/usr/lib/python3/dist-packages/pyopencl/scan.py is in python3-pyopencl 2015.1-2build3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 | """Scan primitive."""
__copyright__ = """
Copyright 2011-2012 Andreas Kloeckner
Copyright 2008-2011 NVIDIA Corporation
"""
__license__ = """
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Derived from thrust/detail/backend/cuda/detail/fast_scan.inl
within the Thrust project, https://code.google.com/p/thrust/
"""
# Direct link to thrust source:
# https://code.google.com/p/thrust/source/browse/thrust/detail/backend/cuda/detail/fast_scan.inl # noqa
import numpy as np
import pyopencl as cl
import pyopencl.array # noqa
from pyopencl.tools import (dtype_to_ctype, bitlog2,
KernelTemplateBase, _process_code_for_macro,
get_arg_list_scalar_arg_dtypes,
context_dependent_memoize)
import pyopencl._mymako as mako
from pyopencl._cluda import CLUDA_PREAMBLE
# {{{ preamble
SHARED_PREAMBLE = CLUDA_PREAMBLE + """//CL//
#define WG_SIZE ${wg_size}
#define SCAN_EXPR(a, b, across_seg_boundary) ${scan_expr}
#define INPUT_EXPR(i) (${input_expr})
%if is_segmented:
#define IS_SEG_START(i, a) (${is_segment_start_expr})
%endif
${preamble}
typedef ${dtype_to_ctype(scan_dtype)} scan_type;
typedef ${dtype_to_ctype(index_dtype)} index_type;
// NO_SEG_BOUNDARY is the largest representable integer in index_type.
// This assumption is used in code below.
#define NO_SEG_BOUNDARY ${str(np.iinfo(index_dtype).max)}
"""
# }}}
# {{{ main scan code
# Algorithm: Each work group is responsible for one contiguous
# 'interval'. There are just enough intervals to fill all compute
# units. Intervals are split into 'units'. A unit is what gets
# worked on in parallel by one work group.
#
# in index space:
# interval > unit > local-parallel > k-group
#
# (Note that there is also a transpose in here: The data is read
# with local ids along linear index order.)
#
# Each unit has two axes--the local-id axis and the k axis.
#
# unit 0:
# | | | | | | | | | | ----> lid
# | | | | | | | | | |
# | | | | | | | | | |
# | | | | | | | | | |
# | | | | | | | | | |
#
# |
# v k (fastest-moving in linear index)
#
# unit 1:
# | | | | | | | | | | ----> lid
# | | | | | | | | | |
# | | | | | | | | | |
# | | | | | | | | | |
# | | | | | | | | | |
#
# |
# v k (fastest-moving in linear index)
#
# ...
#
# At a device-global level, this is a three-phase algorithm, in
# which first each interval does its local scan, then a scan
# across intervals exchanges data globally, and the final update
# adds the exchanged sums to each interval.
#
# Exclusive scan is realized by allowing look-behind (access to the
# preceding item) in the final update, by means of a local shift.
#
# NOTE: All segment_start_in_X indices are relative to the start
# of the array.
SCAN_INTERVALS_SOURCE = SHARED_PREAMBLE + r"""//CL//
#define K ${k_group_size}
// #define DEBUG
#ifdef DEBUG
#define pycl_printf(ARGS) printf ARGS
#else
#define pycl_printf(ARGS) /* */
#endif
KERNEL
REQD_WG_SIZE(WG_SIZE, 1, 1)
void ${kernel_name}(
${argument_signature},
GLOBAL_MEM scan_type *restrict partial_scan_buffer,
const index_type N,
const index_type interval_size
%if is_first_level:
, GLOBAL_MEM scan_type *restrict interval_results
%endif
%if is_segmented and is_first_level:
// NO_SEG_BOUNDARY if no segment boundary in interval.
