/usr/lib/swi-prolog/doc/Manual/clpfd.html is in swi-prolog-nox 7.2.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>SWI-Prolog 7.3.6 Reference Manual: Section A.8</title><link rel="home" href="index.html">
<link rel="contents" href="Contents.html">
<link rel="index" href="DocIndex.html">
<link rel="summary" href="summary.html">
<link rel="previous" href="clpb.html">
<link rel="next" href="clpqr.html">
<style type="text/css">
/* Style sheet for SWI-Prolog latex2html
*/
dd.defbody
{ margin-bottom: 1em;
}
dt.pubdef, dt.multidef
{ color: #fff;
padding: 2px 10px 0px 10px;
margin-bottom: 5px;
font-size: 18px;
vertical-align: middle;
overflow: hidden;
}
dt.pubdef { background-color: #0c3d6e; }
dt.multidef { background-color: #ef9439; }
.bib dd
{ margin-bottom: 1em;
}
.bib dt
{ float: left;
margin-right: 1.3ex;
}
pre.code
{ margin-left: 1.5em;
margin-right: 1.5em;
border: 1px dotted;
padding-top: 5px;
padding-left: 5px;
padding-bottom: 5px;
background-color: #f8f8f8;
}
div.navigate
{ text-align: center;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
}
div.title
{ text-align: center;
padding-bottom: 1em;
font-size: 200%;
font-weight: bold;
}
div.author
{ text-align: center;
font-style: italic;
}
div.abstract
{ margin-top: 2em;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
margin-left: 10%; margin-right:10%;
}
div.abstract-title
{ text-align: center;
padding: 5px;
font-size: 120%;
font-weight: bold;
}
div.toc-h1
{ font-size: 200%;
font-weight: bold;
}
div.toc-h2
{ font-size: 120%;
font-weight: bold;
margin-left: 2em;
}
div.toc-h3
{ font-size: 100%;
font-weight: bold;
margin-left: 4em;
}
div.toc-h4
{ font-size: 100%;
margin-left: 6em;
}
span.sec-nr
{
}
span.sec-title
{
}
span.pred-ext
{ font-weight: bold;
}
span.pred-tag
{ float: right;
padding-top: 0.2em;
font-size: 80%;
font-style: italic;
color: #fff;
}
div.caption
{ width: 80%;
margin: auto;
text-align:center;
}
/* Footnotes */
.fn {
color: red;
font-size: 70%;
}
.fn-text, .fnp {
position: absolute;
top: auto;
left: 10%;
border: 1px solid #000;
box-shadow: 5px 5px 5px #888;
display: none;
background: #fff;
color: #000;
margin-top: 25px;
padding: 8px 12px;
font-size: larger;
}
sup:hover span.fn-text
{ display: block;
}
/* Lists */
dl.latex
{ margin-top: 1ex;
margin-bottom: 0.5ex;
}
dl.latex dl.latex dd.defbody
{ margin-bottom: 0.5ex;
}
/* PlDoc Tags */
dl.tags
{ font-size: 90%;
margin-left: 5ex;
margin-top: 1ex;
margin-bottom: 0.5ex;
}
dl.tags dt
{ margin-left: 0pt;
font-weight: bold;
}
dl.tags dd
{ margin-left: 3ex;
}
td.param
{ font-style: italic;
font-weight: bold;
}
/* Index */
dt.index-sep
{ font-weight: bold;
font-size: +1;
margin-top: 1ex;
}
/* Tables */
table.center
{ margin: auto;
}
table.latex
{ border-collapse:collapse;
}
table.latex tr
{ vertical-align: text-top;
}
table.latex td,th
{ padding: 2px 1em;
}
table.latex tr.hline td,th
{ border-top: 1px solid black;
}
table.frame-box
{ border: 2px solid black;
}
</style>
</head>
<body style="background:white">
<div class="navigate"><a class="nav" href="index.html"><img src="home.gif" alt="Home"></a>
<a class="nav" href="Contents.html"><img src="index.gif" alt="Contents"></a>
<a class="nav" href="DocIndex.html"><img src="yellow_pages.gif" alt="Index"></a>
<a class="nav" href="summary.html"><img src="info.gif" alt="Summary"></a>
<a class="nav" href="clpb.html"><img src="prev.gif" alt="Previous"></a>
<a class="nav" href="clpqr.html"><img src="next.gif" alt="Next"></a>
</div>
<h2 id="sec:clpfd"><a id="sec:A.8"><span class="sec-nr">A.8</span> <span class="sec-title">library(clpfd):
Constraint Logic Programming over Finite Domains</span></a></h2>
<p><a id="sec:clpfd"></a>
<dl class="tags">
<dt class="tag">author</dt>
<dd>
Markus Triska
</dd>
</dl>
<p><h4 id="sec:clpfd-intro"><a id="sec:A.8.1"><span class="sec-nr">A.8.1</span> <span class="sec-title">Introduction</span></a></h4>
<p><a id="sec:clpfd-intro"></a>
<p>Constraint programming is a declarative formalism that lets you state
relations between terms. This library provides CLP(FD), Constraint Logic
Programming over Finite Domains.
<p>There are two major use cases of this library:
<p>
<ol class="latex">
<li>CLP(FD) constraints provide <i>declarative integer arithmetic</i>:
They implement pure <i>relations</i> between integer expressions and can
be used in all directions, also if parts of expressions are variables.
<li>In connection with enumeration predicates and more complex
constraints, CLP(FD) is often used to model and solve combinatorial
problems such as planning, scheduling and allocation tasks.
</ol>
<p>When teaching Prolog, we <i>strongly recommend</i> that you introduce
CLP(FD) constraints <i>before</i> explaining lower-level arithmetic
predicates and their procedural idiosyncrasies. This is because
constraints are easy to explain, understand and use due to their purely
relational nature. In contrast, the modedness and directionality of
low-level arithmetic primitives are non-declarative limitations that are
better deferred to more advanced lectures.
<p>If you are used to the complicated operational considerations that
low-level arithmetic primitives necessitate, then moving to CLP(FD)
constraints may, due to their power and convenience, at first feel to
you excessive and almost like cheating. It <i>isn't</i>. Constraints are
an integral part of many Prolog systems and are available to help you
eliminate and avoid, as far as possible, the use of lower-level and less
general primitives by providing declarative alternatives that are meant
to be used instead.
<p>For satisfactory performance, arithmetic constraints are implicitly
rewritten at compilation time so that lower-level fallback predicates
are automatically used whenever possible.
