pred-tag">[ISO]</span><a id="assertz/1"><strong>assertz</strong>(<var>+Term</var>)</a></dt>
<dd class="defbody">
Equivalent to <a id="idx:asserta1:734"></a><a class="pred" href="db.html#asserta/1">asserta/1</a>,
but <var>Term</var> is asserted as the last clause or fact of the
predicate.</dd>
<dt class="pubdef"><a id="assert/1"><strong>assert</strong>(<var>+Term</var>)</a></dt>
<dd class="defbody">
Equivalent to <a id="idx:assertz1:735"></a><a class="pred" href="db.html#assertz/1">assertz/1</a>.
Deprecated: new code should use <a id="idx:assertz1:736"></a><a class="pred" href="db.html#assertz/1">assertz/1</a>.</dd>
<dt class="pubdef"><a id="asserta/2"><strong>asserta</strong>(<var>+Term,
-Reference</var>)</a></dt>
<dd class="defbody">
Asserts a clause as <a id="idx:asserta1:737"></a><a class="pred" href="db.html#asserta/1">asserta/1</a>
and unifies <var>Reference</var> with a handle to this clause. The
handle can be used to access this specific clause using <a id="idx:clause3:738"></a><a class="pred" href="examineprog.html#clause/3">clause/3</a>
and <a id="idx:erase1:739"></a><a class="pred" href="db.html#erase/1">erase/1</a>.</dd>
<dt class="pubdef"><a id="assertz/2"><strong>assertz</strong>(<var>+Term,
-Reference</var>)</a></dt>
<dd class="defbody">
Equivalent to <a id="idx:asserta1:740"></a><a class="pred" href="db.html#asserta/1">asserta/1</a>,
asserting the new clause as the last clause of the predicate.</dd>
<dt class="pubdef"><a id="assert/2"><strong>assert</strong>(<var>+Term,
-Reference</var>)</a></dt>
<dd class="defbody">
Equivalent to <a id="idx:assertz2:741"></a><a class="pred" href="db.html#assertz/2">assertz/2</a>.
Deprecated: new code should use <a id="idx:assertz2:742"></a><a class="pred" href="db.html#assertz/2">assertz/2</a>.</dd>
<dt class="pubdef"><a id="recorda/3"><strong>recorda</strong>(<var>+Key,
+Term, -Reference</var>)</a></dt>
<dd class="defbody">
Assert <var>Term</var> in the recorded database under key <var>Key</var>.
<var>Key</var> is a small integer (range <a class="flag" href="flags.html#flag:min_tagged_integer">min_tagged_integer</a>
...<a class="flag" href="flags.html#flag:max_tagged_integer">max_tagged_integer</a>,
atom or compound term. If the key is a compound term, only the name and
arity define the key.
<var>Reference</var> is unified with an opaque handle to the record (see
<a id="idx:erase1:743"></a><a class="pred" href="db.html#erase/1">erase/1</a>).</dd>
<dt class="pubdef"><a id="recorda/2"><strong>recorda</strong>(<var>+Key,
+Term</var>)</a></dt>
<dd class="defbody">
Equivalent to <code>recorda(<var>Key</var>, <var>Term</var>, _)</code>.</dd>
<dt class="pubdef"><a id="recordz/3"><strong>recordz</strong>(<var>+Key,
+Term, -Reference</var>)</a></dt>
<dd class="defbody">
Equivalent to <a id="idx:recorda3:744"></a><a class="pred" href="db.html#recorda/3">recorda/3</a>,
but puts the <var>Term</var> at the tail of the terms recorded under <var>Key</var>.</dd>
<dt class="pubdef"><a id="recordz/2"><strong>recordz</strong>(<var>+Key,
+Term</var>)</a></dt>
<dd class="defbody">
Equivalent to <code>recordz(<var>Key</var>, <var>Term</var>, _)</code>.</dd>
<dt class="pubdef"><a id="recorded/3"><strong>recorded</strong>(<var>?Key,
?Value, ?Reference</var>)</a></dt>
<dd class="defbody">
True if <var>Value</var> is recorded under <var>Key</var> and has the
given database <var>Reference</var>. If <var>Reference</var> is given,
this predicate is semi-deterministic. Otherwise, it must be considered
non-deterministic. If neither <var>Reference</var> nor <var>Key</var> is
given, the triples are generated as in the code snippet below.<sup class="fn">63<span class="fn-text">Note
that, without a given <var>Key</var>, some implementations return
triples in the order defined by <a id="idx:recorda2:745"></a><a class="pred" href="db.html#recorda/2">recorda/2</a>
and <a id="idx:recordz2:746"></a><a class="pred" href="db.html#recordz/2">recordz/2</a>.</span></sup>
See also <a id="idx:currentkey1:747"></a><a class="pred" href="examineprog.html#current_key/1">current_key/1</a>.
