/usr/lib/python3/dist-packages/pyx/box.py is in python3-pyx 0.14.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 | # -*- encoding: utf-8 -*-
#
#
# Copyright (C) 2002-2004 Jörg Lehmann <joergl@users.sourceforge.net>
# Copyright (C) 2003-2004 Michael Schindler <m-schindler@users.sourceforge.net>
# Copyright (C) 2002-2004 André Wobst <wobsta@users.sourceforge.net>
#
# This file is part of PyX (http://pyx.sourceforge.net/).
#
# PyX is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PyX is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyX; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
import types, math
from . import bbox, path, unit, trafo
class _marker: pass
class BoxCrossError(Exception): pass
class polygon_pt:
def __init__(self, corners=None, center=None):
self.corners = corners
self.center = center
if self.center is None:
self._ensurecenter()
def _ensurecenter(self):
if self.center is None:
self.center = 0, 0
for corn in self.corners:
self.center = self.center[0] + corn[0], self.center[1] + corn[1]
self.center = self.center[0]/len(self.corners), self.center[1]/len(self.corners)
def path(self, centerradius=None, bezierradius=None, beziersoftness=None):
pathitems = []
if centerradius is not None and self.center is not None:
r = unit.topt(centerradius)
pathitems.append(path.arc_pt(self.center[0], self.center[1], r, 0, 360))
pathitems.append(path.closepath())
if bezierradius is not None or beziersoftness is not None:
raise ValueError("smooth functionality removed; apply smooth deformer on path")
pathitems.append(path.moveto_pt(self.corners[0][0], self.corners[0][1]))
for x, y in self.corners[1:]:
pathitems.append(path.lineto_pt(x, y))
pathitems.append(path.closepath())
return path.path(*pathitems)
def transform(self, *trafos):
for trafo in trafos:
if self.center is not None:
self.center = trafo.apply_pt(*self.center)
self.corners = [trafo.apply_pt(*point) for point in self.corners]
def reltransform(self, *trafos):
if self.center is not None:
trafos = ([trafo.translate_pt(-self.center[0], -self.center[1])] +
list(trafos) +
[trafo.translate_pt(self.center[0], self.center[1])])
self.transform(*trafos)
def successivepointnumbers(self):
return [i and (i - 1, i) or (len(self.corners) - 1, 0) for i in range(len(self.corners))]
def successivepoints(self):
return [(self.corners[i], self.corners[j]) for i, j in self.successivepointnumbers()]
def circlealignlinevector_pt(self, a, dx, dy, ex, ey, fx, fy, epsilon=1e-10):
cx, cy = self.center
gx, gy = ex - fx, ey - fy # direction vector
if gx*gx + gy*gy < epsilon: # zero line length
return None # no solution -> return None
rsplit = (dx*gx + dy*gy) * 1.0 / (gx*gx + gy*gy)
bx, by = dx - gx * rsplit, dy - gy * rsplit
if bx*bx + by*by < epsilon: # zero projection
return None # no solution -> return None
if bx*gy - by*gx < 0: # half space
return None # no solution -> return None
sfactor = math.sqrt((dx*dx + dy*dy) / (bx*bx + by*by))
bx, by = a * bx * sfactor, a * by * sfactor
alpha = ((bx+cx-ex)*dy - (by+cy-ey)*dx) * 1.0 / (gy*dx - gx*dy)
if alpha > 0 - epsilon and alpha < 1 + epsilon:
beta = ((ex-bx-cx)*gy - (ey-by-cy)*gx) * 1.0 / (gx*dy - gy*dx)
return beta*dx, beta*dy # valid solution -> return align tuple
# crossing point at the line, but outside a valid range
if alpha < 0:
return 0 # crossing point outside e
return 1 # crossing point outside f
def linealignlinevector_pt(self, a, dx, dy, ex, ey, fx, fy, epsilon=1e-10):
cx, cy = self.center