<p>We recommend the following reference to cite this library in
scientific publications:
<pre class="code">
@inproceedings{Triska12,
author = {Markus Triska},
title = {The Finite Domain Constraint Solver of {SWI-Prolog}},
booktitle = {FLOPS},
series = {LNCS},
volume = {7294},
year = {2012},
pages = {307-316}
}
</pre>
<p>and the following URL to link to its documentation:
<pre class="code">
http://www.swi-prolog.org/man/clpfd.html
</pre>
<p><h4 id="sec:cplfd-arith-constraints"><a id="sec:A.8.2"><span class="sec-nr">A.8.2</span> <span class="sec-title">Arithmetic
constraints</span></a></h4>
<p><a id="sec:cplfd-arith-constraints"></a>
<p>A finite domain <i>arithmetic expression</i> is one of:
<blockquote>
<table class="latex frame-box">
<tr><td><i>integer</i> </td><td>Given value </td></tr>
<tr><td><i>variable</i> </td><td>Unknown integer </td></tr>
<tr><td>?(<i>variable</i>)</td><td>Unknown integer </td></tr>
<tr><td>-Expr</td><td>Unary minus </td></tr>
<tr><td>Expr + Expr</td><td>Addition </td></tr>
<tr><td>Expr * Expr</td><td>Multiplication </td></tr>
<tr><td>Expr - Expr</td><td>Subtraction </td></tr>
<tr><td>Expr <code>^</code> Expr</td><td>Exponentiation </td></tr>
<tr><td><code>min(Expr,Expr)</code> </td><td>Minimum of two expressions </td></tr>
<tr><td><code>max(Expr,Expr)</code> </td><td>Maximum of two expressions </td></tr>
<tr><td>Expr <code>mod</code> Expr</td><td>Modulo induced by floored
division </td></tr>
<tr><td>Expr <code>rem</code> Expr</td><td>Modulo induced by truncated
division </td></tr>
<tr><td><code>abs(Expr)</code> </td><td>Absolute value </td></tr>
<tr><td>Expr <code>//</code> Expr</td><td>Truncated integer division </td></tr>
</table>
</blockquote>
<p>Arithmetic <i>constraints</i> are relations between arithmetic
expressions.
<p>The most important arithmetic constraints are:
<blockquote>
<table class="latex frame-box">
<tr><td>Expr1 <code>#>=</code> Expr2</td><td>Expr1 is greater than or
equal to Expr2 </td></tr>
<tr><td>Expr1 <code>#=<</code> Expr2</td><td>Expr1 is less than or
equal to Expr2 </td></tr>
<tr><td>Expr1 <code>#=</code> Expr2</td><td>Expr1 equals Expr2 </td></tr>
<tr><td>Expr1 <code>#\=</code> Expr2</td><td>Expr1 is not equal to Expr2 </td></tr>
<tr><td>Expr1 <code>#></code> Expr2</td><td>Expr1 is greater than
Expr2 </td></tr>
<tr><td>Expr1 <code>#<</code> Expr2</td><td>Expr1 is less than Expr2 </td></tr>
</table>
</blockquote>
<p><h4 id="sec:clpfd-integer-arith"><a id="sec:A.8.3"><span class="sec-nr">A.8.3</span> <span class="sec-title">Declarative
integer arithmetic</span></a></h4>
<p><a id="sec:clpfd-integer-arith"></a>
<p>CLP(FD) constraints let you declaratively express integer arithmetic.
The CLP(FD) constraints <a class="pred" href="clpfd.html##=/2">#=/2</a>, <a class="pred" href="clpfd.html##>/2">#>/2</a>
etc. are meant to be used instead of the corresponding primitives <a class="pred" href="arith.html#is/2">is/2</a>, <a class="pred" href="arith.html#=:=/2">=:=/2</a>, <a class="pred" href="arith.html#>/2">>/2</a>
etc. over integers.
<p>An important advantage of arithmetic constraints is their purely
relational nature. They are therefore easy to explain and use, and well
suited for beginners and experienced Prolog programmers alike.
<p>Consider for example the query:
<pre class="code">
?- X #> 3, X #= 5 + 2.
X = 7.
</pre>
<p>In contrast, when using low-level integer arithmetic, we get:
<pre class="code">
?- X > 3, X is 5 + 2.
ERROR: >/2: Arguments are not sufficiently instantiated
</pre>
<p>Due to the necessary operational considerations, the use of these
low-level arithmetic predicates is considerably harder to understand and
should therefore be deferred to more advanced lectures.
<p>For supported expressions, CLP(FD) constraints are drop-in
replacements of these low-level arithmetic predicates, often yielding
more general programs.
<p>Here is an example:
<pre class="code">
:- use_module(library(clpfd)).
n_factorial(0, 1).
n_factorial(N, F) :-
N #> 0, N1 #= N - 1, F #= N * F1,
n_factorial(N1, F1).
</pre>
<p>This predicate can be used in all directions. For example:
<pre class="code">
?- n_factorial(47, F).
F = 258623241511168180642964355153611979969197632389120000000000 ;
false.
?- n_factorial(N, 1).
N = 0 ;
N = 1 ;
false.
?- n_factorial(N, 3).
false.
</pre>
<p>To make the predicate terminate if any argument is instantiated, add
the (implied) constraint F <code>#\=</code> 0 before the recursive call.
Otherwise, the query <code>n_factorial(N, 0)</code> is the only
non-terminating case of this kind.
<p>This library uses <a class="pred" href="consulting.html#goal_expansion/2">goal_expansion/2</a>
to automatically rewrite arithmetic constraints at compilation time. The
expansion's aim is to bring the performance of arithmetic constraints
close to that of lower-level arithmetic predicates whenever possible. To
disable the expansion, set the flag <code>clpfd_goal_expansion</code> to <code>false</code>.
<p><h4 id="sec:clpfd-reification"><a id="sec:A.8.4"><span class="sec-nr">A.8.4</span> <span class="sec-title">Reification</span></a></h4>
<p><a id="sec:clpfd-reification"></a>
<p>The constraints <a class="pred" href="clpfd.html#in/2">in/2</a>, <a class="pred" href="clpfd.html##=/2">#=/2</a>, <a class="pred" href="clpfd.html##\=/2">#\=/2</a>, <a class="pred" href="clpfd.html##</2">#</2</a>, <a class="pred" href="clpfd.html##>/2">#>/2</a>, <a class="pred" href="clpfd.html##=</2">#=</2</a>,
and <a class="pred" href="clpfd.html##>=/2">#>=/2</a> can be
<i>reified</i>, which means reflecting their truth values into Boolean
values represented by the integers 0 and 1. Let P and Q denote reifiable
constraints or Boolean variables, then:
<blockquote>
<table class="latex frame-box">
<tr><td><code>#\</code> Q</td><td>True iff Q is false </td></tr>
<tr><td>P <code>#\/</code> Q</td><td>True iff either P or Q </td></tr>
<tr><td>P <code>#/\</code> Q</td><td>True iff both P and Q </td></tr>
<tr><td>P <code>#\</code> Q</td><td>True iff either P or Q, but not both </td></tr>
<tr><td>P <code>#<==></code> Q</td><td>True iff P and Q are
equivalent </td></tr>
<tr><td>P <code>#==></code> Q</td><td>True iff P implies Q </td></tr>
<tr><td>P <code>#<==</code> Q</td><td>True iff Q implies P </td></tr>
</table>
</blockquote>
<p>The constraints of this table are reifiable as well.
