/usr/share/perl5/Slic3r/Fill.pm is in slic3r 1.2.9+dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | package Slic3r::Fill;
use Moo;
use List::Util qw(max);
use Slic3r::ExtrusionPath ':roles';
use Slic3r::Fill::3DHoneycomb;
use Slic3r::Fill::Base;
use Slic3r::Fill::Concentric;
use Slic3r::Fill::Honeycomb;
use Slic3r::Fill::PlanePath;
use Slic3r::Fill::Rectilinear;
use Slic3r::Flow ':roles';
use Slic3r::Geometry qw(X Y PI scale chained_path deg2rad);
use Slic3r::Geometry::Clipper qw(union union_ex diff diff_ex intersection_ex offset offset2);
use Slic3r::Surface ':types';
has 'bounding_box' => (is => 'ro', required => 0);
has 'fillers' => (is => 'rw', default => sub { {} });
our %FillTypes = (
archimedeanchords => 'Slic3r::Fill::ArchimedeanChords',
rectilinear => 'Slic3r::Fill::Rectilinear',
flowsnake => 'Slic3r::Fill::Flowsnake',
octagramspiral => 'Slic3r::Fill::OctagramSpiral',
hilbertcurve => 'Slic3r::Fill::HilbertCurve',
line => 'Slic3r::Fill::Line',
concentric => 'Slic3r::Fill::Concentric',
honeycomb => 'Slic3r::Fill::Honeycomb',
'3dhoneycomb' => 'Slic3r::Fill::3DHoneycomb',
);
sub filler {
my $self = shift;
my ($filler) = @_;
if (!ref $self) {
return $FillTypes{$filler}->new;
}
$self->fillers->{$filler} ||= $FillTypes{$filler}->new(
bounding_box => $self->bounding_box,
);
return $self->fillers->{$filler};
}
sub make_fill {
my $self = shift;
my ($layerm) = @_;
Slic3r::debugf "Filling layer %d:\n", $layerm->id;
my $fill_density = $layerm->config->fill_density;
my $infill_flow = $layerm->flow(FLOW_ROLE_INFILL);
my $solid_infill_flow = $layerm->flow(FLOW_ROLE_SOLID_INFILL);
my $top_solid_infill_flow = $layerm->flow(FLOW_ROLE_TOP_SOLID_INFILL);
my @surfaces = ();
# merge adjacent surfaces
# in case of bridge surfaces, the ones with defined angle will be attached to the ones
# without any angle (shouldn't this logic be moved to process_external_surfaces()?)
{
my @surfaces_with_bridge_angle = grep { $_->bridge_angle >= 0 } @{$layerm->fill_surfaces};
# group surfaces by distinct properties
my @groups = @{$layerm->fill_surfaces->group};
# merge compatible groups (we can generate continuous infill for them)
{
# cache flow widths and patterns used for all solid groups
# (we'll use them for comparing compatible groups)
my @is_solid = my @fw = my @pattern = ();
for (my $i = 0; $i <= $#groups; $i++) {
# we can only merge solid non-bridge surfaces, so discard
# non-solid surfaces
if ($groups[$i][0]->is_solid && (!$groups[$i][0]->is_bridge || $layerm->id == 0)) {
$is_solid[$i] = 1;
$fw[$i] = ($groups[$i][0]->surface_type == S_TYPE_TOP)
? $top_solid_infill_flow->width
: $solid_infill_flow->width;
$pattern[$i] = $groups[$i][0]->is_external
? $layerm->config->external_fill_pattern
: 'rectilinear';
} else {
$is_solid[$i] = 0;
$fw[$i] = 0;
$pattern[$i] = 'none';
}
}
# loop through solid groups
for (my $i = 0; $i <= $#groups; $i++) {
next if !$is_solid[$i];
# find compatible groups and append them to this one
for (my $j = $i+1; $j <= $#groups; $j++) {
next if !$is_solid[$j];
if ($fw[$i] == $fw[$j] && $pattern[$i] eq $pattern[$j]) {
# groups are compatible, merge them
push @{$groups[$i]}, @{$groups[$j]};
splice @groups, $j, 1;
splice @is_solid, $j, 1;
splice @fw, $j, 1;
splice @pattern, $j, 1;
}
}
}
}
# give priority to bridges
@groups = sort { ($a->[0]->bridge_angle >= 0) ? -1 : 0 } @groups;
foreach my $group (@groups) {
my $union_p = union([ map $_->p, @$group ], 1);
# subtract surfaces having a defined bridge_angle from any other
if (@surfaces_with_bridge_angle && $group->[0]->bridge_angle < 0) {
$union_p = diff(
$union_p,
[ map $_->p, @surfaces_with_bridge_angle ],
1,
);
}
# subtract any other surface already processed
my $union = diff_ex(
$union_p,
[ map $_->p, @surfaces ],
1,
);
push @surfaces, map $group->[0]->clone(expolygon => $_), @$union;
}
}
# we need to detect any narrow surfaces that might collapse
# when adding spacing below
# such narrow surfaces are often generated in sloping walls
# by bridge_over_infill() and combine_infill() as a result of the
# subtraction of the combinable area from the layer infill area,
# which leaves small areas near the perimeters
# we are going to grow such regions by overlapping them with the void (if any)
# TODO: detect and investigate whether there could be narrow regions without
# any void neighbors
{
