This file is indexed.

/usr/lib/swi-prolog/doc/Manual/clpfd.html is in swi-prolog-nox 7.2.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html>
<head>
<title>SWI-Prolog 7.3.6 Reference Manual: Section A.8</title><link rel="home" href="index.html">
<link rel="contents" href="Contents.html">
<link rel="index" href="DocIndex.html">
<link rel="summary" href="summary.html">
<link rel="previous" href="clpb.html">
<link rel="next" href="clpqr.html">

<style type="text/css">

/* Style sheet for SWI-Prolog latex2html
*/

dd.defbody
{ margin-bottom: 1em;
}

dt.pubdef, dt.multidef
{ color: #fff;
padding: 2px 10px 0px 10px;
margin-bottom: 5px;
font-size: 18px;
vertical-align: middle;
overflow: hidden;
}

dt.pubdef { background-color: #0c3d6e; }
dt.multidef { background-color: #ef9439; }

.bib dd
{ margin-bottom: 1em;
}

.bib dt
{ float: left;
margin-right: 1.3ex;
}

pre.code
{ margin-left: 1.5em;
margin-right: 1.5em;
border: 1px dotted;
padding-top: 5px;
padding-left: 5px;
padding-bottom: 5px;
background-color: #f8f8f8;
}

div.navigate
{ text-align: center;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
}

div.title
{ text-align: center;
padding-bottom: 1em;
font-size: 200%;
font-weight: bold;
}

div.author
{ text-align: center;
font-style: italic;
}

div.abstract
{ margin-top: 2em;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
margin-left: 10%; margin-right:10%;
}

div.abstract-title
{ text-align: center;
padding: 5px;
font-size: 120%;
font-weight: bold;
}

div.toc-h1
{ font-size: 200%;
font-weight: bold;
}

div.toc-h2
{ font-size: 120%;
font-weight: bold;
margin-left: 2em;
}

div.toc-h3
{ font-size: 100%;
font-weight: bold;
margin-left: 4em;
}

div.toc-h4
{ font-size: 100%;
margin-left: 6em;
}

span.sec-nr
{
}

span.sec-title
{
}

span.pred-ext
{ font-weight: bold;
}

span.pred-tag
{ float: right;
padding-top: 0.2em;
font-size: 80%;
font-style: italic;
color: #fff;
}

div.caption
{ width: 80%;
margin: auto;
text-align:center;
}

/* Footnotes */
.fn {
color: red;
font-size: 70%;
}

.fn-text, .fnp {
position: absolute;
top: auto;
left: 10%;
border: 1px solid #000;
box-shadow: 5px 5px 5px #888;
display: none;
background: #fff;
color: #000;
margin-top: 25px;
padding: 8px 12px;
font-size: larger;
}

sup:hover span.fn-text
{ display: block;
}

/* Lists */

dl.latex
{ margin-top: 1ex;
margin-bottom: 0.5ex;
}

dl.latex dl.latex dd.defbody
{ margin-bottom: 0.5ex;
}

/* PlDoc Tags */

dl.tags
{ font-size: 90%;
margin-left: 5ex;
margin-top: 1ex;
margin-bottom: 0.5ex;
}

dl.tags dt
{ margin-left: 0pt;
font-weight: bold;
}

dl.tags dd
{ margin-left: 3ex;
}

td.param
{ font-style: italic;
font-weight: bold;
}

/* Index */

dt.index-sep
{ font-weight: bold;
font-size: +1;
margin-top: 1ex;
}

/* Tables */

table.center
{ margin: auto;
}

table.latex
{ border-collapse:collapse;
}

table.latex tr
{ vertical-align: text-top;
}

table.latex td,th
{ padding: 2px 1em;
}

table.latex tr.hline td,th
{ border-top: 1px solid black;
}

table.frame-box
{ border: 2px solid black;
}

</style>
</head>
<body style="background:white">
<div class="navigate"><a class="nav" href="index.html"><img src="home.gif" alt="Home"></a>
<a class="nav" href="Contents.html"><img src="index.gif" alt="Contents"></a>
<a class="nav" href="DocIndex.html"><img src="yellow_pages.gif" alt="Index"></a>
<a class="nav" href="summary.html"><img src="info.gif" alt="Summary"></a>
<a class="nav" href="clpb.html"><img src="prev.gif" alt="Previous"></a>
<a class="nav" href="clpqr.html"><img src="next.gif" alt="Next"></a>
</div>
<h2 id="sec:clpfd"><a id="sec:A.8"><span class="sec-nr">A.8</span> <span class="sec-title">library(clpfd): 
Constraint Logic Programming over Finite Domains</span></a></h2>

<p><a id="sec:clpfd"></a>

<dl class="tags">
<dt class="tag">author</dt>
<dd>
Markus Triska
</dd>
</dl>

<p><h4 id="sec:clpfd-intro"><a id="sec:A.8.1"><span class="sec-nr">A.8.1</span> <span class="sec-title">Introduction</span></a></h4>

<p><a id="sec:clpfd-intro"></a>

<p>Constraint programming is a declarative formalism that lets you state 
relations between terms. This library provides CLP(FD), Constraint Logic 
Programming over Finite Domains.

<p>There are two major use cases of this library:

<p>
<ol class="latex">
<li>CLP(FD) constraints provide <i>declarative integer arithmetic</i>: 
They implement pure <i>relations</i> between integer expressions and can 
be used in all directions, also if parts of expressions are variables.
<li>In connection with enumeration predicates and more complex 
constraints, CLP(FD) is often used to model and solve combinatorial 
problems such as planning, scheduling and allocation tasks.
</ol>

<p>When teaching Prolog, we <i>strongly recommend</i> that you introduce 
CLP(FD) constraints <i>before</i> explaining lower-level arithmetic 
predicates and their procedural idiosyncrasies. This is because 
constraints are easy to explain, understand and use due to their purely 
relational nature. In contrast, the modedness and directionality of 
low-level arithmetic primitives are non-declarative limitations that are 
better deferred to more advanced lectures.

<p>If you are used to the complicated operational considerations that 
low-level arithmetic primitives necessitate, then moving to CLP(FD) 
constraints may, due to their power and convenience, at first feel to 
you excessive and almost like cheating. It <i>isn't</i>. Constraints are 
an integral part of many Prolog systems and are available to help you 
eliminate and avoid, as far as possible, the use of lower-level and less 
general primitives by providing declarative alternatives that are meant 
to be used instead.

<p>For satisfactory performance, arithmetic constraints are implicitly 
rewritten at compilation time so that lower-level fallback predicates 
are automatically used whenever possible.