<p>When reasoning over Boolean variables, also consider using
<code>library(clpb)</code> and its dedicated CLP(B) constraints.
<p><h4 id="sec:clpfd-domains"><a id="sec:A.8.5"><span class="sec-nr">A.8.5</span> <span class="sec-title">Domains</span></a></h4>
<p><a id="sec:clpfd-domains"></a>
<p>Each CLP(FD) variable has an associated set of admissible integers
which we call the variable's <i>domain</i>. Initially, the domain of
each CLP(FD) variable is the set of all integers. The constraints <a class="pred" href="clpfd.html#in/2">in/2</a>
and
<a class="pred" href="clpfd.html#ins/2">ins/2</a> are the primary means
to specify tighter domains of variables.
<p>Here are example queries and the system's declaratively equivalent
answers:
<pre class="code">
?- X in 100..sup.
X in 100..sup.
?- X in 1..5 \/ 3..12.
X in 1..12.
?- [X,Y,Z] ins 0..3.
X in 0..3,
Y in 0..3,
Z in 0..3.
</pre>
<p>Domains are taken into account when further constraints are stated,
and by enumeration predicates like <a class="pred" href="clpfd.html#labeling/2">labeling/2</a>.
<p><h4 id="sec:clpfd-examples"><a id="sec:A.8.6"><span class="sec-nr">A.8.6</span> <span class="sec-title">Examples</span></a></h4>
<p><a id="sec:clpfd-examples"></a>
<p>Here is an example session with a few queries and their answers:
<pre class="code">
?- use_module(library(clpfd)).
% library(clpfd) compiled into clpfd 0.06 sec, 633,732 bytes
true.
?- X #> 3.
X in 4..sup.
?- X #\= 20.
X in inf..19\/21..sup.
?- 2*X #= 10.
X = 5.
?- X*X #= 144.
X in -12\/12.
?- 4*X + 2*Y #= 24, X + Y #= 9, [X,Y] ins 0..sup.
X = 3,
Y = 6.
?- X #= Y #<==> B, X in 0..3, Y in 4..5.
B = 0,
X in 0..3,
Y in 4..5.
</pre>
<p>In each case, and as for all pure programs, the answer is
declaratively equivalent to the original query, and in many cases the
constraint solver has deduced additional domain restrictions.
<p><h4 id="sec:clpfd-search"><a id="sec:A.8.7"><span class="sec-nr">A.8.7</span> <span class="sec-title">Enumeration
predicates and search</span></a></h4>
<p><a id="sec:clpfd-search"></a>
<p>In addition to being declarative replacements for low-level
arithmetic predicates, CLP(FD) constraints are also often used to solve
combinatorial problems such as planning, scheduling and allocation
tasks. To let you conveniently model and solve such problems, this
library provides several constraints beyond typical integer arithmetic,
such as <a class="pred" href="clpfd.html#all_distinct/1">all_distinct/1</a>, <a class="pred" href="clpfd.html#global_cardinality/2">global_cardinality/2</a>
and
<a class="pred" href="clpfd.html#cumulative/1">cumulative/1</a>.
<p>Using CLP(FD) constraints to solve combinatorial tasks typically
consists of two phases:
<p>
<ol class="latex">
<li>First, all relevant constraints are stated.
<li>Second, if the domain of each involved variable is <i>finite</i>,
then <i>enumeration predicates</i> can be used to search for concrete
solutions.
</ol>
<p>It is good practice to keep the modeling part, via a dedicated
predicate called the <b>core relation</b>, separate from the actual
search for solutions. This lets you observe termination and determinism
properties of the core relation in isolation from the search, and more
easily try different search strategies.
<p>As an example of a constraint satisfaction problem, consider the
cryptoarithmetic puzzle SEND + MORE = MONEY, where different letters
denote distinct integers between 0 and 9. It can be modeled in CLP(FD)
as follows:
<pre class="code">
:- use_module(library(clpfd)).
puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-
Vars = [S,E,N,D,M,O,R,Y],
Vars ins 0..9,
all_different(Vars),
S*1000 + E*100 + N*10 + D +
M*1000 + O*100 + R*10 + E #=
M*10000 + O*1000 + N*100 + E*10 + Y,
M #\= 0, S #\= 0.
</pre>
<p>Notice that we are <i>not</i> using <a class="pred" href="clpfd.html#labeling/2">labeling/2</a>
in this predicate, so that we can first execute and observe the modeling
part in isolation. Sample query and its result (actual variables
replaced for readability):
<pre class="code">
?- puzzle(As+Bs=Cs).
As = [9, A2, A3, A4],
Bs = [1, 0, B3, A2],
Cs = [1, 0, A3, A2, C5],
A2 in 4..7,
all_different([9, A2, A3, A4, 1, 0, B3, C5]),
91*A2+A4+10*B3#=90*A3+C5,
A3 in 5..8,
A4 in 2..8,
B3 in 2..8,
C5 in 2..8.
</pre>
<p>From this answer, we see that this core relation <i>terminates</i>
and is in fact <i>deterministic</i>. Moreover, we see from the residual
goals that the constraint solver has deduced more stringent bounds for
all variables. Such observations are only possible if modeling and
search parts are cleanly separated.
<p>Labeling can then be used to search for solutions in a separate
predicate or goal:
<pre class="code">
?- puzzle(As+Bs=Cs), label(As).
As = [9, 5, 6, 7],
Bs = [1, 0, 8, 5],
Cs = [1, 0, 6, 5, 2] ;
false.
</pre>
<p>In this case, it suffices to label a subset of variables to find the
puzzle's unique solution, since the constraint solver is strong enough
to reduce the domains of remaining variables to singleton sets. In
general though, it is necessary to label all variables to obtain ground
solutions.
<p><h4 id="sec:clpfd-optimisation"><a id="sec:A.8.8"><span class="sec-nr">A.8.8</span> <span class="sec-title">Optimisation</span></a></h4>
<p><a id="sec:clpfd-optimisation"></a>
<p>You can use <a class="pred" href="clpfd.html#labeling/2">labeling/2</a>
to minimize or maximize the value of a CLP(FD) expression, and generate
solutions in increasing or decreasing order of the value. See the
labeling options <code>min(Expr)</code> and <code>max(Expr)</code>,
respectively.
<p>Again, to easily try different labeling options in connection with
optimisation, we recommend to introduce a dedicated predicate for
posting constraints, and to use <code>labeling/2</code> in a separate
goal. This way, you can observe properties of the core relation in
isolation, and try different labeling options without recompiling your
code.
<p>If necessary, you can use <code>once/1</code> to commit to the first
optimal solution. However, it is often very valuable to see alternative
solutions that are <i>also</i> optimal, so that you can choose among
optimal solutions by other criteria. For the sake of purity and
completeness, we recommend to avoid <code>once/1</code> and other
constructs that lead to impurities in CLP(FD) programs.
