This file is indexed.

/usr/lib/python3/dist-packages/PyVCF-0.6.7.egg-info/PKG-INFO is in python3-pyvcf 0.6.7-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
Metadata-Version: 1.1
Name: PyVCF
Version: 0.6.7
Summary: Variant Call Format (VCF) parser for Python
Home-page: https://github.com/jamescasbon/PyVCF
Author: James Casbon and @jdoughertyii
Author-email: casbon@gmail.com
License: UNKNOWN
Description: A VCFv4.0 and 4.1 parser for Python.
        
        Online version of PyVCF documentation is available at http://pyvcf.rtfd.org/
        
        The intent of this module is to mimic the ``csv`` module in the Python stdlib,
        as opposed to more flexible serialization formats like JSON or YAML.  ``vcf``
        will attempt to parse the content of each record based on the data types
        specified in the meta-information lines --  specifically the ##INFO and
        ##FORMAT lines.  If these lines are missing or incomplete, it will check
        against the reserved types mentioned in the spec.  Failing that, it will just
        return strings.
        
        There main interface is the class: ``Reader``.  It takes a file-like
        object and acts as a reader::
        
            >>> import vcf
            >>> vcf_reader = vcf.Reader(open('vcf/test/example-4.0.vcf', 'r'))
            >>> for record in vcf_reader:
            ...     print record
            Record(CHROM=20, POS=14370, REF=G, ALT=[A])
            Record(CHROM=20, POS=17330, REF=T, ALT=[A])
            Record(CHROM=20, POS=1110696, REF=A, ALT=[G, T])
            Record(CHROM=20, POS=1230237, REF=T, ALT=[None])
            Record(CHROM=20, POS=1234567, REF=GTCT, ALT=[G, GTACT])
        
        
        This produces a great deal of information, but it is conveniently accessed.
        The attributes of a Record are the 8 fixed fields from the VCF spec::
        
            * ``Record.CHROM``
            * ``Record.POS``
            * ``Record.ID``
            * ``Record.REF``
            * ``Record.ALT``
            * ``Record.QUAL``
            * ``Record.FILTER``
            * ``Record.INFO``
        
        plus attributes to handle genotype information:
        
            * ``Record.FORMAT``
            * ``Record.samples``
            * ``Record.genotype``
        
        ``samples`` and ``genotype``, not being the title of any column, are left lowercase.  The format
        of the fixed fields is from the spec.  Comma-separated lists in the VCF are
        converted to lists.  In particular, one-entry VCF lists are converted to
        one-entry Python lists (see, e.g., ``Record.ALT``).  Semicolon-delimited lists
        of key=value pairs are converted to Python dictionaries, with flags being given
        a ``True`` value. Integers and floats are handled exactly as you'd expect::
        
            >>> vcf_reader = vcf.Reader(open('vcf/test/example-4.0.vcf', 'r'))
            >>> record = vcf_reader.next()
            >>> print record.POS
            14370
            >>> print record.ALT
            [A]
            >>> print record.INFO['AF']
            [0.5]
        
        There are a number of convienience methods and properties for each ``Record`` allowing you to
        examine properties of interest::
        
            >>> print record.num_called, record.call_rate, record.num_unknown
            3 1.0 0
            >>> print record.num_hom_ref, record.num_het, record.num_hom_alt
            1 1 1
            >>> print record.nucl_diversity, record.aaf, record.heterozygosity
            0.6 [0.5] 0.5
            >>> print record.get_hets()
            [Call(sample=NA00002, CallData(GT=1|0, GQ=48, DP=8, HQ=[51, 51]))]
            >>> print record.is_snp, record.is_indel, record.is_transition, record.is_deletion
            True False True False
            >>> print record.var_type, record.var_subtype
            snp ts
            >>> print record.is_monomorphic
            False
        