<p>We recommend the following reference to cite this library in 
scientific publications:

<pre class="code">
@inproceedings{Triska12,
  author    = {Markus Triska},
  title     = {The Finite Domain Constraint Solver of {SWI-Prolog}},
  booktitle = {FLOPS},
  series    = {LNCS},
  volume    = {7294},
  year      = {2012},
  pages     = {307-316}
}
</pre>

<p>and the following URL to link to its documentation:

<pre class="code">
http://www.swi-prolog.org/man/clpfd.html
</pre>

<p><h4 id="sec:cplfd-arith-constraints"><a id="sec:A.8.2"><span class="sec-nr">A.8.2</span> <span class="sec-title">Arithmetic 
constraints</span></a></h4>

<p><a id="sec:cplfd-arith-constraints"></a>

<p>A finite domain <i>arithmetic expression</i> is one of:
<blockquote>
<table class="latex frame-box">
<tr><td><i>integer</i> </td><td>Given value </td></tr>
<tr><td><i>variable</i> </td><td>Unknown integer </td></tr>
<tr><td>?(<i>variable</i>)</td><td>Unknown integer </td></tr>
<tr><td>-Expr</td><td>Unary minus </td></tr>
<tr><td>Expr + Expr</td><td>Addition </td></tr>
<tr><td>Expr * Expr</td><td>Multiplication </td></tr>
<tr><td>Expr - Expr</td><td>Subtraction </td></tr>
<tr><td>Expr <code>^</code> Expr</td><td>Exponentiation </td></tr>
<tr><td><code>min(Expr,Expr)</code> </td><td>Minimum of two expressions </td></tr>
<tr><td><code>max(Expr,Expr)</code> </td><td>Maximum of two expressions </td></tr>
<tr><td>Expr <code>mod</code> Expr</td><td>Modulo induced by floored 
division </td></tr>
<tr><td>Expr <code>rem</code> Expr</td><td>Modulo induced by truncated 
division </td></tr>
<tr><td><code>abs(Expr)</code> </td><td>Absolute value </td></tr>
<tr><td>Expr <code>//</code> Expr</td><td>Truncated integer division </td></tr>
</table>
</blockquote>

<p>Arithmetic <i>constraints</i> are relations between arithmetic 
expressions.

<p>The most important arithmetic constraints are:
<blockquote>
<table class="latex frame-box">
<tr><td>Expr1 <code>#&gt;=</code> Expr2</td><td>Expr1 is greater than or 
equal to Expr2 </td></tr>
<tr><td>Expr1 <code>#=&lt;</code> Expr2</td><td>Expr1 is less than or 
equal to Expr2 </td></tr>
<tr><td>Expr1 <code>#=</code> Expr2</td><td>Expr1 equals Expr2 </td></tr>
<tr><td>Expr1 <code>#\=</code> Expr2</td><td>Expr1 is not equal to Expr2 </td></tr>
<tr><td>Expr1 <code>#&gt;</code> Expr2</td><td>Expr1 is greater than 
Expr2 </td></tr>
<tr><td>Expr1 <code>#&lt;</code> Expr2</td><td>Expr1 is less than Expr2 </td></tr>
</table>
</blockquote>

<p><h4 id="sec:clpfd-integer-arith"><a id="sec:A.8.3"><span class="sec-nr">A.8.3</span> <span class="sec-title">Declarative 
integer arithmetic</span></a></h4>

<p><a id="sec:clpfd-integer-arith"></a>

<p>CLP(FD) constraints let you declaratively express integer arithmetic. 
The CLP(FD) constraints <a class="pred" href="clpfd.html##=/2">#=/2</a>, <a class="pred" href="clpfd.html##>/2">#&gt;/2</a> 
etc. are meant to be used instead of the corresponding primitives <a class="pred" href="arith.html#is/2">is/2</a>, <a class="pred" href="arith.html#=:=/2">=:=/2</a>, <a class="pred" href="arith.html#>/2">&gt;/2</a> 
etc. over integers.

<p>An important advantage of arithmetic constraints is their purely 
relational nature. They are therefore easy to explain and use, and well 
suited for beginners and experienced Prolog programmers alike.

<p>Consider for example the query:

<pre class="code">
?- X #&gt; 3, X #= 5 + 2.
X = 7.
</pre>

<p>In contrast, when using low-level integer arithmetic, we get:

<pre class="code">
?- X &gt; 3, X is 5 + 2.
ERROR: &gt;/2: Arguments are not sufficiently instantiated
</pre>

<p>Due to the necessary operational considerations, the use of these 
low-level arithmetic predicates is considerably harder to understand and 
should therefore be deferred to more advanced lectures.

<p>For supported expressions, CLP(FD) constraints are drop-in 
replacements of these low-level arithmetic predicates, often yielding 
more general programs.

<p>Here is an example:

<pre class="code">
:- use_module(library(clpfd)).

n_factorial(0, 1).
n_factorial(N, F) :-
        N #&gt; 0, N1 #= N - 1, F #= N * F1,
        n_factorial(N1, F1).
</pre>

<p>This predicate can be used in all directions. For example:

<pre class="code">
?- n_factorial(47, F).
F = 258623241511168180642964355153611979969197632389120000000000 ;
false.

?- n_factorial(N, 1).
N = 0 ;
N = 1 ;
false.

?- n_factorial(N, 3).
false.
</pre>

<p>To make the predicate terminate if any argument is instantiated, add 
the (implied) constraint F <code>#\=</code> 0 before the recursive call. 
Otherwise, the query <code>n_factorial(N, 0)</code> is the only 
non-terminating case of this kind.

<p>This library uses <a class="pred" href="consulting.html#goal_expansion/2">goal_expansion/2</a> 
to automatically rewrite arithmetic constraints at compilation time. The 
expansion's aim is to bring the performance of arithmetic constraints 
close to that of lower-level arithmetic predicates whenever possible. To 
disable the expansion, set the flag <code>clpfd_goal_expansion</code> to <code>false</code>.

<p><h4 id="sec:clpfd-reification"><a id="sec:A.8.4"><span class="sec-nr">A.8.4</span> <span class="sec-title">Reification</span></a></h4>

<p><a id="sec:clpfd-reification"></a>

<p>The constraints <a class="pred" href="clpfd.html#in/2">in/2</a>, <a class="pred" href="clpfd.html##=/2">#=/2</a>, <a class="pred" href="clpfd.html##\=/2">#\=/2</a>, <a class="pred" href="clpfd.html##</2">#&lt;/2</a>, <a class="pred" href="clpfd.html##>/2">#&gt;/2</a>, <a class="pred" href="clpfd.html##=</2">#=&lt;/2</a>, 
and <a class="pred" href="clpfd.html##>=/2">#&gt;=/2</a> can be
<i>reified</i>, which means reflecting their truth values into Boolean 
values represented by the integers 0 and 1. Let P and Q denote reifiable 
constraints or Boolean variables, then:
<blockquote>
<table class="latex frame-box">
<tr><td><code>#\</code> Q</td><td>True iff Q is false </td></tr>
<tr><td>P <code>#\/</code> Q</td><td>True iff either P or Q </td></tr>
<tr><td>P <code>#/\</code> Q</td><td>True iff both P and Q </td></tr>
<tr><td>P <code>#\</code> Q</td><td>True iff either P or Q, but not both </td></tr>
<tr><td>P <code>#&lt;==&gt;</code> Q</td><td>True iff P and Q are 
equivalent </td></tr>
<tr><td>P <code>#==&gt;</code> Q</td><td>True iff P implies Q </td></tr>
<tr><td>P <code>#&lt;==</code> Q</td><td>True iff Q implies P </td></tr>
</table>
</blockquote>

<p>The constraints of this table are reifiable as well.

