This file is indexed.

/usr/share/perl5/Slic3r/Geometry.pm is in slic3r 1.2.9+dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
package Slic3r::Geometry;
use strict;
use warnings;

require Exporter;
our @ISA = qw(Exporter);
our @EXPORT_OK = qw(
    PI X Y Z A B X1 Y1 X2 Y2 Z1 Z2 MIN MAX epsilon slope 
    line_point_belongs_to_segment points_coincide distance_between_points 
    normalize tan move_points_3D
    point_in_polygon point_in_segment segment_in_segment
    polyline_lines polygon_lines
    point_along_segment polygon_segment_having_point polygon_has_subsegment
    deg2rad rad2deg
    rotate_points move_points
    dot perp
    line_intersection bounding_box bounding_box_intersect
    angle3points
    chained_path chained_path_from collinear scale unscale
    rad2deg_dir bounding_box_center line_intersects_any douglas_peucker
    polyline_remove_short_segments normal triangle_normal polygon_is_convex
    scaled_epsilon bounding_box_3D size_3D size_2D
    convex_hull directions_parallel directions_parallel_within
);


use constant PI => 4 * atan2(1, 1);
use constant A => 0;
use constant B => 1;
use constant X1 => 0;
use constant Y1 => 1;
use constant X2 => 2;
use constant Y2 => 3;
use constant Z1 => 4;
use constant Z2 => 5;
use constant MIN => 0;
use constant MAX => 1;
our $parallel_degrees_limit = abs(deg2rad(0.1));

sub epsilon () { 1E-4 }
sub scaled_epsilon () { epsilon / &Slic3r::SCALING_FACTOR }

sub scale   ($) { $_[0] / &Slic3r::SCALING_FACTOR }
sub unscale ($) { $_[0] * &Slic3r::SCALING_FACTOR }

sub tan {
    my ($angle) = @_;
    return (sin $angle) / (cos $angle);
}

sub slope {
    my ($line) = @_;
    return undef if abs($line->[B][X] - $line->[A][X]) < epsilon;  # line is vertical
    return ($line->[B][Y] - $line->[A][Y]) / ($line->[B][X] - $line->[A][X]);
}

# this subroutine checks whether a given point may belong to a given
# segment given the hypothesis that it belongs to the line containing
# the segment
sub line_point_belongs_to_segment {
    my ($point, $segment) = @_;
    
    #printf "   checking whether %f,%f may belong to segment %f,%f - %f,%f\n",
    #    @$point, map @$_, @$segment;
    
    my @segment_extents = (
        [ sort { $a <=> $b } map $_->[X], @$segment ],
        [ sort { $a <=> $b } map $_->[Y], @$segment ],
    );
    
    return 0 if $point->[X] < ($segment_extents[X][0] - epsilon) || $point->[X] > ($segment_extents[X][1] + epsilon);
    return 0 if $point->[Y] < ($segment_extents[Y][0] - epsilon) || $point->[Y] > ($segment_extents[Y][1] + epsilon);
    return 1;
}

sub points_coincide {
    my ($p1, $p2) = @_;
    return 1 if abs($p2->[X] - $p1->[X]) < epsilon && abs($p2->[Y] - $p1->[Y]) < epsilon;
    return 0;
}

sub distance_between_points {
    my ($p1, $p2) = @_;
    return sqrt((($p1->[X] - $p2->[X])**2) + ($p1->[Y] - $p2->[Y])**2);
}

# this will check whether a point is in a polygon regardless of polygon orientation
sub point_in_polygon {
    my ($point, $polygon) = @_;
    
    my ($x, $y) = @$point;
    my $n = @$polygon;
    my @x = map $_->[X], @$polygon;
    my @y = map $_->[Y], @$polygon;
    
    # Derived from the comp.graphics.algorithms FAQ,
    # courtesy of Wm. Randolph Franklin
    my ($i, $j);
    my $side = 0;                           # 0 = outside; 1 = inside
    for ($i = 0, $j = $n - 1; $i < $n; $j = $i++) {
        if (
            # If the y is between the (y-) borders...
            ($y[$i] <= $y && $y < $y[$j]) || ($y[$j] <= $y && $y < $y[$i])
            and
            # ...the (x,y) to infinity line crosses the edge
            # from the ith point to the jth point...
            ($x < ($x[$j] - $x[$i]) * ($y - $y[$i]) / ($y[$j] - $y[$i]) + $x[$i])
        ) {
            $side = not $side;  # Jump the fence
        }
    }
    