, GLOBAL_MEM index_type *restrict g_first_segment_start_in_interval
%endif
%if store_segment_start_flags:
, GLOBAL_MEM char *restrict g_segment_start_flags
%endif
)
{
// index K in first dimension used for carry storage
%if use_bank_conflict_avoidance:
// Avoid bank conflicts by adding a single 32-bit value to the size of
// the scan type.
struct __attribute__ ((__packed__)) wrapped_scan_type
{
scan_type value;
int dummy;
};
LOCAL_MEM struct wrapped_scan_type ldata[K + 1][WG_SIZE + 1];
%else:
struct wrapped_scan_type
{
scan_type value;
};
// padded in WG_SIZE to avoid bank conflicts
LOCAL_MEM struct wrapped_scan_type ldata[K + 1][WG_SIZE];
%endif
%if is_segmented:
LOCAL_MEM char l_segment_start_flags[K][WG_SIZE];
LOCAL_MEM index_type l_first_segment_start_in_subtree[WG_SIZE];
// only relevant/populated for local id 0
index_type first_segment_start_in_interval = NO_SEG_BOUNDARY;
index_type first_segment_start_in_k_group, first_segment_start_in_subtree;
%endif
// {{{ declare local data for input_fetch_exprs if any of them are stenciled
<%
fetch_expr_offsets = {}
for name, arg_name, ife_offset in input_fetch_exprs:
fetch_expr_offsets.setdefault(arg_name, set()).add(ife_offset)
local_fetch_expr_args = set(
arg_name
for arg_name, ife_offsets in fetch_expr_offsets.items()
if -1 in ife_offsets or len(ife_offsets) > 1)
%>
%for arg_name in local_fetch_expr_args:
LOCAL_MEM ${arg_ctypes[arg_name]} l_${arg_name}[WG_SIZE*K];
%endfor
// }}}
const index_type interval_begin = interval_size * GID_0;
const index_type interval_end = min(interval_begin + interval_size, N);
const index_type unit_size = K * WG_SIZE;
index_type unit_base = interval_begin;
%for is_tail in [False, True]:
%if not is_tail:
for(; unit_base + unit_size <= interval_end; unit_base += unit_size)
%else:
if (unit_base < interval_end)
%endif
{
// {{{ carry out input_fetch_exprs
// (if there are ones that need to be fetched into local)
%if local_fetch_expr_args:
for(index_type k = 0; k < K; k++)
{
const index_type offset = k*WG_SIZE + LID_0;
const index_type read_i = unit_base + offset;
%for arg_name in local_fetch_expr_args:
%if is_tail:
if (read_i < interval_end)
%endif
{
l_${arg_name}[offset] = ${arg_name}[read_i];
}
%endfor
}
local_barrier();
%endif
pycl_printf(("after input_fetch_exprs\n"));
// }}}
// {{{ read a unit's worth of data from global
for(index_type k = 0; k < K; k++)
{
const index_type offset = k*WG_SIZE + LID_0;
const index_type read_i = unit_base + offset;
%if is_tail:
if (read_i < interval_end)
%endif
{
%for name, arg_name, ife_offset in input_fetch_exprs:
${arg_ctypes[arg_name]} ${name};
%if arg_name in local_fetch_expr_args:
if (offset + ${ife_offset} >= 0)
${name} = l_${arg_name}[offset + ${ife_offset}];
else if (read_i + ${ife_offset} >= 0)
${name} = ${arg_name}[read_i + ${ife_offset}];
/*
else
if out of bounds, name is left undefined */
%else:
// ${arg_name} gets fetched directly from global