<p><h4 id="sec:clpfd-advanced-topics"><a id="sec:A.8.9"><span class="sec-nr">A.8.9</span> <span class="sec-title">Advanced
topics</span></a></h4>
<p><a id="sec:clpfd-advanced-topics"></a>
<p>If you set the flag <code>clpfd_monotonic</code> to <code>true</code>,
then CLP(FD) is monotonic: Adding new constraints cannot yield new
solutions. When this flag is <code>true</code>, you must wrap variables
that occur in arithmetic expressions with the functor <code>(?)/1</code>.
For example, <code>?(X) #= ?(Y) + ?(Z)</code>. The wrapper can be
omitted for variables that are already constrained to integers.
<p>Use <a class="pred" href="coroutining.html#call_residue_vars/2">call_residue_vars/2</a>
and <a class="pred" href="attvar.html#copy_term/3">copy_term/3</a> to
inspect residual goals and the constraints in which a variable is
involved. This library also provides <i>reflection</i> predicates (like <a class="pred" href="clpfd.html#fd_dom/2">fd_dom/2</a>, <a class="pred" href="clpfd.html#fd_size/2">fd_size/2</a>
etc.) with which you can inspect a variable's current domain. These
predicates can be useful if you want to implement your own labeling
strategies.
<p>You can also define custom constraints. The mechanism to do this is
not yet finalised, and we welcome suggestions and descriptions of use
cases that are important to you. As an example of how it can be done
currently, let us define a new custom constraint <code>oneground(X,Y,Z)</code>,
where Z shall be 1 if at least one of X and Y is instantiated:
<pre class="code">
:- use_module(library(clpfd)).
:- multifile clpfd:run_propagator/2.
oneground(X, Y, Z) :-
clpfd:make_propagator(oneground(X, Y, Z), Prop),
clpfd:init_propagator(X, Prop),
clpfd:init_propagator(Y, Prop),
clpfd:trigger_once(Prop).
clpfd:run_propagator(oneground(X, Y, Z), MState) :-
( integer(X) -> clpfd:kill(MState), Z = 1
; integer(Y) -> clpfd:kill(MState), Z = 1
; true
).
</pre>
<p>First, <span class="pred-ext">clpfd:make_propagator/2</span> is used
to transform a user-defined representation of the new constraint to an
internal form. With
<span class="pred-ext">clpfd:init_propagator/2</span>, this internal
form is then attached to X and Y. From now on, the propagator will be
invoked whenever the domains of X or Y are changed. Then, <span class="pred-ext">clpfd:trigger_once/1</span>
is used to give the propagator its first chance for propagation even
though the variables' domains have not yet changed. Finally, <span class="pred-ext">clpfd:run_propagator/2</span>
is extended to define the actual propagator. As explained, this
predicate is automatically called by the constraint solver. The first
argument is the user-defined representation of the constraint as used in
<span class="pred-ext">clpfd:make_propagator/2</span>, and the second
argument is a mutable state that can be used to prevent further
invocations of the propagator when the constraint has become entailed,
by using <span class="pred-ext">clpfd:kill/1</span>. An example of using
the new constraint:
<pre class="code">
?- oneground(X, Y, Z), Y = 5.
Y = 5,
Z = 1,
X in inf..sup.
</pre>
<dl class="latex">
<dt class="pubdef"><a id="in/2"><var>?Var</var> <strong>in</strong> <var>+Domain</var></a></dt>
<dd class="defbody">
<var>Var</var> is an element of <var>Domain</var>. <var>Domain</var> is
one of:
<dl class="latex">
<dt><strong><var>Integer</var></strong></dt>
<dd class="defbody">
Singleton set consisting only of <i><var>Integer</var></i>.
</dd>
<dt><var><var>Lower</var></var> <strong>..</strong> <var><var>Upper</var></var></dt>
<dd class="defbody">
All integers <i>I</i> such that <i><var>Lower</var></i> <code>=<</code> <i>I</i> <code>=<</code> <i><var>Upper</var></i>.
<i><var>Lower</var></i> must be an integer or the atom <b>inf</b>, which
denotes negative infinity. <i><var>Upper</var></i> must be an integer or
the atom <b>sup</b>, which denotes positive infinity.
</dd>
<dt><var><var>Domain1</var></var> <strong><code>\/</code></strong> <var><var>Domain2</var></var></dt>
<dd class="defbody">
The union of <var>Domain1</var> and <var>Domain2</var>.
</dd>
</dl>
</dd>
<dt class="pubdef"><a id="ins/2"><var>+Vars</var> <strong>ins</strong> <var>+Domain</var></a></dt>
<dd class="defbody">
The variables in the list <var>Vars</var> are elements of <var>Domain</var>.</dd>
<dt class="pubdef"><a id="indomain/1"><strong>indomain</strong>(<var>?Var</var>)</a></dt>
<dd class="defbody">
Bind <var>Var</var> to all feasible values of its domain on
backtracking. The domain of <var>Var</var> must be finite.</dd>
<dt class="pubdef"><a id="label/1"><strong>label</strong>(<var>+Vars</var>)</a></dt>
<dd class="defbody">
Equivalent to <code>labeling([], Vars)</code>.</dd>
<dt class="pubdef"><a id="labeling/2"><strong>labeling</strong>(<var>+Options,
+Vars</var>)</a></dt>
<dd class="defbody">
Assign a value to each variable in <var>Vars</var>. Labeling means
systematically trying out values for the finite domain variables <var>Vars</var>
until all of them are ground. The domain of each variable in <var>Vars</var>
must be finite.
<var>Options</var> is a list of options that let you exhibit some
control over the search process. Several categories of options exist:
<p>The variable selection strategy lets you specify which variable of
<var>Vars</var> is labeled next and is one of:
<dl class="latex">
<dt><strong>leftmost</strong></dt>
<dd class="defbody">
Label the variables in the order they occur in <var>Vars</var>. This is
the default.
</dd>
<dt><strong>ff</strong></dt>
<dd class="defbody">
<i>First fail</i>. Label the leftmost variable with smallest domain
next, in order to detect infeasibility early. This is often a good
strategy.
</dd>
<dt><strong>ffc</strong></dt>
<dd class="defbody">
Of the variables with smallest domains, the leftmost one participating
in most constraints is labeled next.
</dd>
<dt><strong>min</strong></dt>
<dd class="defbody">
Label the leftmost variable whose lower bound is the lowest next.
</dd>
<dt><strong>max</strong></dt>
<dd class="defbody">
Label the leftmost variable whose upper bound is the highest next.
</dd>
</dl>
<p>The value order is one of:
<dl class="latex">
<dt><strong>up</strong></dt>
<dd class="defbody">
Try the elements of the chosen variable's domain in ascending order.
This is the default.