<p>When reasoning over Boolean variables, also consider using
<code>library(clpb)</code> and its dedicated CLP(B) constraints.

<p><h4 id="sec:clpfd-domains"><a id="sec:A.8.5"><span class="sec-nr">A.8.5</span> <span class="sec-title">Domains</span></a></h4>

<p><a id="sec:clpfd-domains"></a>

<p>Each CLP(FD) variable has an associated set of admissible integers 
which we call the variable's <i>domain</i>. Initially, the domain of 
each CLP(FD) variable is the set of all integers. The constraints <a class="pred" href="clpfd.html#in/2">in/2</a> 
and
<a class="pred" href="clpfd.html#ins/2">ins/2</a> are the primary means 
to specify tighter domains of variables.

<p>Here are example queries and the system's declaratively equivalent 
answers:

<pre class="code">
?- X in 100..sup.
X in 100..sup.

?- X in 1..5 \/ 3..12.
X in 1..12.

?- [X,Y,Z] ins 0..3.
X in 0..3,
Y in 0..3,
Z in 0..3.
</pre>

<p>Domains are taken into account when further constraints are stated, 
and by enumeration predicates like <a class="pred" href="clpfd.html#labeling/2">labeling/2</a>.

<p><h4 id="sec:clpfd-examples"><a id="sec:A.8.6"><span class="sec-nr">A.8.6</span> <span class="sec-title">Examples</span></a></h4>

<p><a id="sec:clpfd-examples"></a>

<p>Here is an example session with a few queries and their answers:

<pre class="code">
?- use_module(library(clpfd)).
% library(clpfd) compiled into clpfd 0.06 sec, 633,732 bytes
true.

?- X #&gt; 3.
X in 4..sup.

?- X #\= 20.
X in inf..19\/21..sup.

?- 2*X #= 10.
X = 5.

?- X*X #= 144.
X in -12\/12.

?- 4*X + 2*Y #= 24, X + Y #= 9, [X,Y] ins 0..sup.
X = 3,
Y = 6.

?- X #= Y #&lt;==&gt; B, X in 0..3, Y in 4..5.
B = 0,
X in 0..3,
Y in 4..5.
</pre>

<p>In each case, and as for all pure programs, the answer is 
declaratively equivalent to the original query, and in many cases the 
constraint solver has deduced additional domain restrictions.

<p><h4 id="sec:clpfd-search"><a id="sec:A.8.7"><span class="sec-nr">A.8.7</span> <span class="sec-title">Enumeration 
predicates and search</span></a></h4>

<p><a id="sec:clpfd-search"></a>

<p>In addition to being declarative replacements for low-level 
arithmetic predicates, CLP(FD) constraints are also often used to solve 
combinatorial problems such as planning, scheduling and allocation 
tasks. To let you conveniently model and solve such problems, this 
library provides several constraints beyond typical integer arithmetic, 
such as <a class="pred" href="clpfd.html#all_distinct/1">all_distinct/1</a>, <a class="pred" href="clpfd.html#global_cardinality/2">global_cardinality/2</a> 
and
<a class="pred" href="clpfd.html#cumulative/1">cumulative/1</a>.

<p>Using CLP(FD) constraints to solve combinatorial tasks typically 
consists of two phases:

<p>
<ol class="latex">
<li>First, all relevant constraints are stated.
<li>Second, if the domain of each involved variable is <i>finite</i>, 
then <i>enumeration predicates</i> can be used to search for concrete 
solutions.
</ol>

<p>It is good practice to keep the modeling part, via a dedicated 
predicate called the <b>core relation</b>, separate from the actual 
search for solutions. This lets you observe termination and determinism 
properties of the core relation in isolation from the search, and more 
easily try different search strategies.

<p>As an example of a constraint satisfaction problem, consider the 
cryptoarithmetic puzzle SEND + MORE = MONEY, where different letters 
denote distinct integers between 0 and 9. It can be modeled in CLP(FD) 
as follows:

<pre class="code">
:- use_module(library(clpfd)).

puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-
        Vars = [S,E,N,D,M,O,R,Y],
        Vars ins 0..9,
        all_different(Vars),
                  S*1000 + E*100 + N*10 + D +
                  M*1000 + O*100 + R*10 + E #=
        M*10000 + O*1000 + N*100 + E*10 + Y,
        M #\= 0, S #\= 0.
</pre>

<p>Notice that we are <i>not</i> using <a class="pred" href="clpfd.html#labeling/2">labeling/2</a> 
in this predicate, so that we can first execute and observe the modeling 
part in isolation. Sample query and its result (actual variables 
replaced for readability):

<pre class="code">
?- puzzle(As+Bs=Cs).
As = [9, A2, A3, A4],
Bs = [1, 0, B3, A2],
Cs = [1, 0, A3, A2, C5],
A2 in 4..7,
all_different([9, A2, A3, A4, 1, 0, B3, C5]),
91*A2+A4+10*B3#=90*A3+C5,
A3 in 5..8,
A4 in 2..8,
B3 in 2..8,
C5 in 2..8.
</pre>

<p>From this answer, we see that this core relation <i>terminates</i> 
and is in fact <i>deterministic</i>. Moreover, we see from the residual 
goals that the constraint solver has deduced more stringent bounds for 
all variables. Such observations are only possible if modeling and 
search parts are cleanly separated.

<p>Labeling can then be used to search for solutions in a separate 
predicate or goal:

<pre class="code">
?- puzzle(As+Bs=Cs), label(As).
As = [9, 5, 6, 7],
Bs = [1, 0, 8, 5],
Cs = [1, 0, 6, 5, 2] ;
false.
</pre>

<p>In this case, it suffices to label a subset of variables to find the 
puzzle's unique solution, since the constraint solver is strong enough 
to reduce the domains of remaining variables to singleton sets. In 
general though, it is necessary to label all variables to obtain ground 
solutions.

<p><h4 id="sec:clpfd-optimisation"><a id="sec:A.8.8"><span class="sec-nr">A.8.8</span> <span class="sec-title">Optimisation</span></a></h4>

<p><a id="sec:clpfd-optimisation"></a>

<p>You can use <a class="pred" href="clpfd.html#labeling/2">labeling/2</a> 
to minimize or maximize the value of a CLP(FD) expression, and generate 
solutions in increasing or decreasing order of the value. See the 
labeling options <code>min(Expr)</code> and <code>max(Expr)</code>, 
respectively.

<p>Again, to easily try different labeling options in connection with 
optimisation, we recommend to introduce a dedicated predicate for 
posting constraints, and to use <code>labeling/2</code> in a separate 
goal. This way, you can observe properties of the core relation in 
isolation, and try different labeling options without recompiling your 
code.

<p>If necessary, you can use <code>once/1</code> to commit to the first 
optimal solution. However, it is often very valuable to see alternative 
solutions that are <i>also</i> optimal, so that you can choose among 
optimal solutions by other criteria. For the sake of purity and 
completeness, we recommend to avoid <code>once/1</code> and other 
constructs that lead to impurities in CLP(FD) programs.