${name} = ${arg_name}[read_i];
%endif
%endfor
scan_type scan_value = INPUT_EXPR(read_i);
const index_type o_mod_k = offset % K;
const index_type o_div_k = offset / K;
ldata[o_mod_k][o_div_k].value = scan_value;
%if is_segmented:
bool is_seg_start = IS_SEG_START(read_i, scan_value);
l_segment_start_flags[o_mod_k][o_div_k] = is_seg_start;
%endif
%if store_segment_start_flags:
g_segment_start_flags[read_i] = is_seg_start;
%endif
}
}
pycl_printf(("after read from global\n"));
// }}}
// {{{ carry in from previous unit, if applicable
%if is_segmented:
local_barrier();
first_segment_start_in_k_group = NO_SEG_BOUNDARY;
if (l_segment_start_flags[0][LID_0])
first_segment_start_in_k_group = unit_base + K*LID_0;
%endif
if (LID_0 == 0 && unit_base != interval_begin)
{
ldata[0][0].value = SCAN_EXPR(
ldata[K][WG_SIZE - 1].value, ldata[0][0].value,
%if is_segmented:
(l_segment_start_flags[0][0])
%else:
false
%endif
);
}
pycl_printf(("after carry-in\n"));
// }}}
local_barrier();
// {{{ scan along k (sequentially in each work item)
scan_type sum = ldata[0][LID_0].value;
%if is_tail:
const index_type offset_end = interval_end - unit_base;
%endif
for(index_type k = 1; k < K; k++)
{
%if is_tail:
if (K * LID_0 + k < offset_end)
%endif
{
scan_type tmp = ldata[k][LID_0].value;
index_type seq_i = unit_base + K*LID_0 + k;
%if is_segmented:
if (l_segment_start_flags[k][LID_0])
{
first_segment_start_in_k_group = min(
first_segment_start_in_k_group,
seq_i);
}
%endif
sum = SCAN_EXPR(sum, tmp,
%if is_segmented:
(l_segment_start_flags[k][LID_0])
%else:
false
%endif
);
ldata[k][LID_0].value = sum;
}
}
pycl_printf(("after scan along k\n"));
// }}}
// store carry in out-of-bounds (padding) array entry (index K) in
// the K direction
ldata[K][LID_0].value = sum;
%if is_segmented:
l_first_segment_start_in_subtree[LID_0] =
first_segment_start_in_k_group;
%endif
local_barrier();
// {{{ tree-based local parallel scan
// This tree-based scan works as follows:
// - Each work item adds the previous item to its current state
// - barrier
// - Each work item adds in the item from two positions to the left
// - barrier
// - Each work item adds in the item from four positions to the left
// ...
// At the end, each item has summed all prior items.
// across k groups, along local id
// (uses out-of-bounds k=K array entry for storage)
scan_type val = ldata[K][LID_0].value;
<% scan_offset = 1 %>
% while scan_offset <= wg_size:
// {{{ reads from local allowed, writes to local not allowed
if (LID_0 >= ${scan_offset})
{
scan_type tmp = ldata[K][LID_0 - ${scan_offset}].value;
% if is_tail:
if (K*LID_0 < offset_end)
% endif
{
val = SCAN_EXPR(tmp, val,
%if is_segmented:
(l_first_segment_start_in_subtree[LID_0]
!= NO_SEG_BOUNDARY)
%else:
false
%endif
);
}
%if is_segmented:
// Prepare for l_first_segment_start_in_subtree, below.
// Note that this update must take place *even* if we're
// out of bounds.