    # if point is not in polygon, let's check whether it belongs to the contour
    if (!$side && 0) {
        return 1 if polygon_segment_having_point($polygon, $point);
    }
    
    return $side;
}

sub point_in_segment {
    my ($point, $line) = @_;
    
    my ($x, $y) = @$point;
    my $line_p = $line->pp;
    my @line_x = sort { $a <=> $b } $line_p->[A][X], $line_p->[B][X];
    my @line_y = sort { $a <=> $b } $line_p->[A][Y], $line_p->[B][Y];
    
    # check whether the point is in the segment bounding box
    return 0 unless $x >= ($line_x[0] - epsilon) && $x <= ($line_x[1] + epsilon)
        && $y >= ($line_y[0] - epsilon) && $y <= ($line_y[1] + epsilon);
    
    # if line is vertical, check whether point's X is the same as the line
    if ($line_p->[A][X] == $line_p->[B][X]) {
        return abs($x - $line_p->[A][X]) < epsilon ? 1 : 0;
    }
    
    # calculate the Y in line at X of the point
    my $y3 = $line_p->[A][Y] + ($line_p->[B][Y] - $line_p->[A][Y])
        * ($x - $line_p->[A][X]) / ($line_p->[B][X] - $line_p->[A][X]);
    return abs($y3 - $y) < epsilon ? 1 : 0;
}

sub segment_in_segment {
    my ($needle, $haystack) = @_;
    
    # a segment is contained in another segment if its endpoints are contained
    return point_in_segment($needle->[A], $haystack) && point_in_segment($needle->[B], $haystack);
}

sub polyline_lines {
    my ($polyline) = @_;
    my @points = @$polyline;
    return map Slic3r::Line->new(@points[$_, $_+1]), 0 .. $#points-1;
}

sub polygon_lines {
    my ($polygon) = @_;
    return polyline_lines([ @$polygon, $polygon->[0] ]);
}

# given a segment $p1-$p2, get the point at $distance from $p1 along segment
sub point_along_segment {
    my ($p1, $p2, $distance) = @_;
    
    my $point = [ @$p1 ];
    
    my $line_length = sqrt( (($p2->[X] - $p1->[X])**2) + (($p2->[Y] - $p1->[Y])**2) );
    for (X, Y) {
        if ($p1->[$_] != $p2->[$_]) {
            $point->[$_] = $p1->[$_] + ($p2->[$_] - $p1->[$_]) * $distance / $line_length;
        }
    }
    
    return Slic3r::Point->new(@$point);
}

# given a $polygon, return the (first) segment having $point
sub polygon_segment_having_point {
    my ($polygon, $point) = @_;
    
    foreach my $line (@{ $polygon->lines }) {
        return $line if point_in_segment($point, $line);
    }
    return undef;
}

# return true if the given segment is contained in any edge of the polygon
sub polygon_has_subsegment {
    my ($polygon, $segment) = @_;
    foreach my $line (polygon_lines($polygon)) {
        return 1 if segment_in_segment($segment, $line);
    }
    return 0;
}

# polygon must be simple (non complex) and ccw
sub polygon_is_convex {
    my ($points) = @_;
    for (my $i = 0; $i <= $#$points; $i++) {
        my $angle = angle3points($points->[$i-1], $points->[$i-2], $points->[$i]);
        return 0 if $angle < PI;
    }
    return 1;
}

sub rotate_points {
    my ($radians, $center, @points) = @_;
    $center //= [0,0];
    return map {
        [
            $center->[X] + cos($radians) * ($_->[X] - $center->[X]) - sin($radians) * ($_->[Y] - $center->[Y]),
            $center->[Y] + cos($radians) * ($_->[Y] - $center->[Y]) + sin($radians) * ($_->[X] - $center->[X]),
        ]
    } @points;
}

sub move_points {
    my ($shift, @points) = @_;
    return map {
        my @p = @$_;
        Slic3r::Point->new($shift->[X] + $p[X], $shift->[Y] + $p[Y]);
    } @points;
}

sub move_points_3D {
    my ($shift, @points) = @_;
    return map [
        $shift->[X] + $_->[X],
        $shift->[Y] + $_->[Y],
        $shift->[Z] + $_->[Z],
    ], @points;
}

sub normal {
    my ($line1, $line2) = @_;
    
    return [
         ($line1->[Y] * $line2->[Z]) - ($line1->[Z] * $line2->[Y]),
        -($line2->[Z] * $line1->[X]) + ($line2->[X] * $line1->[Z]),
         ($line1->[X] * $line2->[Y]) - ($line1->[Y] * $line2->[X]),
    ];
}

sub triangle_normal {
    my ($v1, $v2, $v3) = @_;
    
    my $u = [ map +($v2->[$_] - $v1->[$_]), (X,Y,Z) ];
    my $v = [ map +($v3->[$_] - $v1->[$_]), (X,Y,Z) ];
    
    return normal($u, $v);
}

sub normalize {
    my ($line) = @_;
    
    my $len = sqrt( ($line->[X]**2) + ($line->[Y]**2) + ($line->[Z]**2) )
        or return [0, 0, 0];  # to avoid illegal division by zero
    return [ map $_ / $len, @$line ];
}