<p><h4 id="sec:clpfd-advanced-topics"><a id="sec:A.8.9"><span class="sec-nr">A.8.9</span> <span class="sec-title">Advanced 
topics</span></a></h4>

<p><a id="sec:clpfd-advanced-topics"></a>

<p>If you set the flag <code>clpfd_monotonic</code> to <code>true</code>, 
then CLP(FD) is monotonic: Adding new constraints cannot yield new 
solutions. When this flag is <code>true</code>, you must wrap variables 
that occur in arithmetic expressions with the functor <code>(?)/1</code>. 
For example, <code>?(X) #= ?(Y) + ?(Z)</code>. The wrapper can be 
omitted for variables that are already constrained to integers.

<p>Use <a class="pred" href="coroutining.html#call_residue_vars/2">call_residue_vars/2</a> 
and <a class="pred" href="attvar.html#copy_term/3">copy_term/3</a> to 
inspect residual goals and the constraints in which a variable is 
involved. This library also provides <i>reflection</i> predicates (like <a class="pred" href="clpfd.html#fd_dom/2">fd_dom/2</a>, <a class="pred" href="clpfd.html#fd_size/2">fd_size/2</a> 
etc.) with which you can inspect a variable's current domain. These 
predicates can be useful if you want to implement your own labeling 
strategies.

<p>You can also define custom constraints. The mechanism to do this is 
not yet finalised, and we welcome suggestions and descriptions of use 
cases that are important to you. As an example of how it can be done 
currently, let us define a new custom constraint <code>oneground(X,Y,Z)</code>, 
where Z shall be 1 if at least one of X and Y is instantiated:

<pre class="code">
:- use_module(library(clpfd)).

:- multifile clpfd:run_propagator/2.

oneground(X, Y, Z) :-
        clpfd:make_propagator(oneground(X, Y, Z), Prop),
        clpfd:init_propagator(X, Prop),
        clpfd:init_propagator(Y, Prop),
        clpfd:trigger_once(Prop).

clpfd:run_propagator(oneground(X, Y, Z), MState) :-
        (   integer(X) -&gt; clpfd:kill(MState), Z = 1
        ;   integer(Y) -&gt; clpfd:kill(MState), Z = 1
        ;   true
        ).
</pre>

<p>First, <span class="pred-ext">clpfd:make_propagator/2</span> is used 
to transform a user-defined representation of the new constraint to an 
internal form. With
<span class="pred-ext">clpfd:init_propagator/2</span>, this internal 
form is then attached to X and Y. From now on, the propagator will be 
invoked whenever the domains of X or Y are changed. Then, <span class="pred-ext">clpfd:trigger_once/1</span> 
is used to give the propagator its first chance for propagation even 
though the variables' domains have not yet changed. Finally, <span class="pred-ext">clpfd:run_propagator/2</span> 
is extended to define the actual propagator. As explained, this 
predicate is automatically called by the constraint solver. The first 
argument is the user-defined representation of the constraint as used in
<span class="pred-ext">clpfd:make_propagator/2</span>, and the second 
argument is a mutable state that can be used to prevent further 
invocations of the propagator when the constraint has become entailed, 
by using <span class="pred-ext">clpfd:kill/1</span>. An example of using 
the new constraint:

<pre class="code">
?- oneground(X, Y, Z), Y = 5.
Y = 5,
Z = 1,
X in inf..sup.
</pre>

<dl class="latex">
<dt class="pubdef"><a id="in/2"><var>?Var</var> <strong>in</strong> <var>+Domain</var></a></dt>
<dd class="defbody">
<var>Var</var> is an element of <var>Domain</var>. <var>Domain</var> is 
one of:

<dl class="latex">
<dt><strong><var>Integer</var></strong></dt>
<dd class="defbody">
Singleton set consisting only of <i><var>Integer</var></i>.
</dd>
<dt><var><var>Lower</var></var> <strong>..</strong> <var><var>Upper</var></var></dt>
<dd class="defbody">
All integers <i>I</i> such that <i><var>Lower</var></i> <code>=&lt;</code> <i>I</i> <code>=&lt;</code> <i><var>Upper</var></i>.
<i><var>Lower</var></i> must be an integer or the atom <b>inf</b>, which 
denotes negative infinity. <i><var>Upper</var></i> must be an integer or 
the atom <b>sup</b>, which denotes positive infinity.
</dd>
<dt><var><var>Domain1</var></var> <strong><code>\/</code></strong> <var><var>Domain2</var></var></dt>
<dd class="defbody">
The union of <var>Domain1</var> and <var>Domain2</var>.
</dd>
</dl>

</dd>
<dt class="pubdef"><a id="ins/2"><var>+Vars</var> <strong>ins</strong> <var>+Domain</var></a></dt>
<dd class="defbody">
The variables in the list <var>Vars</var> are elements of <var>Domain</var>.</dd>
<dt class="pubdef"><a id="indomain/1"><strong>indomain</strong>(<var>?Var</var>)</a></dt>
<dd class="defbody">
Bind <var>Var</var> to all feasible values of its domain on 
backtracking. The domain of <var>Var</var> must be finite.</dd>
<dt class="pubdef"><a id="label/1"><strong>label</strong>(<var>+Vars</var>)</a></dt>
<dd class="defbody">
Equivalent to <code>labeling([], Vars)</code>.</dd>
<dt class="pubdef"><a id="labeling/2"><strong>labeling</strong>(<var>+Options, 
+Vars</var>)</a></dt>
<dd class="defbody">
Assign a value to each variable in <var>Vars</var>. Labeling means 
systematically trying out values for the finite domain variables <var>Vars</var> 
until all of them are ground. The domain of each variable in <var>Vars</var> 
must be finite.
<var>Options</var> is a list of options that let you exhibit some 
control over the search process. Several categories of options exist:

<p>The variable selection strategy lets you specify which variable of
<var>Vars</var> is labeled next and is one of:

<dl class="latex">
<dt><strong>leftmost</strong></dt>
<dd class="defbody">
Label the variables in the order they occur in <var>Vars</var>. This is 
the default.
</dd>
<dt><strong>ff</strong></dt>
<dd class="defbody">
<i>First fail</i>. Label the leftmost variable with smallest domain 
next, in order to detect infeasibility early. This is often a good 
strategy.
</dd>
<dt><strong>ffc</strong></dt>
<dd class="defbody">
Of the variables with smallest domains, the leftmost one participating 
in most constraints is labeled next.
</dd>
<dt><strong>min</strong></dt>
<dd class="defbody">
Label the leftmost variable whose lower bound is the lowest next.
</dd>
<dt><strong>max</strong></dt>
<dd class="defbody">
Label the leftmost variable whose upper bound is the highest next.
</dd>
</dl>

<p>The value order is one of:

<dl class="latex">
<dt><strong>up</strong></dt>
<dd class="defbody">
Try the elements of the chosen variable's domain in ascending order. 
This is the default.
</dd>
<dt><strong>down</strong></dt>
<dd class="defbody">
Try the domain elements in descending order.
</dd>
</dl>

<p>The branching strategy is one of:

<dl class="latex">
<dt><strong>step</strong></dt>
<dd class="defbody">
For each variable X, a choice is made between X = V and X <code>#\=</code> 
V, where V is determined by the value ordering options. This is the 
default.
</dd>
<dt><strong>enum</strong></dt>
<dd class="defbody">
For each variable X, a choice is made between X = V_1, X = V_2 etc., for 
all values V_i of the domain of X. The order is determined by the value 
ordering options.
</dd>
<dt><strong>bisect</strong></dt>
<dd class="defbody">
For each variable X, a choice is made between X <code>#=&lt;</code> M 
and X <code>#&gt;</code> M, where M is the midpoint of the domain of X.
</dd>
</dl>

<p>At most one option of each category can be specified, and an option 
must not occur repeatedly.