first_segment_start_in_subtree = min(
l_first_segment_start_in_subtree[LID_0],
l_first_segment_start_in_subtree
[LID_0 - ${scan_offset}]);
%endif
}
%if is_segmented:
else
{
first_segment_start_in_subtree =
l_first_segment_start_in_subtree[LID_0];
}
%endif
// }}}
local_barrier();
// {{{ writes to local allowed, reads from local not allowed
ldata[K][LID_0].value = val;
%if is_segmented:
l_first_segment_start_in_subtree[LID_0] =
first_segment_start_in_subtree;
%endif
// }}}
local_barrier();
%if 0:
if (LID_0 == 0)
{
printf("${scan_offset}: ");
for (int i = 0; i < WG_SIZE; ++i)
{
if (l_first_segment_start_in_subtree[i] == NO_SEG_BOUNDARY)
printf("- ");
else
printf("%d ", l_first_segment_start_in_subtree[i]);
}
printf("\n");
}
%endif
<% scan_offset *= 2 %>
% endwhile
pycl_printf(("after tree scan\n"));
// }}}
// {{{ update local values
if (LID_0 > 0)
{
sum = ldata[K][LID_0 - 1].value;
for(index_type k = 0; k < K; k++)
{
%if is_tail:
if (K * LID_0 + k < offset_end)
%endif
{
scan_type tmp = ldata[k][LID_0].value;
ldata[k][LID_0].value = SCAN_EXPR(sum, tmp,
%if is_segmented:
(unit_base + K * LID_0 + k
>= first_segment_start_in_k_group)
%else:
false
%endif
);
}
}
}
%if is_segmented:
if (LID_0 == 0)
{
// update interval-wide first-seg variable from current unit
first_segment_start_in_interval = min(
first_segment_start_in_interval,
l_first_segment_start_in_subtree[WG_SIZE-1]);
}
%endif
pycl_printf(("after local update\n"));
// }}}
local_barrier();
// {{{ write data
%if is_gpu:
{
// work hard with index math to achieve contiguous 32-bit stores
__global int *dest =
(__global int *) (partial_scan_buffer + unit_base);
<%
assert scan_dtype.itemsize % 4 == 0
ints_per_wg = wg_size
ints_to_store = scan_dtype.itemsize*wg_size*k_group_size // 4
%>
const index_type scan_types_per_int = ${scan_dtype.itemsize//4};
%for store_base in range(0, ints_to_store, ints_per_wg):
<%
# Observe that ints_to_store is divisible by the work group
# size already, so we won't go out of bounds that way.
assert store_base + ints_per_wg <= ints_to_store
%>
%if is_tail:
if (${store_base} + LID_0 <
scan_types_per_int*(interval_end - unit_base))
%endif
{
index_type linear_index = ${store_base} + LID_0;
index_type linear_scan_data_idx =
linear_index / scan_types_per_int;
index_type remainder =
linear_index - linear_scan_data_idx * scan_types_per_int;
__local int *src = (__local int *) &(
ldata
[linear_scan_data_idx % K]
[linear_scan_data_idx / K].value);
dest[linear_index] = src[remainder];
}
%endfor
}
%else:
for (index_type k = 0; k < K; k++)
{
const index_type offset = k*WG_SIZE + LID_0;
%if is_tail:
if (unit_base + offset < interval_end)
%endif
{
pycl_printf(("write: %d\n", unit_base + offset));
partial_scan_buffer[unit_base + offset] =
ldata[offset % K][offset / K].value;
}
}
%endif
pycl_printf(("after write\n"));
// }}}
local_barrier();
}
% endfor
// write interval sum
%if is_first_level:
if (LID_0 == 0)
{
interval_results[GID_0] = partial_scan_buffer[interval_end - 1];
%if is_segmented:
g_first_segment_start_in_interval[GID_0] =
first_segment_start_in_interval;
%endif
}
%endif
}
"""
# }}}
# {{{ update
UPDATE_SOURCE = SHARED_PREAMBLE + r"""//CL//
KERNEL
REQD_WG_SIZE(WG_SIZE, 1, 1)
void ${name_prefix}_final_update(
${argument_signature},
const index_type N,
const index_type interval_size,
GLOBAL_MEM scan_type *restrict interval_results,
GLOBAL_MEM scan_type *restrict partial_scan_buffer
%if is_segmented:
, GLOBAL_MEM index_type *restrict g_first_segment_start_in_interval
%endif
%if is_segmented and use_lookbehind_update:
, GLOBAL_MEM char *restrict g_segment_start_flags
%endif
)
{
%if use_lookbehind_update:
LOCAL_MEM scan_type ldata[WG_SIZE];
%endif
%if is_segmented and use_lookbehind_update:
LOCAL_MEM char l_segment_start_flags[WG_SIZE];
%endif
const index_type interval_begin = interval_size * GID_0;
const index_type interval_end = min(interval_begin + interval_size, N);
// carry from last interval
scan_type carry = ${neutral};
if (GID_0 != 0)
carry = interval_results[GID_0 - 1];
%if is_segmented:
const index_type first_seg_start_in_interval =
g_first_segment_start_in_interval[GID_0];
%endif
%if not is_segmented and 'last_item' in output_statement:
scan_type last_item = interval_results[GDIM_0-1];
%endif
%if not use_lookbehind_update:
// {{{ no look-behind ('prev_item' not in output_statement -> simpler)
index_type update_i = interval_begin+LID_0;
%if is_segmented:
index_type seg_end = min(first_seg_start_in_interval, interval_end);
%endif
for(; update_i < interval_end; update_i += WG_SIZE)
{
scan_type partial_val = partial_scan_buffer[update_i];
scan_type item = SCAN_EXPR(carry, partial_val,
%if is_segmented:
(update_i >= seg_end)
%else:
false
%endif
);
index_type i = update_i;
{ ${output_statement}; }
}
// }}}
%else:
// {{{ allow look-behind ('prev_item' in output_statement -> complicated)
// We are not allowed to branch across barriers at a granularity smaller
// than the whole workgroup. Therefore, the for loop is group-global,
// and there are lots of local ifs.
index_type group_base = interval_begin;
scan_type prev_item = carry; // (A)
for(; group_base < interval_end; group_base += WG_SIZE)
{
index_type update_i = group_base+LID_0;
// load a work group's worth of data
if (update_i < interval_end)
{
scan_type tmp = partial_scan_buffer[update_i];
tmp = SCAN_EXPR(carry, tmp,
%if is_segmented:
(update_i >= first_seg_start_in_interval)
%else:
false
%endif
);
ldata[LID_0] = tmp;
%if is_segmented:
l_segment_start_flags[LID_0] = g_segment_start_flags[update_i];
%endif
}
local_barrier();
// find prev_item
if (LID_0 != 0)
prev_item = ldata[LID_0 - 1];
/*
else
prev_item = carry (see (A)) OR last tail (see (B));
*/
if (update_i < interval_end)
{
%if is_segmented:
if (l_segment_start_flags[LID_0])
prev_item = ${neutral};
%endif
scan_type item = ldata[LID_0];
index_type i = update_i;
{ ${output_statement}; }
}
if (LID_0 == 0)
prev_item = ldata[WG_SIZE - 1]; // (B)
local_barrier();
}
// }}}
%endif
}
"""
# }}}
# {{{ driver
# {{{ helpers
def _round_down_to_power_of_2(val):
result = 2**bitlog2(val)
if result > val:
result >>= 1
assert result <= val
return result
_PREFIX_WORDS = set("""
ldata partial_scan_buffer global scan_offset
segment_start_in_k_group carry
g_first_segment_start_in_interval IS_SEG_START tmp Z
val l_first_segment_start_in_subtree unit_size
index_type interval_begin interval_size offset_end K
SCAN_EXPR do_update WG_SIZE
first_segment_start_in_k_group scan_type
segment_start_in_subtree offset interval_results interval_end
first_segment_start_in_subtree unit_base
first_segment_start_in_interval k INPUT_EXPR
prev_group_sum prev pv value partial_val pgs
is_seg_start update_i scan_item_at_i seq_i read_i
l_ o_mod_k o_div_k l_segment_start_flags scan_value sum
first_seg_start_in_interval g_segment_start_flags
group_base seg_end my_val DEBUG ARGS
ints_to_store ints_per_wg scan_types_per_int linear_index
linear_scan_data_idx dest src store_base wrapped_scan_type
dummy
LID_2 LID_1 LID_0
LDIM_0 LDIM_1 LDIM_2
GDIM_0 GDIM_1 GDIM_2
GID_0 GID_1 GID_2
""".split())
_IGNORED_WORDS = set("""
4 8 32
typedef for endfor if void while endwhile endfor endif else const printf