# 2D dot product
sub dot {
    my ($u, $v) = @_;
    return $u->[X] * $v->[X] + $u->[Y] * $v->[Y];
}

# 2D perp product
sub perp {
    my ($u, $v) = @_;
    return $u->[X] * $v->[Y] - $u->[Y] * $v->[X];
}

sub line_intersects_any {
    my ($line, $lines) = @_;
    for (@$lines) {
        return 1 if line_intersection($line, $_, 1);
    }
    return 0;
}

sub line_intersection {
    my ($line1, $line2, $require_crossing) = @_;
    $require_crossing ||= 0;
    
    my $intersection = _line_intersection(map @$_, @$line1, @$line2);
    return (ref $intersection && $intersection->[1] == $require_crossing) 
        ? $intersection->[0] 
        : undef;
}

sub collinear {
    my ($line1, $line2, $require_overlapping) = @_;
    my $intersection = _line_intersection(map @$_, @$line1, @$line2);
    return 0 unless !ref($intersection) 
        && ($intersection eq 'parallel collinear'
            || ($intersection eq 'parallel vertical' && abs($line1->[A][X] - $line2->[A][X]) < epsilon));
    
    if ($require_overlapping) {
        my @box_a = bounding_box([ $line1->[0], $line1->[1] ]);
        my @box_b = bounding_box([ $line2->[0], $line2->[1] ]);
        return 0 unless bounding_box_intersect( 2, @box_a, @box_b );
    }
    
    return 1;
}

sub _line_intersection {
  my ( $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3 ) = @_;

  my ($x, $y);  # The as-yet-undetermined intersection point.

  my $dy10 = $y1 - $y0; # dyPQ, dxPQ are the coordinate differences
  my $dx10 = $x1 - $x0; # between the points P and Q.
  my $dy32 = $y3 - $y2;
  my $dx32 = $x3 - $x2;

  my $dy10z = abs( $dy10 ) < epsilon; # Is the difference $dy10 "zero"?
  my $dx10z = abs( $dx10 ) < epsilon;
  my $dy32z = abs( $dy32 ) < epsilon;
  my $dx32z = abs( $dx32 ) < epsilon;

  my $dyx10;                            # The slopes.
  my $dyx32;
  
  $dyx10 = $dy10 / $dx10 unless $dx10z;
  $dyx32 = $dy32 / $dx32 unless $dx32z;

  # Now we know all differences and the slopes;
  # we can detect horizontal/vertical special cases.
  # E.g., slope = 0 means a horizontal line.

  unless ( defined $dyx10 or defined $dyx32 ) {
    return "parallel vertical";
  }
  elsif ( $dy10z and not $dy32z ) { # First line horizontal.
    $y = $y0;
    $x = $x2 + ( $y - $y2 ) * $dx32 / $dy32;
  }
  elsif ( not $dy10z and $dy32z ) { # Second line horizontal.
    $y = $y2;
    $x = $x0 + ( $y - $y0 ) * $dx10 / $dy10;
  }
  elsif ( $dx10z and not $dx32z ) { # First line vertical.
    $x = $x0;
    $y = $y2 + $dyx32 * ( $x - $x2 );
  }
  elsif ( not $dx10z and $dx32z ) { # Second line vertical.
    $x = $x2;
    $y = $y0 + $dyx10 * ( $x - $x0 );
  }
  elsif ( abs( $dyx10 - $dyx32 ) < epsilon ) {
    # The slopes are suspiciously close to each other.
    # Either we have parallel collinear or just parallel lines.

    # The bounding box checks have already weeded the cases
    # "parallel horizontal" and "parallel vertical" away.

    my $ya = $y0 - $dyx10 * $x0;
    my $yb = $y2 - $dyx32 * $x2;
    
    return "parallel collinear" if abs( $ya - $yb ) < epsilon;
    return "parallel";
  }
  else {
    # None of the special cases matched.
    # We have a "honest" line intersection.