<p>The order of solutions can be influenced with:

<p>
<ul class="compact">
<li><code>min(Expr)</code>
<li><code>max(Expr)</code>
</ul>

<p>This generates solutions in ascending/descending order with respect 
to the evaluation of the arithmetic expression Expr. Labeling <var>Vars</var> 
must make Expr ground. If several such options are specified, they are 
interpreted from left to right, e.g.:

<pre class="code">
?- [X,Y] ins 10..20, labeling([max(X),min(Y)],[X,Y]).
</pre>

<p>This generates solutions in descending order of X, and for each 
binding of X, solutions are generated in ascending order of Y. To obtain 
the incomplete behaviour that other systems exhibit with "<code>maximize(Expr)</code>" 
and "<code>minimize(Expr)</code>", use <a class="pred" href="metacall.html#once/1">once/1</a>, 
e.g.:

<pre class="code">
once(labeling([max(Expr)], Vars))
</pre>

<p>Labeling is always complete, always terminates, and yields no 
redundant solutions.</dd>
<dt class="pubdef"><a id="all_different/1"><strong>all_different</strong>(<var>+Vars</var>)</a></dt>
<dd class="defbody">
<var>Vars</var> are pairwise distinct.</dd>
<dt class="pubdef"><a id="all_distinct/1"><strong>all_distinct</strong>(<var>+Ls</var>)</a></dt>
<dd class="defbody">
Like <a class="pred" href="clpfd.html#all_different/1">all_different/1</a>, 
with stronger propagation. For example,
<a class="pred" href="clpfd.html#all_distinct/1">all_distinct/1</a> can 
detect that not all variables can assume distinct values given the 
following domains:

<pre class="code">
?- maplist(in, Vs,
           [1\/3..4, 1..2\/4, 1..2\/4, 1..3, 1..3, 1..6]),
   all_distinct(Vs).
false.
</pre>

</dd>
<dt class="pubdef"><a id="sum/3"><strong>sum</strong>(<var>+Vars, +Rel, 
?Expr</var>)</a></dt>
<dd class="defbody">
The sum of elements of the list <var>Vars</var> is in relation <var>Rel</var> 
to <var>Expr</var>.
<var>Rel</var> is one of #=, #<code>\</code>=, #<var>&lt;</var>, #<var>&gt;</var>, <code>#=&lt;</code> 
or #<var>&gt;</var>=. For example:

<pre class="code">
?- [A,B,C] ins 0..sup, sum([A,B,C], #=, 100).
A in 0..100,
A+B+C#=100,
B in 0..100,
C in 0..100.
</pre>

</dd>
<dt class="pubdef"><a id="scalar_product/4"><strong>scalar_product</strong>(<var>+Cs, 
+Vs, +Rel, ?Expr</var>)</a></dt>
<dd class="defbody">
True iff the scalar product of <var>Cs</var> and <var>Vs</var> is in 
relation <var>Rel</var> to <var>Expr</var>.
<var>Cs</var> is a list of integers, <var>Vs</var> is a list of 
variables and integers.
<var>Rel</var> is #=, #<code>\</code>=, #<var>&lt;</var>, #<var>&gt;</var>, <code>#=&lt;</code> 
or #<var>&gt;</var>=.</dd>
<dt class="pubdef"><a id="#>=/2"><var>?X</var> <strong>#&gt;=</strong> <var>?Y</var></a></dt>
<dd class="defbody">
<var>X</var> is greater than or equal to <var>Y</var>.</dd>
<dt class="pubdef"><a id="#=</2"><var>?X</var> <strong>#=&lt;</strong> <var>?Y</var></a></dt>
<dd class="defbody">
<var>X</var> is less than or equal to <var>Y</var>.</dd>
<dt class="pubdef"><a id="#=/2"><var>?X</var> <strong>#=</strong> <var>?Y</var></a></dt>
<dd class="defbody">
<var>X</var> equals <var>Y</var>.</dd>
<dt class="pubdef"><a id="#\=/2"><var>?X</var> <strong>#\=</strong> <var>?Y</var></a></dt>
<dd class="defbody">
<var>X</var> is not <var>Y</var>.</dd>
<dt class="pubdef"><a id="#>/2"><var>?X</var> <strong>#&gt;</strong> <var>?Y</var></a></dt>
<dd class="defbody">
<var>X</var> is greater than <var>Y</var>.</dd>
<dt class="pubdef"><a id="#</2"><var>?X</var> <strong>#&lt;</strong> <var>?Y</var></a></dt>
<dd class="defbody">
<var>X</var> is less than <var>Y</var>. In addition to its regular use 
in problems that require it, this constraint can also be useful to 
eliminate uninteresting symmetries from a problem. For example, all 
possible matches between pairs built from four players in total:

<pre class="code">
?- Vs = [A,B,C,D], Vs ins 1..4,
        all_different(Vs),
        A #&lt; B, C #&lt; D, A #&lt; C,
   findall(pair(A,B)-pair(C,D), label(Vs), Ms).
Ms = [ pair(1, 2)-pair(3, 4),
       pair(1, 3)-pair(2, 4),
       pair(1, 4)-pair(2, 3)].
</pre>

</dd>
<dt class="pubdef"><a id="#\/1"><strong>#\</strong> <var>+Q</var></a></dt>
<dd class="defbody">
The reifiable constraint <var>Q</var> does <i>not</i> hold. For example, 
to obtain the complement of a domain:

<pre class="code">
?- #\ X in -3..0\/10..80.
X in inf.. -4\/1..9\/81..sup.
</pre>

</dd>
<dt class="pubdef"><a id="#<==>/2"><var>?P</var> <strong>#&lt;==&gt;</strong> <var>?Q</var></a></dt>
<dd class="defbody">
<var>P</var> and <var>Q</var> are equivalent. For example:

<pre class="code">
?- X #= 4 #&lt;==&gt; B, X #\= 4.
B = 0,
X in inf..3\/5..sup.
</pre>

<p>The following example uses reified constraints to relate a list of 
finite domain variables to the number of occurrences of a given value:

<pre class="code">
:- use_module(library(clpfd)).

vs_n_num(Vs, N, Num) :-
        maplist(eq_b(N), Vs, Bs),
        sum(Bs, #=, Num).

eq_b(X, Y, B) :- X #= Y #&lt;==&gt; B.
</pre>

<p>Sample queries and their results:

<pre class="code">
?- Vs = [X,Y,Z], Vs ins 0..1, vs_n_num(Vs, 4, Num).
Vs = [X, Y, Z],
Num = 0,
X in 0..1,
Y in 0..1,
Z in 0..1.