None return bool n char true false ifdef pycl_printf str range assert
np iinfo max itemsize __packed__ struct restrict
set iteritems len setdefault
GLOBAL_MEM LOCAL_MEM_ARG WITHIN_KERNEL LOCAL_MEM KERNEL REQD_WG_SIZE
local_barrier
CLK_LOCAL_MEM_FENCE OPENCL EXTENSION
pragma __attribute__ __global __kernel __local
get_local_size get_local_id cl_khr_fp64 reqd_work_group_size
get_num_groups barrier get_group_id
CL_VERSION_1_1 __OPENCL_C_VERSION__ 120
_final_update _debug_scan kernel_name
positions all padded integer its previous write based writes 0
has local worth scan_expr to read cannot not X items False bank
four beginning follows applicable item min each indices works side
scanning right summed relative used id out index avoid current state
boundary True across be This reads groups along Otherwise undetermined
store of times prior s update first regardless Each number because
array unit from segment conflicts two parallel 2 empty define direction
CL padding work tree bounds values and adds
scan is allowed thus it an as enable at in occur sequentially end no
storage data 1 largest may representable uses entry Y meaningful
computations interval At the left dimension know d
A load B group perform shift tail see last OR
this add fetched into are directly need
gets them stenciled that undefined
there up any ones or name only relevant populated
even wide we Prepare int seg Note re below place take variable must
intra Therefore find code assumption
branch workgroup complicated granularity phase remainder than simpler
We smaller look ifs lots self behind allow barriers whole loop
after already Observe achieve contiguous stores hard go with by math
size won t way divisible bit so Avoid declare adding single type
is_tail is_first_level input_expr argument_signature preamble
double_support neutral output_statement
k_group_size name_prefix is_segmented index_dtype scan_dtype
wg_size is_segment_start_expr fetch_expr_offsets
arg_ctypes ife_offsets input_fetch_exprs def
ife_offset arg_name local_fetch_expr_args update_body
update_loop_lookbehind update_loop_plain update_loop
use_lookbehind_update store_segment_start_flags
update_loop first_seg scan_dtype dtype_to_ctype
is_gpu use_bank_conflict_avoidance
a b prev_item i last_item prev_value
N NO_SEG_BOUNDARY across_seg_boundary
""".split())
def _make_template(s):
leftovers = set()
def replace_id(match):
# avoid name clashes with user code by adding 'psc_' prefix to
# identifiers.
word = match.group(1)
if word in _IGNORED_WORDS:
return word
elif word in _PREFIX_WORDS:
return "psc_"+word
else:
leftovers.add(word)
return word
import re
s = re.sub(r"\b([a-zA-Z0-9_]+)\b", replace_id, s)
if leftovers:
from warnings import warn
warn("leftover words in identifier prefixing: " + " ".join(leftovers))
return mako.template.Template(s, strict_undefined=True)
from pytools import Record
class _ScanKernelInfo(Record):
pass
# }}}
class ScanPerformanceWarning(UserWarning):
pass
class _GenericScanKernelBase(object):
# {{{ constructor, argument processing
def __init__(self, ctx, dtype,
arguments, input_expr, scan_expr, neutral, output_statement,
is_segment_start_expr=None, input_fetch_exprs=[],
index_dtype=np.int32,
name_prefix="scan", options=[], preamble="", devices=None):
"""
:arg ctx: a :class:`pyopencl.Context` within which the code
for this scan kernel will be generated.
:arg dtype: the :class:`numpy.dtype` with which the scan will
be performed. May be a structured type if that type was registered
through :func:`pyopencl.tools.get_or_register_dtype`.
