This file is indexed.

/usr/lib/python3/dist-packages/pyx/box.py is in python3-pyx 0.14.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# -*- encoding: utf-8 -*-
#
#
# Copyright (C) 2002-2004 Jörg Lehmann <joergl@users.sourceforge.net>
# Copyright (C) 2003-2004 Michael Schindler <m-schindler@users.sourceforge.net>
# Copyright (C) 2002-2004 André Wobst <wobsta@users.sourceforge.net>
#
# This file is part of PyX (http://pyx.sourceforge.net/).
#
# PyX is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PyX is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyX; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA


import types, math
from . import bbox, path, unit, trafo

class _marker: pass

class BoxCrossError(Exception): pass

class polygon_pt:

    def __init__(self, corners=None, center=None):
        self.corners = corners
        self.center = center
        if self.center is None:
            self._ensurecenter()

    def _ensurecenter(self):
        if self.center is None:
            self.center = 0, 0
            for corn in self.corners:
                self.center = self.center[0] + corn[0], self.center[1] + corn[1]
            self.center = self.center[0]/len(self.corners), self.center[1]/len(self.corners)

    def path(self, centerradius=None, bezierradius=None, beziersoftness=None):
        pathitems = []
        if centerradius is not None and self.center is not None:
            r = unit.topt(centerradius)
            pathitems.append(path.arc_pt(self.center[0], self.center[1], r, 0, 360))
            pathitems.append(path.closepath())
        if bezierradius is not None or beziersoftness is not None:
            raise ValueError("smooth functionality removed; apply smooth deformer on path")
        pathitems.append(path.moveto_pt(self.corners[0][0], self.corners[0][1]))
        for x, y in self.corners[1:]:
            pathitems.append(path.lineto_pt(x, y))
        pathitems.append(path.closepath())
        return path.path(*pathitems)

    def transform(self, *trafos):
        for trafo in trafos:
            if self.center is not None:
                self.center = trafo.apply_pt(*self.center)
            self.corners = [trafo.apply_pt(*point) for point in self.corners]

    def reltransform(self, *trafos):
        if self.center is not None:
            trafos = ([trafo.translate_pt(-self.center[0], -self.center[1])] +
                      list(trafos) +
                      [trafo.translate_pt(self.center[0], self.center[1])])
        self.transform(*trafos)

    def successivepointnumbers(self):
        return [i and (i - 1, i) or (len(self.corners) - 1, 0) for i in range(len(self.corners))]

    def successivepoints(self):
        return [(self.corners[i], self.corners[j]) for i, j in self.successivepointnumbers()]

    def circlealignlinevector_pt(self, a, dx, dy, ex, ey, fx, fy, epsilon=1e-10):
        cx, cy = self.center
        gx, gy = ex - fx, ey - fy # direction vector
        if gx*gx + gy*gy < epsilon: # zero line length
            return None             # no solution -> return None
        rsplit = (dx*gx + dy*gy) * 1.0 / (gx*gx + gy*gy)
        bx, by = dx - gx * rsplit, dy - gy * rsplit
        if bx*bx + by*by < epsilon: # zero projection
            return None             # no solution -> return None
        if bx*gy - by*gx < 0: # half space
            return None       # no solution -> return None
        sfactor = math.sqrt((dx*dx + dy*dy) / (bx*bx + by*by))
        bx, by = a * bx * sfactor, a * by * sfactor
        alpha = ((bx+cx-ex)*dy - (by+cy-ey)*dx) * 1.0 / (gy*dx - gx*dy)
        if alpha > 0 - epsilon and alpha < 1 + epsilon:
                beta = ((ex-bx-cx)*gy - (ey-by-cy)*gx) * 1.0 / (gx*dy - gy*dx)
                return beta*dx, beta*dy # valid solution -> return align tuple
        # crossing point at the line, but outside a valid range
        if alpha < 0:
            return 0 # crossing point outside e
        return 1 # crossing point outside f

    def linealignlinevector_pt(self, a, dx, dy, ex, ey, fx, fy, epsilon=1e-10):
        cx, cy = self.center
        gx, gy = ex - fx, ey - fy # direction vector
        if gx*gx + gy*gy < epsilon: # zero line length
            return None             # no solution -> return None
        if gy*dx - gx*dy < -epsilon: # half space
            return None              # no solution -> return None
        if dx*gx + dy*gy > epsilon or dx*gx + dy*gy < -epsilon:
            if dx*gx + dy*gy < 0: # angle bigger 90 degree
                return 0 # use point e
            return 1 # use point f
        # a and g are othorgonal
        alpha = ((a*dx+cx-ex)*dy - (a*dy+cy-ey)*dx) * 1.0 / (gy*dx - gx*dy)
        if alpha > 0 - epsilon and alpha < 1 + epsilon:
            beta = ((ex-a*dx-cx)*gy - (ey-a*dy-cy)*gx) * 1.0 / (gx*dy - gy*dx)
            return beta*dx, beta*dy # valid solution -> return align tuple
        # crossing point at the line, but outside a valid range
        if alpha < 0:
            return 0 # crossing point outside e
        return 1 # crossing point outside f