?- vs_n_num([X,Y,Z], 2, 3).
X = 2,
Y = 2,
Z = 2.
</pre>

</dd>
<dt class="pubdef"><a id="#==>/2"><var>?P</var> <strong>#==&gt;</strong> <var>?Q</var></a></dt>
<dd class="defbody">
<var>P</var> implies <var>Q</var>.</dd>
<dt class="pubdef"><a id="#<==/2"><var>?P</var> <strong>#&lt;==</strong> <var>?Q</var></a></dt>
<dd class="defbody">
<var>Q</var> implies <var>P</var>.</dd>
<dt class="pubdef"><a id="#/\/2"><var>?P</var> <strong>#/\</strong> <var>?Q</var></a></dt>
<dd class="defbody">
<var>P</var> and <var>Q</var> hold.</dd>
<dt class="pubdef"><a id="#\//2"><var>?P</var> <strong>#\/</strong> <var>?Q</var></a></dt>
<dd class="defbody">
<var>P</var> or <var>Q</var> holds. For example, the sum of natural 
numbers below 1000 that are multiples of 3 or 5:

<pre class="code">
?- findall(N, (N mod 3 #= 0 #\/ N mod 5 #= 0, N in 0..999,
               indomain(N)),
           Ns),
   sum(Ns, #=, Sum).
Ns = [0, 3, 5, 6, 9, 10, 12, 15, 18|...],
Sum = 233168.
</pre>

</dd>
<dt class="pubdef"><a id="#\/2"><var>?P</var> <strong>#\</strong> <var>?Q</var></a></dt>
<dd class="defbody">
Either <var>P</var> holds or <var>Q</var> holds, but not both.</dd>
<dt class="pubdef"><a id="lex_chain/1"><strong>lex_chain</strong>(<var>+Lists</var>)</a></dt>
<dd class="defbody">
<var>Lists</var> are lexicographically non-decreasing.</dd>
<dt class="pubdef"><a id="tuples_in/2"><strong>tuples_in</strong>(<var>+Tuples, 
+Relation</var>)</a></dt>
<dd class="defbody">
True iff all <var>Tuples</var> are elements of <var>Relation</var>. Each 
element of the list <var>Tuples</var> is a list of integers or finite 
domain variables.
<var>Relation</var> is a list of lists of integers. Arbitrary finite 
relations, such as compatibility tables, can be modeled in this way. For 
example, if 1 is compatible with 2 and 5, and 4 is compatible with 0 and 
3:

<pre class="code">
?- tuples_in([[X,Y]], [[1,2],[1,5],[4,0],[4,3]]), X = 4.
X = 4,
Y in 0\/3.
</pre>

<p>As another example, consider a train schedule represented as a list 
of quadruples, denoting departure and arrival places and times for each 
train. In the following program, Ps is a feasible journey of length 3 
from A to D via trains that are part of the given schedule.

<pre class="code">
:- use_module(library(clpfd)).

trains([[1,2,0,1],
        [2,3,4,5],
        [2,3,0,1],
        [3,4,5,6],
        [3,4,2,3],
        [3,4,8,9]]).

threepath(A, D, Ps) :-
        Ps = [[A,B,_T0,T1],[B,C,T2,T3],[C,D,T4,_T5]],
        T2 #&gt; T1,
        T4 #&gt; T3,
        trains(Ts),
        tuples_in(Ps, Ts).
</pre>

<p>In this example, the unique solution is found without labeling:

<pre class="code">
?- threepath(1, 4, Ps).
Ps = [[1, 2, 0, 1], [2, 3, 4, 5], [3, 4, 8, 9]].
</pre>

</dd>
<dt class="pubdef"><a id="serialized/2"><strong>serialized</strong>(<var>+Starts, 
+Durations</var>)</a></dt>
<dd class="defbody">
Describes a set of non-overlapping tasks.
<var>Starts</var> = [S_1,...,S_n], is a list of variables or integers,
<var>Durations</var> = [D_1,...,D_n] is a list of non-negative integers. 
Constrains <var>Starts</var> and <var>Durations</var> to denote a set of 
non-overlapping tasks, i.e.: S_i + D_i <code>=&lt;</code> S_j or S_j + 
D_j <code>=&lt;</code> S_i for all 1 <code>=&lt;</code> i <var>&lt;</var> 
j <code>=&lt;</code> n. Example:

<pre class="code">
?- length(Vs, 3),
   Vs ins 0..3,
   serialized(Vs, [1,2,3]),
   label(Vs).
Vs = [0, 1, 3] ;
Vs = [2, 0, 3] ;
false.
</pre>

<dl class="tags">
<dt class="tag">See also</dt>
<dd>
Dorndorf et al. 2000, "Constraint Propagation Techniques for the 
Disjunctive Scheduling Problem"
</dd>
</dl>

</dd>
<dt class="pubdef"><a id="element/3"><strong>element</strong>(<var>?N, 
+Vs, ?V</var>)</a></dt>
<dd class="defbody">
The <var>N</var>-th element of the list of finite domain variables <var>Vs</var> 
is <var>V</var>. Analogous to <a class="pred" href="lists.html#nth1/3">nth1/3</a>.</dd>
<dt class="pubdef"><a id="global_cardinality/2"><strong>global_cardinality</strong>(<var>+Vs, 
+Pairs</var>)</a></dt>
<dd class="defbody">
Global Cardinality constraint. Equivalent to
<code>global_cardinality(Vs, Pairs, [])</code>. Example:

<pre class="code">
?- Vs = [_,_,_], global_cardinality(Vs, [1-2,3-_]), label(Vs).
Vs = [1, 1, 3] ;
Vs = [1, 3, 1] ;
Vs = [3, 1, 1].
</pre>

</dd>
<dt class="pubdef"><a id="global_cardinality/3"><strong>global_cardinality</strong>(<var>+Vs, 
+Pairs, +Options</var>)</a></dt>
<dd class="defbody">
Global Cardinality constraint. <var>Vs</var> is a list of finite domain 
variables, <var>Pairs</var> is a list of Key-Num pairs, where Key is an 
integer and Num is a finite domain variable. The constraint holds iff 
each V in <var>Vs</var> is equal to some key, and for each Key-Num pair 
in <var>Pairs</var>, the number of occurrences of Key in <var>Vs</var> 
is Num. <var>Options</var> is a list of options. Supported options are:

<dl class="latex">
<dt><strong>consistency</strong>(<var>value</var>)</dt>
<dd class="defbody">
A weaker form of consistency is used.
</dd>
<dt><strong>cost</strong>(<var>Cost, Matrix</var>)</dt>
<dd class="defbody">
<var>Matrix</var> is a list of rows, one for each variable, in the order 
they occur in <var>Vs</var>. Each of these rows is a list of integers, 
one for each key, in the order these keys occur in <var>Pairs</var>. 
When variable v_i is assigned the value of key k_j, then the associated 
cost is <var>Matrix</var>_{ij}. <var>Cost</var> is the sum of all costs.
</dd>
</dl>