    $x = ($y2 - $y0 + $dyx10*$x0 - $dyx32*$x2)/($dyx10 - $dyx32);
    $y = $y0 + $dyx10 * ($x - $x0);
  }

  my $h10 = $dx10 ? ($x - $x0) / $dx10 : ($dy10 ? ($y - $y0) / $dy10 : 1);
  my $h32 = $dx32 ? ($x - $x2) / $dx32 : ($dy32 ? ($y - $y2) / $dy32 : 1);

  return [Slic3r::Point->new($x, $y), $h10 >= 0 && $h10 <= 1 && $h32 >= 0 && $h32 <= 1];
}

# http://paulbourke.net/geometry/lineline2d/
sub _line_intersection2 {
    my ($line1, $line2) = @_;
    
    my $denom = ($line2->[B][Y] - $line2->[A][Y]) * ($line1->[B][X] - $line1->[A][X])
        - ($line2->[B][X] - $line2->[A][X]) * ($line1->[B][Y] - $line1->[A][Y]);
    my $numerA = ($line2->[B][X] - $line2->[A][X]) * ($line1->[A][Y] - $line2->[A][Y])
        - ($line2->[B][Y] - $line2->[A][Y]) * ($line1->[A][X] - $line2->[A][X]);
    my $numerB = ($line1->[B][X] - $line1->[A][X]) * ($line1->[A][Y] - $line2->[A][Y])
        - ($line1->[B][Y] - $line1->[A][Y]) * ($line1->[A][X] - $line2->[A][X]);
    
    # are the lines coincident?
    if (abs($numerA) < epsilon && abs($numerB) < epsilon && abs($denom) < epsilon) {
        return Slic3r::Point->new(
            ($line1->[A][X] + $line1->[B][X]) / 2,
            ($line1->[A][Y] + $line1->[B][Y]) / 2,
        );
    }
    
    # are the lines parallel?
    if (abs($denom) < epsilon) {
        return undef;
    }
    
    # is the intersection along the segments?
    my $muA = $numerA / $denom;
    my $muB = $numerB / $denom;
    if ($muA < 0 || $muA > 1 || $muB < 0 || $muB > 1) {
        return undef;
    }
    
    return Slic3r::Point->new(
        $line1->[A][X] + $muA * ($line1->[B][X] - $line1->[A][X]),
        $line1->[A][Y] + $muA * ($line1->[B][Y] - $line1->[A][Y]),
    );
}

# 2D
sub bounding_box {
    my ($points) = @_;
    
    my @x = map $_->x, @$points;
    my @y = map $_->y, @$points;    #,,
    my @bb = (undef, undef, undef, undef);
    for (0..$#x) {
        $bb[X1] = $x[$_] if !defined $bb[X1] || $x[$_] < $bb[X1];
        $bb[X2] = $x[$_] if !defined $bb[X2] || $x[$_] > $bb[X2];
        $bb[Y1] = $y[$_] if !defined $bb[Y1] || $y[$_] < $bb[Y1];
        $bb[Y2] = $y[$_] if !defined $bb[Y2] || $y[$_] > $bb[Y2];
    }
    
    return @bb[X1,Y1,X2,Y2];
}

sub bounding_box_center {
    my ($bounding_box) = @_;
    return Slic3r::Point->new(
        ($bounding_box->[X2] + $bounding_box->[X1]) / 2,
        ($bounding_box->[Y2] + $bounding_box->[Y1]) / 2,
    );
}

sub size_2D {
    my @bounding_box = bounding_box(@_);
    return (
        ($bounding_box[X2] - $bounding_box[X1]),
        ($bounding_box[Y2] - $bounding_box[Y1]),
    );
}

# bounding_box_intersect($d, @a, @b)
#   Return true if the given bounding boxes @a and @b intersect
#   in $d dimensions.  Used by line_intersection().
sub bounding_box_intersect {
    my ( $d, @bb ) = @_; # Number of dimensions and box coordinates.
    my @aa = splice( @bb, 0, 2 * $d ); # The first box.
    # (@bb is the second one.)
    
    # Must intersect in all dimensions.
    for ( my $i_min = 0; $i_min < $d; $i_min++ ) {
        my $i_max = $i_min + $d; # The index for the maximum.
        return 0 if ( $aa[ $i_max ] + epsilon ) < $bb[ $i_min ];
        return 0 if ( $bb[ $i_max ] + epsilon ) < $aa[ $i_min ];
    }
    
    return 1;
}

# 3D
sub bounding_box_3D {
    my ($points) = @_;
    
    my @extents = (map [undef, undef], X,Y,Z);
    foreach my $point (@$points) {
        for (X,Y,Z) {
            $extents[$_][MIN] = $point->[$_] if !defined $extents[$_][MIN] || $point->[$_] < $extents[$_][MIN];
            $extents[$_][MAX] = $point->[$_] if !defined $extents[$_][MAX] || $point->[$_] > $extents[$_][MAX];
        }
    }
    return @extents;
}

sub size_3D {
    my ($points) = @_;
    
    my @extents = bounding_box_3D($points);
    return map $extents[$_][MAX] - $extents[$_][MIN], (X,Y,Z);
}