        ``record.FORMAT`` will be a string specifying the format of the genotype
        fields.  In case the FORMAT column does not exist, ``record.FORMAT`` is
        ``None``.  Finally, ``record.samples`` is a list of dictionaries containing the
        parsed sample column and ``record.genotype`` is a way of looking up genotypes
        by sample name::
        
            >>> record = vcf_reader.next()
            >>> for sample in record.samples:
            ...     print sample['GT']
            0|0
            0|1
            0/0
            >>> print record.genotype('NA00001')['GT']
            0|0
        
        The genotypes are represented by ``Call`` objects, which have three attributes: the
        corresponding Record ``site``, the sample name in ``sample`` and a dictionary of
        call data in ``data``::
        
             >>> call = record.genotype('NA00001')
             >>> print call.site
             Record(CHROM=20, POS=17330, REF=T, ALT=[A])
             >>> print call.sample
             NA00001
             >>> print call.data
             CallData(GT=0|0, GQ=49, DP=3, HQ=[58, 50])
        
        Please note that as of release 0.4.0, attributes known to have single values (such as
        ``DP`` and ``GQ`` above) are returned as values.  Other attributes are returned
        as lists (such as ``HQ`` above).
        
        There are also a number of methods::
        
            >>> print call.called, call.gt_type, call.gt_bases, call.phased
            True 0 T|T True
        
        Metadata regarding the VCF file itself can be investigated through the
        following attributes:
        
            * ``Reader.metadata``
            * ``Reader.infos``
            * ``Reader.filters``
            * ``Reader.formats``
            * ``Reader.samples``
        
        For example::
        
            >>> vcf_reader.metadata['fileDate']
            '20090805'
            >>> vcf_reader.samples
            ['NA00001', 'NA00002', 'NA00003']
            >>> vcf_reader.filters
            OrderedDict([('q10', Filter(id='q10', desc='Quality below 10')), ('s50', Filter(id='s50', desc='Less than 50% of samples have data'))])
            >>> vcf_reader.infos['AA'].desc
            'Ancestral Allele'
        
        ALT records are actually classes, so that you can interrogate them::
        
            >>> reader = vcf.Reader(open('vcf/test/example-4.1-bnd.vcf'))
            >>> _ = reader.next(); row = reader.next()
            >>> print row
            Record(CHROM=1, POS=2, REF=T, ALT=[T[2:3[])
            >>> bnd = row.ALT[0]
            >>> print bnd.withinMainAssembly, bnd.orientation, bnd.remoteOrientation, bnd.connectingSequence
            True False True T
        
        Random access is supported for files with tabix indexes.  Simply call fetch for the
        region you are interested in::
        
            >>> vcf_reader = vcf.Reader(filename='vcf/test/tb.vcf.gz')
            >>> for record in vcf_reader.fetch('20', 1110696, 1230237):  # doctest: +SKIP
            ...     print record
            Record(CHROM=20, POS=1110696, REF=A, ALT=[G, T])
            Record(CHROM=20, POS=1230237, REF=T, ALT=[None])
        
        Or extract a single row::
        
            >>> print vcf_reader.fetch('20', 1110696)  # doctest: +SKIP
            Record(CHROM=20, POS=1110696, REF=A, ALT=[G, T])
        
        
        The ``Writer`` class provides a way of writing a VCF file.  Currently, you must specify a
        template ``Reader`` which provides the metadata::
        
            >>> vcf_reader = vcf.Reader(filename='vcf/test/tb.vcf.gz')
            >>> vcf_writer = vcf.Writer(open('/dev/null', 'w'), vcf_reader)
            >>> for record in vcf_reader:
            ...     vcf_writer.write_record(record)
        
        
        An extensible script is available to filter vcf files in vcf_filter.py.  VCF filters
        declared by other packages will be available for use in this script.  Please
        see :doc:`FILTERS` for full description.
        
        
Keywords: bioinformatics
Platform: UNKNOWN
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Topic :: Scientific/Engineering