<pre class="code">
current_key(Key),
recorded(Key, Value, Reference)
</pre>
</dd>
<dt class="pubdef"><a id="recorded/2"><strong>recorded</strong>(<var>+Key,
-Value</var>)</a></dt>
<dd class="defbody">
Equivalent to <code>recorded(<var>Key</var>, <var>Value</var>, _)</code>.</dd>
<dt class="pubdef"><a id="erase/1"><strong>erase</strong>(<var>+Reference</var>)</a></dt>
<dd class="defbody">
Erase a record or clause from the database. <var>Reference</var> is a
db-reference returned by <a id="idx:recorda3:748"></a><a class="pred" href="db.html#recorda/3">recorda/3</a>, <a id="idx:recordz3:749"></a><a class="pred" href="db.html#recordz/3">recordz/3</a>
or <a id="idx:recorded3:750"></a><a class="pred" href="db.html#recorded/3">recorded/3</a>, <a id="idx:clause3:751"></a><a class="pred" href="examineprog.html#clause/3">clause/3</a>,
<a id="idx:assert2:752"></a><a class="pred" href="db.html#assert/2">assert/2</a>, <a id="idx:asserta2:753"></a><a class="pred" href="db.html#asserta/2">asserta/2</a>
or <a id="idx:assertz2:754"></a><a class="pred" href="db.html#assertz/2">assertz/2</a>.
Fail silently if the referenced object no longer exists.</dd>
<dt class="pubdef"><a id="instance/2"><strong>instance</strong>(<var>+Reference,
-Term</var>)</a></dt>
<dd class="defbody">
Unify <var>Term</var> with the referenced clause or database record.
Unit clauses are represented as <var>Head</var> :- <code>true</code>.</dd>
<dt class="pubdef"><a id="flag/3"><strong>flag</strong>(<var>+Key, -Old,
+New</var>)</a></dt>
<dd class="defbody">
<var>Key</var> is an atom, integer or term. As with the recorded
database, if
<var>Key</var> is a term, only the name and arity are used to locate the
flag. Unify <var>Old</var> with the old value associated with <var>Key</var>.
If the key is used for the first time <var>Old</var> is unified with the
integer 0. Then store the value of <var>New</var>, which should be an
integer, float, atom or arithmetic expression, under <var>Key</var>. <a id="idx:flag3:755"></a><a class="pred" href="db.html#flag/3">flag/3</a>
is a fast mechanism for storing simple facts in the database. The flag
database is shared between threads and updates are atomic, making it
suitable for generating unique integer counters.<sup class="fn">64<span class="fn-text">The <a id="idx:flag3:756"></a><a class="pred" href="db.html#flag/3">flag/3</a>
predicate is not portable. Non-backtrackable global variables (<a id="idx:nbsetval2:757"></a><a class="pred" href="gvar.html#nb_setval/2">nb_setval/2</a>)
and non-backtrackable assignment (<a id="idx:nbsetarg3:758"></a><a class="pred" href="manipterm.html#nb_setarg/3">nb_setarg/3</a>)
are more widely recognised special-purpose alternatives for
non-backtrackable and/or global states.</span></sup>
</dd>
</dl>
<p><h3 id="sec:update"><a id="sec:4.13.1"><span class="sec-nr">4.13.1</span> <span class="sec-title">Update
view</span></a></h3>
<a id="sec:update"></a>
<p><a id="idx:logicalupdateview:759"></a><a id="idx:immediateupdateview:760"></a><a id="idx:updateview:761"></a>Traditionally,
Prolog systems used the <em>immediate update view</em>: new clauses
became visible to predicates backtracking over dynamic predicates
immediately, and retracted clauses became invisible immediately.
<p>Starting with SWI-Prolog 3.3.0 we adhere to the <em>logical update
view</em>, where backtrackable predicates that enter the definition of a
predicate will not see any changes (either caused by <a id="idx:assert1:762"></a><a class="pred" href="db.html#assert/1">assert/1</a>
or
<a id="idx:retract1:763"></a><a class="pred" href="db.html#retract/1">retract/1</a>)
to the predicate. This view is the ISO standard, the most commonly used
and the most `safe'.<sup class="fn">65<span class="fn-text">For example,
using the immediate update view, no call to a dynamic predicate is
deterministic.</span></sup> Logical updates are realised by keeping
reference counts on predicates and <em>generation</em> information on
clauses. Each change to the database causes an increment of the
generation of the database. Each goal is tagged with the generation in
which it was started. Each clause is flagged with the generation it was
created in as well as the generation it was erased from. Only clauses
with a `created' ... `erased' interval that encloses the generation of
the current goal are considered visible.