:arg arguments: A string of comma-separated C argument declarations.
If *arguments* is specified, then *input_expr* must also be
specified. All types used here must be known to PyOpenCL.
(see :func:`pyopencl.tools.get_or_register_dtype`).
:arg scan_expr: The associative, binary operation carrying out the scan,
represented as a C string. Its two arguments are available as `a`
and `b` when it is evaluated. `b` is guaranteed to be the
'element being updated', and `a` is the increment. Thus,
if some data is supposed to just propagate along without being
modified by the scan, it should live in `b`.
This expression may call functions given in the *preamble*.
Another value available to this expression is `across_seg_boundary`,
a C `bool` indicating whether this scan update is crossing a
segment boundary, as defined by `is_segment_start_expr`.
The scan routine does not implement segmentation
semantics on its own. It relies on `scan_expr` to do this.
This value is available (but always `false`) even for a
non-segmented scan.
.. note::
In early pre-releases of the segmented scan,
segmentation semantics were implemented *without*
relying on `scan_expr`.
:arg input_expr: A C expression, encoded as a string, resulting
in the values to which the scan is applied. This may be used
to apply a mapping to values stored in *arguments* before being
scanned. The result of this expression must match *dtype*.
The index intended to be mapped is available as `i` in this
expression. This expression may also use the variables defined
by *input_fetch_expr*.
This expression may also call functions given in the *preamble*.
:arg output_statement: a C statement that writes
the output of the scan. It has access to the scan result as `item`,
the preceding scan result item as `prev_item`, and the current index
as `i`. `prev_item` in a segmented scan will be the neutral element
at a segment boundary, not the immediately preceding item.
Using *prev_item* in output statement has a small run-time cost.
`prev_item` enables the construction of an exclusive scan.
For non-segmented scans, *output_statement* may also reference
`last_item`, which evaluates to the scan result of the last
array entry.
:arg is_segment_start_expr: A C expression, encoded as a string,
resulting in a C `bool` value that determines whether a new
scan segments starts at index *i*. If given, makes the scan a
segmented scan. Has access to the current index `i`, the result
of *input_expr* as a, and in addition may use *arguments* and
*input_fetch_expr* variables just like *input_expr*.
If it returns true, then previous sums will not spill over into the
item with index *i* or subsequent items.
:arg input_fetch_exprs: a list of tuples *(NAME, ARG_NAME, OFFSET)*.
An entry here has the effect of doing the equivalent of the following
before input_expr::
ARG_NAME_TYPE NAME = ARG_NAME[i+OFFSET];
`OFFSET` is allowed to be 0 or -1, and `ARG_NAME_TYPE` is the type
of `ARG_NAME`.
:arg preamble: |preamble|
The first array in the argument list determines the size of the index
space over which the scan is carried out, and thus the values over
which the index *i* occurring in a number of code fragments in
arguments above will vary.
All code fragments further have access to N, the number of elements
being processed in the scan.