</dd>
<dt><strong>down</strong></dt>
<dd class="defbody">
Try the domain elements in descending order.
</dd>
</dl>
<p>The branching strategy is one of:
<dl class="latex">
<dt><strong>step</strong></dt>
<dd class="defbody">
For each variable X, a choice is made between X = V and X <code>#\=</code>
V, where V is determined by the value ordering options. This is the
default.
</dd>
<dt><strong>enum</strong></dt>
<dd class="defbody">
For each variable X, a choice is made between X = V_1, X = V_2 etc., for
all values V_i of the domain of X. The order is determined by the value
ordering options.
</dd>
<dt><strong>bisect</strong></dt>
<dd class="defbody">
For each variable X, a choice is made between X <code>#=<</code> M
and X <code>#></code> M, where M is the midpoint of the domain of X.
</dd>
</dl>
<p>At most one option of each category can be specified, and an option
must not occur repeatedly.
<p>The order of solutions can be influenced with:
<p>
<ul class="compact">
<li><code>min(Expr)</code>
<li><code>max(Expr)</code>
</ul>
<p>This generates solutions in ascending/descending order with respect
to the evaluation of the arithmetic expression Expr. Labeling <var>Vars</var>
must make Expr ground. If several such options are specified, they are
interpreted from left to right, e.g.:
<pre class="code">
?- [X,Y] ins 10..20, labeling([max(X),min(Y)],[X,Y]).
</pre>
<p>This generates solutions in descending order of X, and for each
binding of X, solutions are generated in ascending order of Y. To obtain
the incomplete behaviour that other systems exhibit with "<code>maximize(Expr)</code>"
and "<code>minimize(Expr)</code>", use <a class="pred" href="metacall.html#once/1">once/1</a>,
e.g.:
<pre class="code">
once(labeling([max(Expr)], Vars))
</pre>
<p>Labeling is always complete, always terminates, and yields no
redundant solutions.</dd>
<dt class="pubdef"><a id="all_different/1"><strong>all_different</strong>(<var>+Vars</var>)</a></dt>
<dd class="defbody">
<var>Vars</var> are pairwise distinct.</dd>
<dt class="pubdef"><a id="all_distinct/1"><strong>all_distinct</strong>(<var>+Ls</var>)</a></dt>
<dd class="defbody">
Like <a class="pred" href="clpfd.html#all_different/1">all_different/1</a>,
with stronger propagation. For example,
<a class="pred" href="clpfd.html#all_distinct/1">all_distinct/1</a> can
detect that not all variables can assume distinct values given the
following domains:
<pre class="code">
?- maplist(in, Vs,
[1\/3..4, 1..2\/4, 1..2\/4, 1..3, 1..3, 1..6]),
all_distinct(Vs).
false.
</pre>
</dd>
<dt class="pubdef"><a id="sum/3"><strong>sum</strong>(<var>+Vars, +Rel,
?Expr</var>)</a></dt>
<dd class="defbody">
The sum of elements of the list <var>Vars</var> is in relation <var>Rel</var>
to <var>Expr</var>.
<var>Rel</var> is one of #=, #<code>\</code>=, #<var><</var>, #<var>></var>, <code>#=<</code>
or #<var>></var>=. For example:
<pre class="code">
?- [A,B,C] ins 0..sup, sum([A,B,C], #=, 100).
A in 0..100,
A+B+C#=100,
B in 0..100,
C in 0..100.
</pre>
</dd>
<dt class="pubdef"><a id="scalar_product/4"><strong>scalar_product</strong>(<var>+Cs,
+Vs, +Rel, ?Expr</var>)</a></dt>
<dd class="defbody">
True iff the scalar product of <var>Cs</var> and <var>Vs</var> is in
relation <var>Rel</var> to <var>Expr</var>.
<var>Cs</var> is a list of integers, <var>Vs</var> is a list of
variables and integers.
<var>Rel</var> is #=, #<code>\</code>=, #<var><</var>, #<var>></var>, <code>#=<</code>
or #<var>></var>=.</dd>
<dt class="pubdef"><a id="#>=/2"><var>?X</var> <strong>#>=</strong> <var>?Y</var></a></dt>
<dd class="defbody">
<var>X</var> is greater than or equal to <var>Y</var>.</dd>
<dt class="pubdef"><a id="#=</2"><var>?X</var> <strong>#=<</strong> <var>?Y</var></a></dt>
<dd class="defbody">
<var>X</var> is less than or equal to <var>Y</var>.</dd>
<dt class="pubdef"><a id="#=/2"><var>?X</var> <strong>#=</strong> <var>?Y</var></a></dt>
<dd class="defbody">
<var>X</var> equals <var>Y</var>.</dd>
<dt class="pubdef"><a id="#\=/2"><var>?X</var> <strong>#\=</strong> <var>?Y</var></a></dt>
<dd class="defbody">
<var>X</var> is not <var>Y</var>.</dd>
<dt class="pubdef"><a id="#>/2"><var>?X</var> <strong>#></strong> <var>?Y</var></a></dt>
<dd class="defbody">
<var>X</var> is greater than <var>Y</var>.</dd>
<dt class="pubdef"><a id="#</2"><var>?X</var> <strong>#<</strong> <var>?Y</var></a></dt>
<dd class="defbody">
<var>X</var> is less than <var>Y</var>. In addition to its regular use
in problems that require it, this constraint can also be useful to
eliminate uninteresting symmetries from a problem. For example, all
possible matches between pairs built from four players in total:
<pre class="code">
?- Vs = [A,B,C,D], Vs ins 1..4,
all_different(Vs),
A #< B, C #< D, A #< C,
findall(pair(A,B)-pair(C,D), label(Vs), Ms).
Ms = [ pair(1, 2)-pair(3, 4),
pair(1, 3)-pair(2, 4),
pair(1, 4)-pair(2, 3)].
</pre>
</dd>
<dt class="pubdef"><a id="#\/1"><strong>#\</strong> <var>+Q</var></a></dt>
<dd class="defbody">
The reifiable constraint <var>Q</var> does <i>not</i> hold. For example,
to obtain the complement of a domain:
<pre class="code">
?- #\ X in -3..0\/10..80.
X in inf.. -4\/1..9\/81..sup.
</pre>
</dd>
<dt class="pubdef"><a id="#<==>/2"><var>?P</var> <strong>#<==></strong> <var>?Q</var></a></dt>
<dd class="defbody">
<var>P</var> and <var>Q</var> are equivalent. For example:
<pre class="code">
?- X #= 4 #<==> B, X #\= 4.
B = 0,
X in inf..3\/5..sup.
</pre>
<p>The following example uses reified constraints to relate a list of
finite domain variables to the number of occurrences of a given value:
<pre class="code">
:- use_module(library(clpfd)).
vs_n_num(Vs, N, Num) :-
maplist(eq_b(N), Vs, Bs),
sum(Bs, #=, Num).
eq_b(X, Y, B) :- X #= Y #<==> B.