<p><h3 id="sec:hashterm"><a id="sec:4.13.2"><span class="sec-nr">4.13.2</span> <span class="sec-title">Indexing
databases</span></a></h3>
<a id="sec:hashterm"></a>
<p><a id="idx:indexingtermhashes:764"></a>The indexing capabilities of
SWI-Prolog are described in
<a class="sec" href="jitindex.html">section 2.17</a>. Summarizing,
SWI-Prolog creates indexes for any applicable argument, but only on one
argument, and does not index on arguments of compound terms. The
predicates below provide building blocks to circumvent the limitations
of the current indexing system.
<p>Programs that aim at portability should consider using <a id="idx:termhash2:765"></a><a class="pred" href="db.html#term_hash/2">term_hash/2</a>
and
<a id="idx:termhash4:766"></a><a class="pred" href="db.html#term_hash/4">term_hash/4</a>
to design their database such that indexing on constant or functor
(name/arity reference) on the first argument is sufficient.
<dl class="latex">
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="term_hash/2"><strong>term_hash</strong>(<var>+Term,
-HashKey</var>)</a></dt>
<dd class="defbody">
If <var>Term</var> is a ground term (see <a id="idx:ground1:767"></a><a class="pred" href="typetest.html#ground/1">ground/1</a>), <var>HashKey</var>
is unified with a positive integer value that may be used as a hash key
to the value. If <var>Term</var> is not ground, the predicate leaves <var>HashKey</var>
an unbound variable. Hash keys are in the range <var>0 ... 16,777,215</var>,
the maximal integer that can be stored efficiently on both 32 and 64 bit
platforms.
<p>This predicate may be used to build hash tables as well as to exploit
argument indexing to find complex terms more quickly.
<p>The hash key does not rely on temporary information like addresses of
atoms and may be assumed constant over different invocations and
versions of SWI-Prolog.<sup class="fn">66<span class="fn-text">Last
change: version 5.10.4</span></sup> Hashes differ between big and little
endian machines. The <a id="idx:termhash2:768"></a><a class="pred" href="db.html#term_hash/2">term_hash/2</a>
predicate is cycle-safe.<sup class="fn">bug<span class="fn-text">All
arguments that (indirectly) lead to a cycle have the same hash key.</span></sup></dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="term_hash/4"><strong>term_hash</strong>(<var>+Term,
+Depth, +Range, -HashKey</var>)</a></dt>
<dd class="defbody">
As <a id="idx:termhash2:769"></a><a class="pred" href="db.html#term_hash/2">term_hash/2</a>,
but only considers <var>Term</var> to the specified
<var>Depth</var>. The top-level term has depth 1, its arguments have
depth 2, etc. That is, <var><var>Depth</var> = 0</var> hashes nothing; <var><var>Depth</var>
= 1</var> hashes atomic values or the functor and arity of a compound
term, not its arguments; <var><var>Depth</var> = 2</var> also indexes
the immediate arguments, etc.
<p><var>HashKey</var> is in the range <var>[0 ...<var>Range</var>-1]</var>. <var>Range</var>
must be in the range <var>[1 ... 2147483647]</var></dd>
<dt class="pubdef"><span class="pred-tag">[det]</span><a id="variant_sha1/2"><strong>variant_sha1</strong>(<var>+Term,
-SHA1</var>)</a></dt>
<dd class="defbody">
Compute a SHA1-hash from <var>Term</var>. The hash is represented as a
40-byte hexadecimal atom. Unlike <a id="idx:termhash2:770"></a><a class="pred" href="db.html#term_hash/2">term_hash/2</a>
and friends, this predicate produces a hash key for non-ground terms.
The hash is invariant over variable-renaming (see <a class="pred" href="compare.html#=@=/2">=@=/2</a>)
and constants over different invocations of Prolog.<sup class="fn">bug<span class="fn-text">The
hash depends on word order (big/little-endian) and the wordsize (32/64
bits).</span></sup>
<p>This predicate raises an exception when trying to compute the hash on
a cyclic term or attributed term. Attributed terms are not handled
because <a id="idx:subsumeschk2:771"></a><span class="pred-ext">subsumes_chk/2</span>
is not considered well defined for attributed terms. Cyclic terms are
not supported because this would require establishing a canonical cycle.
That is, given A=[a|A] and B=[a,a|B],
<var>A</var> and <var>B</var> should produce the same hash. This is not
(yet) implemented.
<p>This hash was developed for lookup of solutions to a goal stored in a
table. By using a cryptographic hash, heuristic algorithms can often
ignore the possibility of hash collisions and thus avoid storing the
goal term itself as well as testing using <a class="pred" href="compare.html#=@=/2">=@=/2</a>.
</dd>
</dl>
<p></body></html>
|