    def circlealignpointvector_pt(self, a, dx, dy, px, py, epsilon=1e-10):
        if a*a < epsilon:
            return None
        cx, cy = self.center
        p = 2 * ((px-cx)*dx + (py-cy)*dy)
        q = ((px-cx)*(px-cx) + (py-cy)*(py-cy) - a*a)
        if p*p/4 - q < 0:
            return None
        if a > 0:
            alpha = - p / 2 + math.sqrt(p*p/4 - q)
        else:
            alpha = - p / 2 - math.sqrt(p*p/4 - q)
        return alpha*dx, alpha*dy

    def linealignpointvector_pt(self, a, dx, dy, px, py):
        cx, cy = self.center
        beta = (a*dx+cx-px)*dy - (a*dy+cy-py)*dx
        return a*dx - beta*dy - px + cx, a*dy + beta*dx - py + cy

    def alignvector_pt(self, a, dx, dy, alignlinevector, alignpointvector):
        n = math.hypot(dx, dy)
        dx, dy = dx / n, dy / n
        linevectors = list(map(lambda ps, self=self, a=a, dx=dx, dy=dy, alignlinevector=alignlinevector:
                                alignlinevector(a, dx, dy, *(ps[0] + ps[1])), self.successivepoints()))
        for linevector in linevectors:
            if type(linevector) is tuple:
                return linevector
        for i, j in self.successivepointnumbers():
            l1, l2 = linevectors[i], linevectors[j]
            if (l1 is not None or l2 is not None) and (l1 == 1 or l1 is None) and (l2 == 0 or l2 is None):
                return alignpointvector(a, dx, dy, *self.successivepoints()[j][0])
        return a*dx, a*dy

    def circlealignvector_pt(self, a, dx, dy):
        return self.alignvector_pt(a, dx, dy, self.circlealignlinevector_pt, self.circlealignpointvector_pt)

    def linealignvector_pt(self, a, dx, dy):
        return self.alignvector_pt(a, dx, dy, self.linealignlinevector_pt, self.linealignpointvector_pt)

    def circlealignvector(self, a, dx, dy):
        ndx, ndy = self.circlealignvector_pt(unit.topt(a), dx, dy)
        return ndx * unit.t_pt, ndy * unit.t_pt

    def linealignvector(self, a, dx, dy):
        ndx, ndy = self.linealignvector_pt(unit.topt(a), dx, dy)
        return ndx * unit.t_pt, ndy * unit.t_pt

    def circlealign_pt(self, *args):
        self.transform(trafo.translate_pt(*self.circlealignvector_pt(*args)))
        return self

    def linealign_pt(self, *args):
        self.transform(trafo.translate_pt(*self.linealignvector_pt(*args)))
        return self

    def circlealign(self, *args):
        self.transform(trafo.translate(*self.circlealignvector(*args)))
        return self

    def linealign(self, *args):
        self.transform(trafo.translate(*self.linealignvector(*args)))
        return self

    def extent_pt(self, dx, dy):
        n = math.hypot(dx, dy)
        dx, dy = dx / n, dy / n
        oldcenter = self.center
        if self.center is None:
            self.center = 0, 0
        x1, y1 = self.linealignvector_pt(0, dx, dy)
        x2, y2 = self.linealignvector_pt(0, -dx, -dy)
        self.center = oldcenter
        return (x1-x2)*dx + (y1-y2)*dy

    def extent(self, dx, dy):
        return self.extent_pt(dx, dy) * unit.t_pt

    def pointdistance_pt(self, x, y):
        result = None
        for p1, p2 in self.successivepoints():
            gx, gy = p2[0] - p1[0], p2[1] - p1[1]
            if gx * gx + gy * gy < 1e-10:
                dx, dy = p1[0] - x, p1[1] - y
            else:
                a = (gx * (x - p1[0]) + gy * (y - p1[1])) / (gx * gx + gy * gy)
                if a < 0:
                    dx, dy = p1[0] - x, p1[1] - y
                elif a > 1:
                    dx, dy = p2[0] - x, p2[1] - y
                else:
                    dx, dy = x - p1[0] - a * gx, y - p1[1] - a * gy
            new = math.hypot(dx, dy)
            if result is None or new < result:
                result = new
        return result