</pre>
<p>Sample queries and their results:
<pre class="code">
?- Vs = [X,Y,Z], Vs ins 0..1, vs_n_num(Vs, 4, Num).
Vs = [X, Y, Z],
Num = 0,
X in 0..1,
Y in 0..1,
Z in 0..1.
?- vs_n_num([X,Y,Z], 2, 3).
X = 2,
Y = 2,
Z = 2.
</pre>
</dd>
<dt class="pubdef"><a id="#==>/2"><var>?P</var> <strong>#==></strong> <var>?Q</var></a></dt>
<dd class="defbody">
<var>P</var> implies <var>Q</var>.</dd>
<dt class="pubdef"><a id="#<==/2"><var>?P</var> <strong>#<==</strong> <var>?Q</var></a></dt>
<dd class="defbody">
<var>Q</var> implies <var>P</var>.</dd>
<dt class="pubdef"><a id="#/\/2"><var>?P</var> <strong>#/\</strong> <var>?Q</var></a></dt>
<dd class="defbody">
<var>P</var> and <var>Q</var> hold.</dd>
<dt class="pubdef"><a id="#\//2"><var>?P</var> <strong>#\/</strong> <var>?Q</var></a></dt>
<dd class="defbody">
<var>P</var> or <var>Q</var> holds. For example, the sum of natural
numbers below 1000 that are multiples of 3 or 5:
<pre class="code">
?- findall(N, (N mod 3 #= 0 #\/ N mod 5 #= 0, N in 0..999,
indomain(N)),
Ns),
sum(Ns, #=, Sum).
Ns = [0, 3, 5, 6, 9, 10, 12, 15, 18|...],
Sum = 233168.
</pre>
</dd>
<dt class="pubdef"><a id="#\/2"><var>?P</var> <strong>#\</strong> <var>?Q</var></a></dt>
<dd class="defbody">
Either <var>P</var> holds or <var>Q</var> holds, but not both.</dd>
<dt class="pubdef"><a id="lex_chain/1"><strong>lex_chain</strong>(<var>+Lists</var>)</a></dt>
<dd class="defbody">
<var>Lists</var> are lexicographically non-decreasing.</dd>
<dt class="pubdef"><a id="tuples_in/2"><strong>tuples_in</strong>(<var>+Tuples,
+Relation</var>)</a></dt>
<dd class="defbody">
True iff all <var>Tuples</var> are elements of <var>Relation</var>. Each
element of the list <var>Tuples</var> is a list of integers or finite
domain variables.
<var>Relation</var> is a list of lists of integers. Arbitrary finite
relations, such as compatibility tables, can be modeled in this way. For
example, if 1 is compatible with 2 and 5, and 4 is compatible with 0 and
3:
<pre class="code">
?- tuples_in([[X,Y]], [[1,2],[1,5],[4,0],[4,3]]), X = 4.
X = 4,
Y in 0\/3.
</pre>
<p>As another example, consider a train schedule represented as a list
of quadruples, denoting departure and arrival places and times for each
train. In the following program, Ps is a feasible journey of length 3
from A to D via trains that are part of the given schedule.
<pre class="code">
:- use_module(library(clpfd)).
trains([[1,2,0,1],
[2,3,4,5],
[2,3,0,1],
[3,4,5,6],
[3,4,2,3],
[3,4,8,9]]).
threepath(A, D, Ps) :-
Ps = [[A,B,_T0,T1],[B,C,T2,T3],[C,D,T4,_T5]],
T2 #> T1,
T4 #> T3,
trains(Ts),
tuples_in(Ps, Ts).
</pre>
<p>In this example, the unique solution is found without labeling:
<pre class="code">
?- threepath(1, 4, Ps).
Ps = [[1, 2, 0, 1], [2, 3, 4, 5], [3, 4, 8, 9]].
</pre>
</dd>
<dt class="pubdef"><a id="serialized/2"><strong>serialized</strong>(<var>+Starts,
+Durations</var>)</a></dt>
<dd class="defbody">
Describes a set of non-overlapping tasks.
<var>Starts</var> = [S_1,...,S_n], is a list of variables or integers,
<var>Durations</var> = [D_1,...,D_n] is a list of non-negative integers.
Constrains <var>Starts</var> and <var>Durations</var> to denote a set of
non-overlapping tasks, i.e.: S_i + D_i <code>=<</code> S_j or S_j +
D_j <code>=<</code> S_i for all 1 <code>=<</code> i <var><</var>
j <code>=<</code> n. Example:
<pre class="code">
?- length(Vs, 3),
Vs ins 0..3,
serialized(Vs, [1,2,3]),
label(Vs).
Vs = [0, 1, 3] ;
Vs = [2, 0, 3] ;
false.
</pre>
<dl class="tags">
<dt class="tag">See also</dt>
<dd>
Dorndorf et al. 2000, "Constraint Propagation Techniques for the
Disjunctive Scheduling Problem"
</dd>
</dl>
</dd>
<dt class="pubdef"><a id="element/3"><strong>element</strong>(<var>?N,
+Vs, ?V</var>)</a></dt>
<dd class="defbody">
The <var>N</var>-th element of the list of finite domain variables <var>Vs</var>
is <var>V</var>. Analogous to <a class="pred" href="lists.html#nth1/3">nth1/3</a>.</dd>
<dt class="pubdef"><a id="global_cardinality/2"><strong>global_cardinality</strong>(<var>+Vs,
+Pairs</var>)</a></dt>
<dd class="defbody">
Global Cardinality constraint. Equivalent to
<code>global_cardinality(Vs, Pairs, [])</code>. Example:
<pre class="code">
?- Vs = [_,_,_], global_cardinality(Vs, [1-2,3-_]), label(Vs).
Vs = [1, 1, 3] ;
Vs = [1, 3, 1] ;
Vs = [3, 1, 1].
</pre>
</dd>
<dt class="pubdef"><a id="global_cardinality/3"><strong>global_cardinality</strong>(<var>+Vs,
+Pairs, +Options</var>)</a></dt>
<dd class="defbody">
Global Cardinality constraint. <var>Vs</var> is a list of finite domain
variables, <var>Pairs</var> is a list of Key-Num pairs, where Key is an
integer and Num is a finite domain variable. The constraint holds iff
each V in <var>Vs</var> is equal to some key, and for each Key-Num pair
in <var>Pairs</var>, the number of occurrences of Key in <var>Vs</var>
is Num. <var>Options</var> is a list of options. Supported options are:
<dl class="latex">
<dt><strong>consistency</strong>(<var>value</var>)</dt>
<dd class="defbody">
A weaker form of consistency is used.
</dd>
<dt><strong>cost</strong>(<var>Cost, Matrix</var>)</dt>
<dd class="defbody">
<var>Matrix</var> is a list of rows, one for each variable, in the order
they occur in <var>Vs</var>. Each of these rows is a list of integers,
one for each key, in the order these keys occur in <var>Pairs</var>.
