This file is indexed.

/usr/lib/python3/dist-packages/pywt/functions.py is in python3-pywt 0.3.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# -*- coding: utf-8 -*-

# Copyright (c) 2006-2012 Filip Wasilewski <http://en.ig.ma/>
# See COPYING for license details.

"""
Other wavelet related functions.
"""

from __future__ import division, print_function, absolute_import

import numpy as np
from numpy.fft import fft

from ._pywt import Wavelet


__all__ = ["intwave", "centfrq", "scal2frq", "qmf", "orthfilt"]


WAVELET_CLASSES = (Wavelet)


def wavelet_for_name(name):
    if not isinstance(name, str):
        raise TypeError(
            "Wavelet name must be of string type, not %s" % type(name))
    try:
        wavelet = Wavelet(name)
    except ValueError:
        raise ValueError("Invalid wavelet name - %s." % name)

    return wavelet


def _integrate(arr, step):
    integral = np.cumsum(arr)
    integral *= step
    return integral


def intwave(wavelet, precision=8):
    """
    Integrate `psi` wavelet function from -Inf to x using the rectangle
    integration method.

    Parameters
    ----------
    wavelet : Wavelet instance, str or tuple
        Wavelet to integrate.  If a string, should be the name of a wavelet.
        If a tuple, should contain ``(wavelet function approx., x grid)``.
    precision : int, optional
        Precision that will be used for wavelet function
        approximation computed with the wavefun(level=precision)
        Wavelet's method (default: 8).

    Returns
    -------
    [int_psi, x] :
        for orthogonal wavelets
    [int_psi_d, int_psi_r, x] :
        for other wavelets
    [int_function, x] :
        for (function approx., x grid) pair

    Notes
    -----
    (function_approx, x) :
        Function to integrate on the x grid. Used instead
        of Wavelet object to allow custom wavelet functions.

    Examples
    --------
    >>> import pywt
    >>> wavelet1 = pywt.Wavelet('db2')
    >>> [int_psi, x] = pywt.intwave(wavelet1, precision=5)
    >>> wavelet2 = pywt.Wavelet('bior1.3')
    >>> [int_psi_d, int_psi_r, x] = pywt.intwave(wavelet2, precision=5)

    """
    # FIXME: this function should really use scipy.integrate.quad

    if isinstance(wavelet, tuple):
        psi, x = np.asarray(wavelet[0]), np.asarray(wavelet[1])
        step = x[1] - x[0]
        return _integrate(psi, step), x

    else:
        if not isinstance(wavelet, WAVELET_CLASSES):
            wavelet = wavelet_for_name(wavelet)

        functions_approximations = wavelet.wavefun(precision)
        if len(functions_approximations) == 2:      # continuous wavelet
            psi, x = functions_approximations
            step = x[1] - x[0]
            return _integrate(psi, step), x
        elif len(functions_approximations) == 3:    # orthogonal wavelet
            phi, psi, x = functions_approximations
            step = x[1] - x[0]
            return _integrate(psi, step), x
        else:                                       # biorthogonal wavelet
            phi_d, psi_d, phi_r, psi_r, x = functions_approximations
            step = x[1] - x[0]
            return _integrate(psi_d, step), _integrate(psi_r, step), x


def centfrq(wavelet, precision=8):
    """
    Computes the central frequency of the `psi` wavelet function.

    Parameters
    ----------
    wavelet : Wavelet instance, str or tuple
        Wavelet to integrate.  If a string, should be the name of a wavelet.
        If a tuple, should contain ``(wavelet function approx., x grid)``.
    precision : int, optional
        Precision that will be used for wavelet function
        approximation computed with the wavefun(level=precision)
        Wavelet's method (default: 8).

    Returns
    -------
    scalar

    Notes
    -----
    (function_approx, xgrid) :
        Function defined on xgrid. Used instead
        of Wavelet object to allow custom wavelet functions.
    """

    # FIXME: `wavelet` handling should be identical to intwave, factor out
    if isinstance(wavelet, tuple):
        psi, x = np.asarray(wavelet[0]), np.asarray(wavelet[1])
    else:
        if not isinstance(wavelet, WAVELET_CLASSES):
            wavelet = wavelet_for_name(wavelet)
        functions_approximations = wavelet.wavefun(precision)

        if len(functions_approximations) == 2:
            psi, x = functions_approximations
        else:
            # (psi, x)   for (phi, psi, x)
            # (psi_d, x) for (phi_d, psi_d, phi_r, psi_r, x)
            psi, x = functions_approximations[1], functions_approximations[-1]

    domain = float(x[-1] - x[0])
    assert domain > 0

    index = np.argmax(abs(fft(psi)[1:])) + 2
    if index > len(psi) / 2:
        index = len(psi) - index + 2

    return 1.0 / (domain / (index - 1))


def scal2frq(wavelet, scale, delta, precision=8):
    """

    Parameters
    ----------
    wavelet : Wavelet instance, str or tuple
        Wavelet to integrate.  If a string, should be the name of a wavelet.
        If a tuple, should contain ``(wavelet function approx., x grid)``.
    scale : scalar
    delta : scalar
        sampling
    precision : int, optional
        Precision that will be used for wavelet function approximation computed
        with ``wavelet.wavefun(level=precision)``.  Default is 8.

    Returns
    -------
    freq : scalar

    Notes
    -----
    (function_approx, xgrid) :
        Function defined on xgrid. Used instead
        of Wavelet object to allow custom wavelet functions.

    """
    return centfrq(wavelet, precision=precision) / (scale * delta)


def qmf(filter):
    """
    Returns the Quadrature Mirror Filter(QMF).

    The magnitude response of QMF is mirror image about `pi/2` of that of the
    input filter.

    Parameters
    ----------
    filter : array_like
        Input filter for which QMF needs to be computed.

    Returns
    -------
    qm_filter : ndarray
        Quadrature mirror of the input filter.

    """
    qm_filter = np.array(filter)[::-1]
    qm_filter[1::2] = -qm_filter[1::2]
    return qm_filter


def orthfilt(scaling_filter):
    """
    Returns the orthogonal filter bank.

    The orthogonal filter bank consists of the HPFs and LPFs at
    decomposition and reconstruction stage for the input scaling filter.

    Parameters
    ----------
    scaling_filter : array_like
        Input scaling filter (father wavelet).

    Returns
    -------
    orth_filt_bank : tuple of 4 ndarrays
        The orthogonal filter bank of the input scaling filter in the order :
        1] Decomposition LPF
        2] Decomposition HPF
        3] Reconstruction LPF
        4] Reconstruction HPF

    """
    if not (len(scaling_filter) % 2 == 0):
        raise ValueError("`scaling_filter` length has to be even.")

    scaling_filter = np.asarray(scaling_filter, dtype=np.float64)

    rec_lo = np.sqrt(2) * scaling_filter / np.sum(scaling_filter)
    dec_lo = rec_lo[::-1]

    rec_hi = qmf(rec_lo)
    dec_hi = rec_hi[::-1]

    orth_filt_bank = (dec_lo, dec_hi, rec_lo, rec_hi)
    return orth_filt_bank