</dd>
<dt class="pubdef"><a id="circuit/1"><strong>circuit</strong>(<var>+Vs</var>)</a></dt>
<dd class="defbody">
True iff the list <var>Vs</var> of finite domain variables induces a 
Hamiltonian circuit. The k-th element of <var>Vs</var> denotes the 
successor of node k. Node indexing starts with 1. Examples:

<pre class="code">
?- length(Vs, _), circuit(Vs), label(Vs).
Vs = [] ;
Vs = [1] ;
Vs = [2, 1] ;
Vs = [2, 3, 1] ;
Vs = [3, 1, 2] ;
Vs = [2, 3, 4, 1] .
</pre>

</dd>
<dt class="pubdef"><a id="cumulative/1"><strong>cumulative</strong>(<var>+Tasks</var>)</a></dt>
<dd class="defbody">
Equivalent to <code>cumulative(Tasks, [limit(1)])</code>.</dd>
<dt class="pubdef"><a id="cumulative/2"><strong>cumulative</strong>(<var>+Tasks, 
+Options</var>)</a></dt>
<dd class="defbody">
Schedule with a limited resource. <var>Tasks</var> is a list of tasks, 
each of the form <code>task(S_i, D_i, E_i, C_i, T_i)</code>. S_i denotes 
the start time, D_i the positive duration, E_i the end time, C_i the 
non-negative resource consumption, and T_i the task identifier. Each of 
these arguments must be a finite domain variable with bounded domain, or 
an integer. The constraint holds iff at each time slot during the start 
and end of each task, the total resource consumption of all tasks 
running at that time does not exceed the global resource limit. <var>Options</var> 
is a list of options. Currently, the only supported option is:

<dl class="latex">
<dt><strong>limit</strong>(<var>L</var>)</dt>
<dd class="defbody">
The integer <var>L</var> is the global resource limit. Default is 1.
</dd>
</dl>

<p>For example, given the following predicate that relates three tasks 
of durations 2 and 3 to a list containing their starting times:

<pre class="code">
tasks_starts(Tasks, [S1,S2,S3]) :-
        Tasks = [task(S1,3,_,1,_),
                 task(S2,2,_,1,_),
                 task(S3,2,_,1,_)].
</pre>

<p>We can use <a class="pred" href="clpfd.html#cumulative/2">cumulative/2</a> 
as follows, and obtain a schedule:

<pre class="code">
?- tasks_starts(Tasks, Starts), Starts ins 0..10,
   cumulative(Tasks, [limit(2)]), label(Starts).
Tasks = [task(0, 3, 3, 1, _G36), task(0, 2, 2, 1, _G45), ...],
Starts = [0, 0, 2] .
</pre>

</dd>
<dt class="pubdef"><a id="disjoint2/1"><strong>disjoint2</strong>(<var>+Rectangles</var>)</a></dt>
<dd class="defbody">
True iff <var>Rectangles</var> are not overlapping. <var>Rectangles</var> 
is a list of terms of the form F(X_i, W_i, Y_i, H_i), where F is any 
functor, and the arguments are finite domain variables or integers that 
denote, respectively, the X coordinate, width, Y coordinate and height 
of each rectangle.</dd>
<dt class="pubdef"><a id="automaton/3"><strong>automaton</strong>(<var>+Signature, 
+Nodes, +Arcs</var>)</a></dt>
<dd class="defbody">
Describes a list of finite domain variables with a finite automaton. 
Equivalent to <code>automaton(_, _, Signature, Nodes, Arcs, [], [], _)</code>, 
a common use case of <a class="pred" href="clpfd.html#automaton/8">automaton/8</a>. 
In the following example, a list of binary finite domain variables is 
constrained to contain at least two consecutive ones:

<pre class="code">
:- use_module(library(clpfd)).

two_consecutive_ones(Vs) :-
        automaton(Vs, [source(a),sink(c)],
                  [arc(a,0,a), arc(a,1,b),
                   arc(b,0,a), arc(b,1,c),
                   arc(c,0,c), arc(c,1,c)]).
</pre>

<p>Example query:

<pre class="code">
?- length(Vs, 3), two_consecutive_ones(Vs), label(Vs).
Vs = [0, 1, 1] ;
Vs = [1, 1, 0] ;
Vs = [1, 1, 1].
</pre>

</dd>
<dt class="pubdef"><a id="automaton/8"><strong>automaton</strong>(<var>?Sequence, 
?Template, +Signature, +Nodes, +Arcs, +Counters, +Initials, ?Finals</var>)</a></dt>
<dd class="defbody">
Describes a list of finite domain variables with a finite automaton. 
True iff the finite automaton induced by <var>Nodes</var> and <var>Arcs</var> 
(extended with <var>Counters</var>) accepts <var>Signature</var>. <var>Sequence</var> 
is a list of terms, all of the same shape. Additional constraints must 
link
<var>Sequence</var> to <var>Signature</var>, if necessary. <var>Nodes</var> 
is a list of
<code>source(Node)</code> and <code>sink(Node)</code> terms. <var>Arcs</var> 
is a list of
<code>arc(Node,Integer,Node)</code> and <code>arc(Node,Integer,Node,Exprs)</code> 
terms that denote the automaton's transitions. Each node is represented 
by an arbitrary term. Transitions that are not mentioned go to an 
implicit failure node. <var>Exprs</var> is a list of arithmetic 
expressions, of the same length as <var>Counters</var>. In each 
expression, variables occurring in <var>Counters</var> correspond to old 
counter values, and variables occurring in <var>Template</var> 
correspond to the current element of <var>Sequence</var>. When a 
transition containing expressions is taken, each counter is updated as 
stated by the result of the corresponding arithmetic expression. By 
default, counters remain unchanged. <var>Counters</var> is a list of 
variables that must not occur anywhere outside of the constraint goal. <var>Initials</var> 
is a list of the same length as <var>Counters</var>. Counter arithmetic 
on the transitions relates the counter values in <var>Initials</var> to <var>Finals</var>.

<p>The following example is taken from Beldiceanu, Carlsson, Debruyne 
and Petit: "Reformulation of Global Constraints Based on Constraints 
Checkers", Constraints 10(4), pp 339-362 (2005). It relates a sequence 
of integers and finite domain variables to its number of inflexions, 
which are switches between strictly ascending and strictly descending 
subsequences:

<pre class="code">
:- use_module(library(clpfd)).

sequence_inflexions(Vs, N) :-
        variables_signature(Vs, Sigs),
        automaton(_, _, Sigs,
                  [source(s),sink(i),sink(j),sink(s)],
                  [arc(s,0,s), arc(s,1,j), arc(s,2,i),
                   arc(i,0,i), arc(i,1,j,[C+1]), arc(i,2,i),
                   arc(j,0,j), arc(j,1,j),
                   arc(j,2,i,[C+1])],
                  [C], [0], [N]).

variables_signature([], []).
variables_signature([V|Vs], Sigs) :-
        variables_signature_(Vs, V, Sigs).

variables_signature_([], _, []).
variables_signature_([V|Vs], Prev, [S|Sigs]) :-
        V #= Prev #&lt;==&gt; S #= 0,
        Prev #&lt; V #&lt;==&gt; S #= 1,
        Prev #&gt; V #&lt;==&gt; S #= 2,
        variables_signature_(Vs, V, Sigs).
</pre>

<p>Example queries:

<pre class="code">
?- sequence_inflexions([1,2,3,3,2,1,3,0], N).
N = 3.