When variable v_i is assigned the value of key k_j, then the associated
cost is <var>Matrix</var>_{ij}. <var>Cost</var> is the sum of all costs.
</dd>
</dl>
</dd>
<dt class="pubdef"><a id="circuit/1"><strong>circuit</strong>(<var>+Vs</var>)</a></dt>
<dd class="defbody">
True iff the list <var>Vs</var> of finite domain variables induces a
Hamiltonian circuit. The k-th element of <var>Vs</var> denotes the
successor of node k. Node indexing starts with 1. Examples:
<pre class="code">
?- length(Vs, _), circuit(Vs), label(Vs).
Vs = [] ;
Vs = [1] ;
Vs = [2, 1] ;
Vs = [2, 3, 1] ;
Vs = [3, 1, 2] ;
Vs = [2, 3, 4, 1] .
</pre>
</dd>
<dt class="pubdef"><a id="cumulative/1"><strong>cumulative</strong>(<var>+Tasks</var>)</a></dt>
<dd class="defbody">
Equivalent to <code>cumulative(Tasks, [limit(1)])</code>.</dd>
<dt class="pubdef"><a id="cumulative/2"><strong>cumulative</strong>(<var>+Tasks,
+Options</var>)</a></dt>
<dd class="defbody">
Schedule with a limited resource. <var>Tasks</var> is a list of tasks,
each of the form <code>task(S_i, D_i, E_i, C_i, T_i)</code>. S_i denotes
the start time, D_i the positive duration, E_i the end time, C_i the
non-negative resource consumption, and T_i the task identifier. Each of
these arguments must be a finite domain variable with bounded domain, or
an integer. The constraint holds iff at each time slot during the start
and end of each task, the total resource consumption of all tasks
running at that time does not exceed the global resource limit. <var>Options</var>
is a list of options. Currently, the only supported option is:
<dl class="latex">
<dt><strong>limit</strong>(<var>L</var>)</dt>
<dd class="defbody">
The integer <var>L</var> is the global resource limit. Default is 1.
</dd>
</dl>
<p>For example, given the following predicate that relates three tasks
of durations 2 and 3 to a list containing their starting times:
<pre class="code">
tasks_starts(Tasks, [S1,S2,S3]) :-
Tasks = [task(S1,3,_,1,_),
task(S2,2,_,1,_),
task(S3,2,_,1,_)].
</pre>
<p>We can use <a class="pred" href="clpfd.html#cumulative/2">cumulative/2</a>
as follows, and obtain a schedule:
<pre class="code">
?- tasks_starts(Tasks, Starts), Starts ins 0..10,
cumulative(Tasks, [limit(2)]), label(Starts).
Tasks = [task(0, 3, 3, 1, _G36), task(0, 2, 2, 1, _G45), ...],
Starts = [0, 0, 2] .
</pre>
</dd>
<dt class="pubdef"><a id="disjoint2/1"><strong>disjoint2</strong>(<var>+Rectangles</var>)</a></dt>
<dd class="defbody">
True iff <var>Rectangles</var> are not overlapping. <var>Rectangles</var>
is a list of terms of the form F(X_i, W_i, Y_i, H_i), where F is any
functor, and the arguments are finite domain variables or integers that
denote, respectively, the X coordinate, width, Y coordinate and height
of each rectangle.</dd>
<dt class="pubdef"><a id="automaton/3"><strong>automaton</strong>(<var>+Signature,
+Nodes, +Arcs</var>)</a></dt>
<dd class="defbody">
Describes a list of finite domain variables with a finite automaton.
Equivalent to <code>automaton(_, _, Signature, Nodes, Arcs, [], [], _)</code>,
a common use case of <a class="pred" href="clpfd.html#automaton/8">automaton/8</a>.
In the following example, a list of binary finite domain variables is
constrained to contain at least two consecutive ones:
<pre class="code">
:- use_module(library(clpfd)).
two_consecutive_ones(Vs) :-
automaton(Vs, [source(a),sink(c)],
[arc(a,0,a), arc(a,1,b),
arc(b,0,a), arc(b,1,c),
arc(c,0,c), arc(c,1,c)]).
</pre>
<p>Example query:
<pre class="code">
?- length(Vs, 3), two_consecutive_ones(Vs), label(Vs).
Vs = [0, 1, 1] ;
Vs = [1, 1, 0] ;
Vs = [1, 1, 1].
</pre>
</dd>
<dt class="pubdef"><a id="automaton/8"><strong>automaton</strong>(<var>?Sequence,
?Template, +Signature, +Nodes, +Arcs, +Counters, +Initials, ?Finals</var>)</a></dt>
<dd class="defbody">
Describes a list of finite domain variables with a finite automaton.
True iff the finite automaton induced by <var>Nodes</var> and <var>Arcs</var>
(extended with <var>Counters</var>) accepts <var>Signature</var>. <var>Sequence</var>
is a list of terms, all of the same shape. Additional constraints must
link
<var>Sequence</var> to <var>Signature</var>, if necessary. <var>Nodes</var>
is a list of
<code>source(Node)</code> and <code>sink(Node)</code> terms. <var>Arcs</var>
is a list of
<code>arc(Node,Integer,Node)</code> and <code>arc(Node,Integer,Node,Exprs)</code>
terms that denote the automaton's transitions. Each node is represented
by an arbitrary term. Transitions that are not mentioned go to an
implicit failure node. <var>Exprs</var> is a list of arithmetic
expressions, of the same length as <var>Counters</var>. In each
expression, variables occurring in <var>Counters</var> correspond to old
counter values, and variables occurring in <var>Template</var>
correspond to the current element of <var>Sequence</var>. When a
transition containing expressions is taken, each counter is updated as
stated by the result of the corresponding arithmetic expression. By
default, counters remain unchanged. <var>Counters</var> is a list of
variables that must not occur anywhere outside of the constraint goal. <var>Initials</var>
is a list of the same length as <var>Counters</var>. Counter arithmetic
on the transitions relates the counter values in <var>Initials</var> to <var>Finals</var>.
<p>The following example is taken from Beldiceanu, Carlsson, Debruyne
and Petit: "Reformulation of Global Constraints Based on Constraints
Checkers", Constraints 10(4), pp 339-362 (2005). It relates a sequence
of integers and finite domain variables to its number of inflexions,
which are switches between strictly ascending and strictly descending
subsequences:
<pre class="code">
:- use_module(library(clpfd)).
sequence_inflexions(Vs, N) :-
variables_signature(Vs, Sigs),
automaton(_, _, Sigs,
[source(s),sink(i),sink(j),sink(s)],
[arc(s,0,s), arc(s,1,j), arc(s,2,i),
arc(i,0,i), arc(i,1,j,[C+1]), arc(i,2,i),
arc(j,0,j), arc(j,1,j),
arc(j,2,i,[C+1])],
[C], [0], [N]).
variables_signature([], []).
variables_signature([V|Vs], Sigs) :-
variables_signature_(Vs, V, Sigs).
variables_signature_([], _, []).
variables_signature_([V|Vs], Prev, [S|Sigs]) :-
V #= Prev #<==> S #= 0,
Prev #< V #<==> S #= 1,
Prev #> V #<==> S #= 2,
variables_signature_(Vs, V, Sigs).
