This file is indexed.

/usr/lib/python3/dist-packages/pywt/multilevel.py is in python3-pywt 0.3.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# -*- coding: utf-8 -*-

# Copyright (c) 2006-2012 Filip Wasilewski <http://en.ig.ma/>
# See COPYING for license details.

"""
Multilevel 1D and 2D Discrete Wavelet Transform
and Inverse Discrete Wavelet Transform.
"""

from __future__ import division, print_function, absolute_import

__all__ = ['wavedec', 'waverec', 'wavedec2', 'waverec2']

import numpy as np

from ._pywt import Wavelet
from ._pywt import dwt, idwt, dwt_max_level
from .multidim import dwt2, idwt2


def wavedec(data, wavelet, mode='sym', level=None):
    """
    Multilevel 1D Discrete Wavelet Transform of data.

    Parameters
    ----------
    data: array_like
        Input data
    wavelet : Wavelet object or name string
        Wavelet to use
    mode : str, optional
        Signal extension mode, see MODES (default: 'sym')
    level : int, optional
        Decomposition level. If level is None (default) then it will be
        calculated using `dwt_max_level` function.

    Returns
    -------
    [cA_n, cD_n, cD_n-1, ..., cD2, cD1] : list
        Ordered list of coefficients arrays
        where `n` denotes the level of decomposition. The first element
        (`cA_n`) of the result is approximation coefficients array and the
        following elements (`cD_n` - `cD_1`) are details coefficients arrays.

    Examples
    --------
    >>> from pywt import multilevel
    >>> coeffs = multilevel.wavedec([1,2,3,4,5,6,7,8], 'db1', level=2)
    >>> cA2, cD2, cD1 = coeffs
    >>> cD1
    array([-0.70710678, -0.70710678, -0.70710678, -0.70710678])
    >>> cD2
    array([-2., -2.])
    >>> cA2
    array([  5.,  13.])

    """

    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    if level is None:
        level = dwt_max_level(len(data), wavelet.dec_len)
    elif level < 0:
        raise ValueError(
            "Level value of %d is too low . Minimum level is 0." % level)

    coeffs_list = []

    a = data
    for i in range(level):
        a, d = dwt(a, wavelet, mode)
        coeffs_list.append(d)

    coeffs_list.append(a)
    coeffs_list.reverse()

    return coeffs_list


def waverec(coeffs, wavelet, mode='sym'):
    """
    Multilevel 1D Inverse Discrete Wavelet Transform.

    Parameters
    ----------
    coeffs : array_like
        Coefficients list [cAn, cDn, cDn-1, ..., cD2, cD1]
    wavelet : Wavelet object or name string
        Wavelet to use
    mode : str, optional
        Signal extension mode, see MODES (default: 'sym')

    Examples
    --------
    >>> from pywt import multilevel
    >>> coeffs = multilevel.wavedec([1,2,3,4,5,6,7,8], 'db2', level=2)
    >>> multilevel.waverec(coeffs, 'db2')
    array([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.])
    """

    if not isinstance(coeffs, (list, tuple)):
        raise ValueError("Expected sequence of coefficient arrays.")

    if len(coeffs) < 2:
        raise ValueError(
            "Coefficient list too short (minimum 2 arrays required).")

    a, ds = coeffs[0], coeffs[1:]

    for d in ds:
        a = idwt(a, d, wavelet, mode, 1)

    return a


def wavedec2(data, wavelet, mode='sym', level=None):
    """
    Multilevel 2D Discrete Wavelet Transform.

    Parameters
    ----------
    data : ndarray
        2D input data
    wavelet : Wavelet object or name string
        Wavelet to use
    mode : str, optional
        Signal extension mode, see MODES (default: 'sym')
    level : int, optional
        Decomposition level. If level is None (default) then it will be
        calculated using `dwt_max_level` function.

    Returns
    -------
    [cAn, (cHn, cVn, cDn), ... (cH1, cV1, cD1)] : list
        Coefficients list

    Examples
    --------
    >>> from pywt import multilevel
    >>> coeffs = multilevel.wavedec2(np.ones((4,4)), 'db1')
    >>> # Levels:
    >>> len(coeffs)-1
    2
    >>> multilevel.waverec2(coeffs, 'db1')
    array([[ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.]])
    """

    data = np.asarray(data, np.float64)

    if data.ndim != 2:
        raise ValueError("Expected 2D input data.")

    if not isinstance(wavelet, Wavelet):
        wavelet = Wavelet(wavelet)

    if level is None:
        size = min(data.shape)
        level = dwt_max_level(size, wavelet.dec_len)
    elif level < 0:
        raise ValueError(
            "Level value of %d is too low . Minimum level is 0." % level)

    coeffs_list = []

    a = data
    for i in range(level):
        a, ds = dwt2(a, wavelet, mode)
        coeffs_list.append(ds)

    coeffs_list.append(a)
    coeffs_list.reverse()

    return coeffs_list


def waverec2(coeffs, wavelet, mode='sym'):
    """
    Multilevel 2D Inverse Discrete Wavelet Transform.

    coeffs : array_like
        Coefficients list [cAn, (cHn, cVn, cDn), ... (cH1, cV1, cD1)]
    wavelet : Wavelet object or name string
        Wavelet to use
    mode : str, optional
        Signal extension mode, see MODES (default: 'sym')

    Returns
    -------
    2D array of reconstructed data.

    Examples
    --------
    >>> from pywt import multilevel
    >>> coeffs = multilevel.wavedec2(np.ones((4,4)), 'db1')
    >>> # Levels:
    >>> len(coeffs)-1
    2
    >>> multilevel.waverec2(coeffs, 'db1')
    array([[ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.],
           [ 1.,  1.,  1.,  1.]])
    """

    if not isinstance(coeffs, (list, tuple)):
        raise ValueError("Expected sequence of coefficient arrays.")

    if len(coeffs) < 2:
        raise ValueError(
            "Coefficient list too short (minimum 2 arrays required).")

    a, ds = coeffs[0], coeffs[1:]

    for d in ds:
        a = idwt2((a, d), wavelet, mode)

    return a