my $distance_between_surfaces = max(
$infill_flow->scaled_spacing,
$solid_infill_flow->scaled_spacing,
$top_solid_infill_flow->scaled_spacing,
);
my $collapsed = diff(
[ map @{$_->expolygon}, @surfaces ],
offset2([ map @{$_->expolygon}, @surfaces ], -$distance_between_surfaces/2, +$distance_between_surfaces/2),
1,
);
push @surfaces, map Slic3r::Surface->new(
expolygon => $_,
surface_type => S_TYPE_INTERNALSOLID,
), @{intersection_ex(
offset($collapsed, $distance_between_surfaces),
[
(map @{$_->expolygon}, grep $_->surface_type == S_TYPE_INTERNALVOID, @surfaces),
(@$collapsed),
],
1,
)};
}
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("fill_" . $layerm->print_z . ".svg",
expolygons => [ map $_->expolygon, grep !$_->is_solid, @surfaces ],
red_expolygons => [ map $_->expolygon, grep $_->is_solid, @surfaces ],
);
}
my @fills = ();
SURFACE: foreach my $surface (@surfaces) {
next if $surface->surface_type == S_TYPE_INTERNALVOID;
my $filler = $layerm->config->fill_pattern;
my $density = $fill_density;
my $role = ($surface->surface_type == S_TYPE_TOP) ? FLOW_ROLE_TOP_SOLID_INFILL
: $surface->is_solid ? FLOW_ROLE_SOLID_INFILL
: FLOW_ROLE_INFILL;
my $is_bridge = $layerm->id > 0 && $surface->is_bridge;
my $is_solid = $surface->is_solid;
if ($surface->is_solid) {
$density = 100;
$filler = 'rectilinear';
if ($surface->is_external && !$is_bridge) {
$filler = $layerm->config->external_fill_pattern;
}
} else {
next SURFACE unless $density > 0;
}
# get filler object
my $f = $self->filler($filler);
# calculate the actual flow we'll be using for this infill
my $h = $surface->thickness == -1 ? $layerm->height : $surface->thickness;
my $flow = $layerm->region->flow(
$role,
$h,
$is_bridge || $f->use_bridge_flow,
$layerm->id == 0,
-1,
$layerm->object,
);
# calculate flow spacing for infill pattern generation
my $using_internal_flow = 0;
if (!$is_solid && !$is_bridge) {
# it's internal infill, so we can calculate a generic flow spacing
# for all layers, for avoiding the ugly effect of
# misaligned infill on first layer because of different extrusion width and
# layer height
my $internal_flow = $layerm->region->flow(
FLOW_ROLE_INFILL,
$layerm->object->config->layer_height, # TODO: handle infill_every_layers?
0, # no bridge
0, # no first layer
-1, # auto width
$layerm->object,
);
$f->spacing($internal_flow->spacing);
$using_internal_flow = 1;
} else {
$f->spacing($flow->spacing);
}
$f->layer_id($layerm->id);
$f->z($layerm->print_z);
$f->angle(deg2rad($layerm->config->fill_angle));
$f->loop_clipping(scale($flow->nozzle_diameter) * &Slic3r::LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);
# apply half spacing using this flow's own spacing and generate infill
my @polylines = map $f->fill_surface(
$_,
density => $density/100,
layer_height => $h,
), @{ $surface->offset(-scale($f->spacing)/2) };
next unless @polylines;
# calculate actual flow from spacing (which might have been adjusted by the infill
# pattern generator)
if ($using_internal_flow) {
# if we used the internal flow we're not doing a solid infill
# so we can safely ignore the slight variation that might have
# been applied to $f->flow_spacing
} else {
$flow = Slic3r::Flow->new_from_spacing(
spacing => $f->spacing,
nozzle_diameter => $flow->nozzle_diameter,
layer_height => $h,
bridge => $is_bridge || $f->use_bridge_flow,
);
}
my $mm3_per_mm = $flow->mm3_per_mm;
# save into layer
{
my $role = $is_bridge ? EXTR_ROLE_BRIDGE
: $is_solid ? (($surface->surface_type == S_TYPE_TOP) ? EXTR_ROLE_TOPSOLIDFILL : EXTR_ROLE_SOLIDFILL)
: EXTR_ROLE_FILL;
push @fills, my $collection = Slic3r::ExtrusionPath::Collection->new;
$collection->no_sort($f->no_sort);
$collection->append(
map Slic3r::ExtrusionPath->new(
polyline => $_,
role => $role,
mm3_per_mm => $mm3_per_mm,
width => $flow->width,
height => $flow->height,
), @polylines,
);
}
}
# add thin fill regions
foreach my $thin_fill (@{$layerm->thin_fills}) {
push @fills, Slic3r::ExtrusionPath::Collection->new($thin_fill);
}
return @fills;
}
1;
|