# this assumes a CCW rotation from $p2 to $p3 around $p1
sub angle3points {
    my ($p1, $p2, $p3) = @_;
    # p1 is the center
    
    my $angle = atan2($p2->[X] - $p1->[X], $p2->[Y] - $p1->[Y])
              - atan2($p3->[X] - $p1->[X], $p3->[Y] - $p1->[Y]);
    
    # we only want to return only positive angles
    return $angle <= 0 ? $angle + 2*PI() : $angle;
}

sub polyline_remove_short_segments {
    my ($points, $min_length, $isPolygon) = @_;
    for (my $i = $isPolygon ? 0 : 1; $i < $#$points; $i++) {
        if (distance_between_points($points->[$i-1], $points->[$i]) < $min_length) {
            # we can remove $points->[$i]
            splice @$points, $i, 1;
            $i--;
        }
    }
}

sub douglas_peucker {
    my ($points, $tolerance) = @_;
    no warnings "recursion";
    
    my $results = [];
    my $dmax = 0;
    my $index = 0;
    for my $i (1..$#$points) {
        my $d = $points->[$i]->distance_to(Slic3r::Line->new($points->[0], $points->[-1]));
        if ($d > $dmax) {
            $index = $i;
            $dmax = $d;
        }
    }
    if ($dmax >= $tolerance) {
        my $dp1 = douglas_peucker([ @$points[0..$index] ], $tolerance);
        $results = [
            @$dp1[0..($#$dp1-1)],
            @{douglas_peucker([ @$points[$index..$#$points] ], $tolerance)},
        ];
    } else {
        $results = [ $points->[0], $points->[-1] ];
    }
    return $results;
}

sub douglas_peucker2 {
    my ($points, $tolerance) = @_;
    
    my $anchor = 0;
    my $floater = $#$points;
    my @stack = ();
    my %keep = ();
    
    push @stack, [$anchor, $floater];
    while (@stack) {
        ($anchor, $floater) = @{pop @stack};
        
        # initialize line segment
        my ($anchor_x, $anchor_y, $seg_len);
        if (grep $points->[$floater][$_] != $points->[$anchor][$_], X, Y) {
            $anchor_x = $points->[$floater][X] - $points->[$anchor][X];
            $anchor_y = $points->[$floater][Y] - $points->[$anchor][Y];
            $seg_len = sqrt(($anchor_x ** 2) + ($anchor_y ** 2));
            # get the unit vector
            $anchor_x /= $seg_len;
            $anchor_y /= $seg_len;
        } else {
            $anchor_x = $anchor_y = $seg_len = 0;
        }
        
        # inner loop:
        my $max_dist = 0;
        my $farthest = $anchor + 1;
        for my $i (($anchor + 1) .. $floater) {
            my $dist_to_seg = 0;
            # compare to anchor
            my $vecX = $points->[$i][X] - $points->[$anchor][X];
            my $vecY = $points->[$i][Y] - $points->[$anchor][Y];
            $seg_len = sqrt(($vecX ** 2) + ($vecY ** 2));
            # dot product:
            my $proj = $vecX * $anchor_x + $vecY * $anchor_y;
            if ($proj < 0) {
                $dist_to_seg = $seg_len;
            } else {
                # compare to floater
                $vecX = $points->[$i][X] - $points->[$floater][X];
                $vecY = $points->[$i][Y] - $points->[$floater][Y];
                $seg_len = sqrt(($vecX ** 2) + ($vecY ** 2));
                # dot product:
                $proj = $vecX * (-$anchor_x) + $vecY * (-$anchor_y);
                if ($proj < 0) {
                    $dist_to_seg = $seg_len
                } else {  # calculate perpendicular distance to line (pythagorean theorem):
                    $dist_to_seg = sqrt(abs(($seg_len ** 2) - ($proj ** 2)));
                }
                if ($max_dist < $dist_to_seg) {
                    $max_dist = $dist_to_seg;
                    $farthest = $i;
                }
            }
        }
        
        if ($max_dist <= $tolerance) { # use line segment
            $keep{$_} = 1 for $anchor, $floater;
        } else {
            push @stack, [$anchor, $farthest];
            push @stack, [$farthest, $floater];
        }
    }
    
    return [ map $points->[$_], sort keys %keep ];
}

1;