?- length(Ls, 5), Ls ins 0..1,
   sequence_inflexions(Ls, 3), label(Ls).
Ls = [0, 1, 0, 1, 0] ;
Ls = [1, 0, 1, 0, 1].
</pre>

</dd>
<dt class="pubdef"><a id="transpose/2"><strong>transpose</strong>(<var>+Matrix, 
?Transpose</var>)</a></dt>
<dd class="defbody">
<var>Transpose</var> a list of lists of the same length. Example:

<pre class="code">
?- transpose([[1,2,3],[4,5,6],[7,8,9]], Ts).
Ts = [[1, 4, 7], [2, 5, 8], [3, 6, 9]].
</pre>

<p>This predicate is useful in many constraint programs. Consider for 
instance Sudoku:

<pre class="code">
:- use_module(library(clpfd)).

sudoku(Rows) :-
        length(Rows, 9), maplist(same_length(Rows), Rows),
        append(Rows, Vs), Vs ins 1..9,
        maplist(all_distinct, Rows),
        transpose(Rows, Columns),
        maplist(all_distinct, Columns),
        Rows = [A,B,C,D,E,F,G,H,I],
        blocks(A, B, C), blocks(D, E, F), blocks(G, H, I).

blocks([], [], []).
blocks([A,B,C|Bs1], [D,E,F|Bs2], [G,H,I|Bs3]) :-
        all_distinct([A,B,C,D,E,F,G,H,I]),
        blocks(Bs1, Bs2, Bs3).

problem(1, [[_,_,_,_,_,_,_,_,_],
            [_,_,_,_,_,3,_,8,5],
            [_,_,1,_,2,_,_,_,_],
            [_,_,_,5,_,7,_,_,_],
            [_,_,4,_,_,_,1,_,_],
            [_,9,_,_,_,_,_,_,_],
            [5,_,_,_,_,_,_,7,3],
            [_,_,2,_,1,_,_,_,_],
            [_,_,_,_,4,_,_,_,9]]).
</pre>

<p>Sample query:

<pre class="code">
?- problem(1, Rows), sudoku(Rows), maplist(writeln, Rows).
[9,8,7,6,5,4,3,2,1]
[2,4,6,1,7,3,9,8,5]
[3,5,1,9,2,8,7,4,6]
[1,2,8,5,3,7,6,9,4]
[6,3,4,8,9,2,1,5,7]
[7,9,5,4,6,1,8,3,2]
[5,1,9,2,8,6,4,7,3]
[4,7,2,3,1,9,5,6,8]
[8,6,3,7,4,5,2,1,9]
Rows = [[9, 8, 7, 6, 5, 4, 3, 2|...], ... , [...|...]].
</pre>

</dd>
<dt class="pubdef"><a id="zcompare/3"><strong>zcompare</strong>(<var>?Order, 
?A, ?B</var>)</a></dt>
<dd class="defbody">
Analogous to <a class="pred" href="compare.html#compare/3">compare/3</a>, 
with finite domain variables <var>A</var> and <var>B</var>. Example:

<pre class="code">
:- use_module(library(clpfd)).

n_factorial(N, F) :-
        zcompare(C, N, 0),
        n_factorial_(C, N, F).

n_factorial_(=, _, 1).
n_factorial_(&gt;, N, F) :-
        F #= F0*N, N1 #= N - 1,
        n_factorial(N1, F0).
</pre>

<p>This version is deterministic if the first argument is instantiated:

<pre class="code">
?- n_factorial(30, F).
F = 265252859812191058636308480000000.
</pre>

</dd>
<dt class="pubdef"><a id="chain/2"><strong>chain</strong>(<var>+Zs, 
+Relation</var>)</a></dt>
<dd class="defbody">
<var>Zs</var> form a chain with respect to <var>Relation</var>. <var>Zs</var> 
is a list of finite domain variables that are a chain with respect to 
the partial order
<var>Relation</var>, in the order they appear in the list. <var>Relation</var> 
must be #=,
#=<var>&lt;</var>, #<var>&gt;</var>=, <code>#&lt;</code> or #<var>&gt;</var>. 
For example:

<pre class="code">
?- chain([X,Y,Z], #&gt;=).
X#&gt;=Y,
Y#&gt;=Z.
</pre>

</dd>
<dt class="pubdef"><a id="fd_var/1"><strong>fd_var</strong>(<var>+Var</var>)</a></dt>
<dd class="defbody">
True iff <var>Var</var> is a CLP(FD) variable.</dd>
<dt class="pubdef"><a id="fd_inf/2"><strong>fd_inf</strong>(<var>+Var, 
-Inf</var>)</a></dt>
<dd class="defbody">
<var>Inf</var> is the infimum of the current domain of <var>Var</var>.</dd>
<dt class="pubdef"><a id="fd_sup/2"><strong>fd_sup</strong>(<var>+Var, 
-Sup</var>)</a></dt>
<dd class="defbody">
<var>Sup</var> is the supremum of the current domain of <var>Var</var>.</dd>
<dt class="pubdef"><a id="fd_size/2"><strong>fd_size</strong>(<var>+Var, 
-Size</var>)</a></dt>
<dd class="defbody">
<var>Size</var> is the number of elements of the current domain of <var>Var</var>, 
or the atom <b>sup</b> if the domain is unbounded.</dd>
<dt class="pubdef"><a id="fd_dom/2"><strong>fd_dom</strong>(<var>+Var, 
-Dom</var>)</a></dt>
<dd class="defbody">
<var>Dom</var> is the current domain (see <a class="pred" href="clpfd.html#in/2">in/2</a>) 
of <var>Var</var>. This predicate is useful if you want to reason about 
domains. It is <i>not</i> needed if you only want to display remaining 
domains; instead, separate your model from the search part and let the 
toplevel display this information via residual goals.

<p>For example, to implement a custom labeling strategy, you may need to 
inspect the current domain of a finite domain variable. With the 
following code, you can convert a <i>finite</i> domain to a list of 
integers:

<pre class="code">
dom_integers(D, Is) :- phrase(dom_integers_(D), Is).

dom_integers_(I)      --&gt; { integer(I) }, [I].
dom_integers_(L..U)   --&gt; { numlist(L, U, Is) }, Is.
dom_integers_(D1\/D2) --&gt; dom_integers_(D1), dom_integers_(D2).
</pre>

<p>Example:

<pre class="code">
?- X in 1..5, X #\= 4, fd_dom(X, D), dom_integers(D, Is).
D = 1..3\/5,
Is = [1,2,3,5],
X in 1..3\/5.
</pre>

<p></dd>
</dl>

<p></body></html>