gx, gy = ex - fx, ey - fy # direction vector
if gx*gx + gy*gy < epsilon: # zero line length
return None # no solution -> return None
if gy*dx - gx*dy < -epsilon: # half space
return None # no solution -> return None
if dx*gx + dy*gy > epsilon or dx*gx + dy*gy < -epsilon:
if dx*gx + dy*gy < 0: # angle bigger 90 degree
return 0 # use point e
return 1 # use point f
# a and g are othorgonal
alpha = ((a*dx+cx-ex)*dy - (a*dy+cy-ey)*dx) * 1.0 / (gy*dx - gx*dy)
if alpha > 0 - epsilon and alpha < 1 + epsilon:
beta = ((ex-a*dx-cx)*gy - (ey-a*dy-cy)*gx) * 1.0 / (gx*dy - gy*dx)
return beta*dx, beta*dy # valid solution -> return align tuple
# crossing point at the line, but outside a valid range
if alpha < 0:
return 0 # crossing point outside e
return 1 # crossing point outside f
def circlealignpointvector_pt(self, a, dx, dy, px, py, epsilon=1e-10):
if a*a < epsilon:
return None
cx, cy = self.center
p = 2 * ((px-cx)*dx + (py-cy)*dy)
q = ((px-cx)*(px-cx) + (py-cy)*(py-cy) - a*a)
if p*p/4 - q < 0:
return None
if a > 0:
alpha = - p / 2 + math.sqrt(p*p/4 - q)
else:
alpha = - p / 2 - math.sqrt(p*p/4 - q)
return alpha*dx, alpha*dy
def linealignpointvector_pt(self, a, dx, dy, px, py):
cx, cy = self.center
beta = (a*dx+cx-px)*dy - (a*dy+cy-py)*dx
return a*dx - beta*dy - px + cx, a*dy + beta*dx - py + cy
def alignvector_pt(self, a, dx, dy, alignlinevector, alignpointvector):
n = math.hypot(dx, dy)
dx, dy = dx / n, dy / n
linevectors = list(map(lambda ps, self=self, a=a, dx=dx, dy=dy, alignlinevector=alignlinevector:
alignlinevector(a, dx, dy, *(ps[0] + ps[1])), self.successivepoints()))
for linevector in linevectors:
if type(linevector) is tuple:
return linevector
for i, j in self.successivepointnumbers():
l1, l2 = linevectors[i], linevectors[j]
if (l1 is not None or l2 is not None) and (l1 == 1 or l1 is None) and (l2 == 0 or l2 is None):
return alignpointvector(a, dx, dy, *self.successivepoints()[j][0])
return a*dx, a*dy
def circlealignvector_pt(self, a, dx, dy):
return self.alignvector_pt(a, dx, dy, self.circlealignlinevector_pt, self.circlealignpointvector_pt)
def linealignvector_pt(self, a, dx, dy):
return self.alignvector_pt(a, dx, dy, self.linealignlinevector_pt, self.linealignpointvector_pt)
def circlealignvector(self, a, dx, dy):
ndx, ndy = self.circlealignvector_pt(unit.topt(a), dx, dy)
return ndx * unit.t_pt, ndy * unit.t_pt
def linealignvector(self, a, dx, dy):
ndx, ndy = self.linealignvector_pt(unit.topt(a), dx, dy)
return ndx * unit.t_pt, ndy * unit.t_pt
def circlealign_pt(self, *args):
self.transform(trafo.translate_pt(*self.circlealignvector_pt(*args)))
return self
def linealign_pt(self, *args):
self.transform(trafo.translate_pt(*self.linealignvector_pt(*args)))
return self
def circlealign(self, *args):
self.transform(trafo.translate(*self.circlealignvector(*args)))
return self
def linealign(self, *args):
self.transform(trafo.translate(*self.linealignvector(*args)))
return self
def extent_pt(self, dx, dy):
n = math.hypot(dx, dy)
dx, dy = dx / n, dy / n
oldcenter = self.center
if self.center is None:
self.center = 0, 0
x1, y1 = self.linealignvector_pt(0, dx, dy)
x2, y2 = self.linealignvector_pt(0, -dx, -dy)
self.center = oldcenter
return (x1-x2)*dx + (y1-y2)*dy
def extent(self, dx, dy):
return self.extent_pt(dx, dy) * unit.t_pt
def pointdistance_pt(self, x, y):
result = None
for p1, p2 in self.successivepoints():
gx, gy = p2[0] - p1[0], p2[1] - p1[1]
if gx * gx + gy * gy < 1e-10:
dx, dy = p1[0] - x, p1[1] - y
else:
a = (gx * (x - p1[0]) + gy * (y - p1[1])) / (gx * gx + gy * gy)
if a < 0:
dx, dy = p1[0] - x, p1[1] - y
elif a > 1:
dx, dy = p2[0] - x, p2[1] - y
else:
dx, dy = x - p1[0] - a * gx, y - p1[1] - a * gy
new = math.hypot(dx, dy)
if result is None or new < result:
result = new
return result
def pointdistance(self, x, y):
return self.pointdistance_pt(unit.topt(x), unit.topt(y)) * unit.t_pt
def boxdistance_pt(self, other, epsilon=1e-10):
# XXX: boxes crossing and distance calculation is O(N^2)
for p1, p2 in self.successivepoints():
for p3, p4 in other.successivepoints():
a = (p4[1] - p3[1]) * (p3[0] - p1[0]) - (p4[0] - p3[0]) * (p3[1] - p1[1])
b = (p2[1] - p1[1]) * (p3[0] - p1[0]) - (p2[0] - p1[0]) * (p3[1] - p1[1])
c = (p2[0] - p1[0]) * (p4[1] - p3[1]) - (p2[1] - p1[1]) * (p4[0] - p3[0])
if (abs(c) > 1e-10 and
a / c > -epsilon and a / c < 1 + epsilon and
b / c > -epsilon and b / c < 1 + epsilon):
raise BoxCrossError
result = None
for x, y in other.corners:
new = self.pointdistance_pt(x, y)
if result is None or new < result:
result = new
for x, y in self.corners:
new = other.pointdistance_pt(x, y)
if result is None or new < result:
result = new
return result
def boxdistance(self, other):
return self.boxdistance_pt(other) * unit.t_pt
def bbox(self):
return bbox.bbox_pt(min([x[0] for x in self.corners]),
min([x[1] for x in self.corners]),
max([x[0] for x in self.corners]),
max([x[1] for x in self.corners]))
def genericalignequal_pt(method, polygons, a, dx, dy):
vec = None
for p in polygons:
v = method(p, a, dx, dy)
if vec is None or vec[0] * dx + vec[1] * dy < v[0] * dx + v[1] * dy:
vec = v
for p in polygons:
p.transform(trafo.translate_pt(*vec))
def circlealignequal_pt(polygons, *args):
genericalignequal_pt(polygon_pt.circlealignvector_pt, polygons, *args)
def linealignequal_pt(polygons, *args):
genericalignequal_pt(polygon_pt.linealignvector_pt, polygons, *args)
def circlealignequal(polygons, a, *args):
circlealignequal_pt(polygons, unit.topt(a), *args)
def linealignequal(polygons, a, *args):
linealignequal_pt(polygons, unit.topt(a), *args)
def tile_pt(polygons, a, dx, dy):
maxextent = polygons[0].extent_pt(dx, dy)
for p in polygons[1:]:
extent = p.extent_pt(dx, dy)
if extent > maxextent:
maxextent = extent
delta = maxextent + a
d = 0
for p in polygons:
p.transform(trafo.translate_pt(d*dx, d*dy))
d += delta
return delta
def tile(polygons, a, dx, dy):
return tile_pt(polygons, unit.topt(a), dx, dy) * unit.t_pt
class polygon(polygon_pt):
def __init__(self, corners=None, center=None, **args):
corners = [[unit.topt(x) for x in corner] for corner in corners]
if center is not None:
center = unit.topt(center[0]), unit.topt(center[1])
polygon_pt.__init__(self, corners=corners, center=center, **args)
class rect_pt(polygon_pt):
def __init__(self, x_pt, y_pt, width_pt, height_pt, relcenter=(0, 0), abscenter_pt=(0, 0),
corners=_marker, center=_marker, **args):
if corners != _marker or center != _marker:
raise ValueError
polygon_pt.__init__(self, corners=((x_pt, y_pt),
(x_pt + width_pt, y_pt),
(x_pt + width_pt, y_pt + height_pt),
(x_pt, y_pt + height_pt)),
center=(x_pt + relcenter[0] * width_pt + abscenter_pt[0],
y_pt + relcenter[1] * height_pt + abscenter_pt[1]),
**args)
class rect(rect_pt):
def __init__(self, x, y, width, height, relcenter=(0, 0), abscenter=(0, 0), **args):
rect_pt.__init__(self, unit.topt(x), unit.topt(y), unit.topt(width), unit.topt(height),
relcenter=relcenter,
abscenter_pt=(unit.topt(abscenter[0]), unit.topt(abscenter[1])), **args)
|