</pre>
<p>Example queries:
<pre class="code">
?- sequence_inflexions([1,2,3,3,2,1,3,0], N).
N = 3.
?- length(Ls, 5), Ls ins 0..1,
sequence_inflexions(Ls, 3), label(Ls).
Ls = [0, 1, 0, 1, 0] ;
Ls = [1, 0, 1, 0, 1].
</pre>
</dd>
<dt class="pubdef"><a id="transpose/2"><strong>transpose</strong>(<var>+Matrix,
?Transpose</var>)</a></dt>
<dd class="defbody">
<var>Transpose</var> a list of lists of the same length. Example:
<pre class="code">
?- transpose([[1,2,3],[4,5,6],[7,8,9]], Ts).
Ts = [[1, 4, 7], [2, 5, 8], [3, 6, 9]].
</pre>
<p>This predicate is useful in many constraint programs. Consider for
instance Sudoku:
<pre class="code">
:- use_module(library(clpfd)).
sudoku(Rows) :-
length(Rows, 9), maplist(same_length(Rows), Rows),
append(Rows, Vs), Vs ins 1..9,
maplist(all_distinct, Rows),
transpose(Rows, Columns),
maplist(all_distinct, Columns),
Rows = [A,B,C,D,E,F,G,H,I],
blocks(A, B, C), blocks(D, E, F), blocks(G, H, I).
blocks([], [], []).
blocks([A,B,C|Bs1], [D,E,F|Bs2], [G,H,I|Bs3]) :-
all_distinct([A,B,C,D,E,F,G,H,I]),
blocks(Bs1, Bs2, Bs3).
problem(1, [[_,_,_,_,_,_,_,_,_],
[_,_,_,_,_,3,_,8,5],
[_,_,1,_,2,_,_,_,_],
[_,_,_,5,_,7,_,_,_],
[_,_,4,_,_,_,1,_,_],
[_,9,_,_,_,_,_,_,_],
[5,_,_,_,_,_,_,7,3],
[_,_,2,_,1,_,_,_,_],
[_,_,_,_,4,_,_,_,9]]).
</pre>
<p>Sample query:
<pre class="code">
?- problem(1, Rows), sudoku(Rows), maplist(writeln, Rows).
[9,8,7,6,5,4,3,2,1]
[2,4,6,1,7,3,9,8,5]
[3,5,1,9,2,8,7,4,6]
[1,2,8,5,3,7,6,9,4]
[6,3,4,8,9,2,1,5,7]
[7,9,5,4,6,1,8,3,2]
[5,1,9,2,8,6,4,7,3]
[4,7,2,3,1,9,5,6,8]
[8,6,3,7,4,5,2,1,9]
Rows = [[9, 8, 7, 6, 5, 4, 3, 2|...], ... , [...|...]].
</pre>
</dd>
<dt class="pubdef"><a id="zcompare/3"><strong>zcompare</strong>(<var>?Order,
?A, ?B</var>)</a></dt>
<dd class="defbody">
Analogous to <a class="pred" href="compare.html#compare/3">compare/3</a>,
with finite domain variables <var>A</var> and <var>B</var>. Example:
<pre class="code">
:- use_module(library(clpfd)).
n_factorial(N, F) :-
zcompare(C, N, 0),
n_factorial_(C, N, F).
n_factorial_(=, _, 1).
n_factorial_(>, N, F) :-
F #= F0*N, N1 #= N - 1,
n_factorial(N1, F0).
</pre>
<p>This version is deterministic if the first argument is instantiated:
<pre class="code">
?- n_factorial(30, F).
F = 265252859812191058636308480000000.
</pre>
</dd>
<dt class="pubdef"><a id="chain/2"><strong>chain</strong>(<var>+Zs,
+Relation</var>)</a></dt>
<dd class="defbody">
<var>Zs</var> form a chain with respect to <var>Relation</var>. <var>Zs</var>
is a list of finite domain variables that are a chain with respect to
the partial order
<var>Relation</var>, in the order they appear in the list. <var>Relation</var>
must be #=,
#=<var><</var>, #<var>></var>=, <code>#<</code> or #<var>></var>.
For example:
<pre class="code">
?- chain([X,Y,Z], #>=).
X#>=Y,
Y#>=Z.
</pre>
</dd>
<dt class="pubdef"><a id="fd_var/1"><strong>fd_var</strong>(<var>+Var</var>)</a></dt>
<dd class="defbody">
True iff <var>Var</var> is a CLP(FD) variable.</dd>
<dt class="pubdef"><a id="fd_inf/2"><strong>fd_inf</strong>(<var>+Var,
-Inf</var>)</a></dt>
<dd class="defbody">
<var>Inf</var> is the infimum of the current domain of <var>Var</var>.</dd>
<dt class="pubdef"><a id="fd_sup/2"><strong>fd_sup</strong>(<var>+Var,
-Sup</var>)</a></dt>
<dd class="defbody">
<var>Sup</var> is the supremum of the current domain of <var>Var</var>.</dd>
<dt class="pubdef"><a id="fd_size/2"><strong>fd_size</strong>(<var>+Var,
-Size</var>)</a></dt>
<dd class="defbody">
<var>Size</var> is the number of elements of the current domain of <var>Var</var>,
or the atom <b>sup</b> if the domain is unbounded.</dd>
<dt class="pubdef"><a id="fd_dom/2"><strong>fd_dom</strong>(<var>+Var,
-Dom</var>)</a></dt>
<dd class="defbody">
<var>Dom</var> is the current domain (see <a class="pred" href="clpfd.html#in/2">in/2</a>)
of <var>Var</var>. This predicate is useful if you want to reason about
domains. It is <i>not</i> needed if you only want to display remaining
domains; instead, separate your model from the search part and let the
toplevel display this information via residual goals.
<p>For example, to implement a custom labeling strategy, you may need to
inspect the current domain of a finite domain variable. With the
following code, you can convert a <i>finite</i> domain to a list of
integers:
<pre class="code">
dom_integers(D, Is) :- phrase(dom_integers_(D), Is).
dom_integers_(I) --> { integer(I) }, [I].
dom_integers_(L..U) --> { numlist(L, U, Is) }, Is.
dom_integers_(D1\/D2) --> dom_integers_(D1), dom_integers_(D2).
</pre>
<p>Example:
<pre class="code">
?- X in 1..5, X #\= 4, fd_dom(X, D), dom_integers(D, Is).
D = 1..3\/5,
Is = [1,2,3,5],
X in 1..3\/5.
</pre>
<p></dd>
</dl>
<p></body></html>
|