    def pointdistance(self, x, y):
        return self.pointdistance_pt(unit.topt(x), unit.topt(y)) * unit.t_pt

    def boxdistance_pt(self, other, epsilon=1e-10):
        # XXX: boxes crossing and distance calculation is O(N^2)
        for p1, p2 in self.successivepoints():
            for p3, p4 in other.successivepoints():
                a = (p4[1] - p3[1]) * (p3[0] - p1[0]) - (p4[0] - p3[0]) * (p3[1] - p1[1])
                b = (p2[1] - p1[1]) * (p3[0] - p1[0]) - (p2[0] - p1[0]) * (p3[1] - p1[1])
                c = (p2[0] - p1[0]) * (p4[1] - p3[1]) - (p2[1] - p1[1]) * (p4[0] - p3[0])
                if (abs(c) > 1e-10 and
                    a / c > -epsilon and a / c < 1 + epsilon and
                    b / c > -epsilon and b / c < 1 + epsilon):
                    raise BoxCrossError
        result = None
        for x, y in other.corners:
            new = self.pointdistance_pt(x, y)
            if result is None or new < result:
                result = new
        for x, y in self.corners:
            new = other.pointdistance_pt(x, y)
            if result is None or new < result:
                result = new
        return result

    def boxdistance(self, other):
        return self.boxdistance_pt(other) * unit.t_pt

    def bbox(self):
        return bbox.bbox_pt(min([x[0] for x in self.corners]),
                          min([x[1] for x in self.corners]),
                          max([x[0] for x in self.corners]),
                          max([x[1] for x in self.corners]))


def genericalignequal_pt(method, polygons, a, dx, dy):
    vec = None
    for p in polygons:
        v = method(p, a, dx, dy)
        if vec is None or vec[0] * dx + vec[1] * dy < v[0] * dx + v[1] * dy:
            vec = v
    for p in polygons:
        p.transform(trafo.translate_pt(*vec))


def circlealignequal_pt(polygons, *args):
    genericalignequal_pt(polygon_pt.circlealignvector_pt, polygons, *args)

def linealignequal_pt(polygons, *args):
    genericalignequal_pt(polygon_pt.linealignvector_pt, polygons, *args)

def circlealignequal(polygons, a, *args):
    circlealignequal_pt(polygons, unit.topt(a), *args)

def linealignequal(polygons, a, *args):
    linealignequal_pt(polygons, unit.topt(a), *args)


def tile_pt(polygons, a, dx, dy):
    maxextent = polygons[0].extent_pt(dx, dy)
    for p in polygons[1:]:
        extent = p.extent_pt(dx, dy)
        if extent > maxextent:
            maxextent = extent
    delta = maxextent + a
    d = 0
    for p in polygons:
        p.transform(trafo.translate_pt(d*dx, d*dy))
        d += delta
    return delta


def tile(polygons, a, dx, dy):
    return tile_pt(polygons, unit.topt(a), dx, dy) * unit.t_pt


class polygon(polygon_pt):

    def __init__(self, corners=None, center=None, **args):
        corners = [[unit.topt(x) for x in corner] for corner in corners]
        if center is not None:
            center = unit.topt(center[0]), unit.topt(center[1])
        polygon_pt.__init__(self, corners=corners, center=center, **args)


class rect_pt(polygon_pt):

    def __init__(self, x_pt, y_pt, width_pt, height_pt, relcenter=(0, 0), abscenter_pt=(0, 0),
                       corners=_marker, center=_marker, **args):
        if corners != _marker or center != _marker:
            raise ValueError
        polygon_pt.__init__(self, corners=((x_pt, y_pt),
                                         (x_pt + width_pt, y_pt),
                                         (x_pt + width_pt, y_pt + height_pt),
                                         (x_pt, y_pt + height_pt)),
                                center=(x_pt + relcenter[0] * width_pt + abscenter_pt[0],
                                        y_pt + relcenter[1] * height_pt + abscenter_pt[1]),
                                **args)


class rect(rect_pt):

    def __init__(self, x, y, width, height, relcenter=(0, 0), abscenter=(0, 0), **args):
        rect_pt.__init__(self, unit.topt(x), unit.topt(y), unit.topt(width), unit.topt(height),
                               relcenter=relcenter,
                               abscenter_pt=(unit.topt(abscenter[0]), unit.topt(abscenter[1])), **args)