"""
self.context = ctx
dtype = self.dtype = np.dtype(dtype)
if neutral is None:
from warnings import warn
warn("not specifying 'neutral' is deprecated and will lead to "
"wrong results if your scan is not in-place or your "
"'output_statement' does something otherwise non-trivial",
stacklevel=2)
if dtype.itemsize % 4 != 0:
raise TypeError("scan value type must have size divisible by 4 bytes")
self.index_dtype = np.dtype(index_dtype)
if np.iinfo(self.index_dtype).min >= 0:
raise TypeError("index_dtype must be signed")
if devices is None:
devices = ctx.devices
self.devices = devices
self.options = options
from pyopencl.tools import parse_arg_list
self.parsed_args = parse_arg_list(arguments)
from pyopencl.tools import VectorArg
self.first_array_idx = [
i for i, arg in enumerate(self.parsed_args)
if isinstance(arg, VectorArg)][0]
self.input_expr = input_expr
self.is_segment_start_expr = is_segment_start_expr
self.is_segmented = is_segment_start_expr is not None
if self.is_segmented:
is_segment_start_expr = _process_code_for_macro(is_segment_start_expr)
self.output_statement = output_statement
for name, arg_name, ife_offset in input_fetch_exprs:
if ife_offset not in [0, -1]:
raise RuntimeError("input_fetch_expr offsets must either be 0 or -1")
self.input_fetch_exprs = input_fetch_exprs
arg_dtypes = {}
arg_ctypes = {}
for arg in self.parsed_args:
arg_dtypes[arg.name] = arg.dtype
arg_ctypes[arg.name] = dtype_to_ctype(arg.dtype)
self.options = options
self.name_prefix = name_prefix
# {{{ set up shared code dict
from pytools import all
from pyopencl.characterize import has_double_support
self.code_variables = dict(
np=np,
dtype_to_ctype=dtype_to_ctype,
preamble=preamble,
name_prefix=name_prefix,
index_dtype=self.index_dtype,
scan_dtype=dtype,
is_segmented=self.is_segmented,
arg_dtypes=arg_dtypes,
arg_ctypes=arg_ctypes,
scan_expr=_process_code_for_macro(scan_expr),
neutral=_process_code_for_macro(neutral),
is_gpu=bool(self.devices[0].type & cl.device_type.GPU),
double_support=all(
has_double_support(dev) for dev in devices),
)
# }}}
self.finish_setup()
# }}}
class GenericScanKernel(_GenericScanKernelBase):
"""Generates and executes code that performs prefix sums ("scans") on
arbitrary types, with many possible tweaks.
Usage example::
from pyopencl.scan import GenericScanKernel
knl = GenericScanKernel(
context, np.int32,
arguments="__global int *ary",
input_expr="ary[i]",
scan_expr="a+b", neutral="0",
output_statement="ary[i+1] = item;")
a = cl.array.arange(queue, 10000, dtype=np.int32)
scan_kernel(a, queue=queue)
"""
def finish_setup(self):
use_lookbehind_update = "prev_item" in self.output_statement
self.store_segment_start_flags = self.is_segmented and use_lookbehind_update
# {{{ find usable workgroup/k-group size, build first-level scan
trip_count = 0
avail_local_mem = min(
dev.local_mem_size
for dev in self.devices)
is_cpu = self.devices[0].type & cl.device_type.CPU
is_gpu = self.devices[0].type & cl.device_type.GPU
if is_cpu:
# (about the widest vector a CPU can support, also taking
# into account that CPUs don't hide latency by large work groups
max_scan_wg_size = 16
wg_size_multiples = 4
else:
max_scan_wg_size = min(dev.max_work_group_size for dev in self.devices)
wg_size_multiples = 64
use_bank_conflict_avoidance = (
self.dtype.itemsize > 4 and self.dtype.itemsize % 8 == 0 and is_gpu)
# k_group_size should be a power of two because of in-kernel
# division by that number.
solutions = []
for k_exp in range(0, 9):
for wg_size in range(wg_size_multiples, max_scan_wg_size+1,
wg_size_multiples):
k_group_size = 2**k_exp
lmem_use = self.get_local_mem_use(wg_size, k_group_size,
use_bank_conflict_avoidance)
if lmem_use + 256 <= avail_local_mem:
solutions.append((wg_size*k_group_size, k_group_size, wg_size))
if is_gpu:
from pytools import any
for wg_size_floor in [256, 192, 128]:
have_sol_above_floor = any(wg_size >= wg_size_floor
for _, _, wg_size in solutions)
if have_sol_above_floor:
# delete all solutions not meeting the wg size floor
solutions = [(total, try_k_group_size, try_wg_size)
for total, try_k_group_size, try_wg_size in solutions
if try_wg_size >= wg_size_floor]
break
_, k_group_size, max_scan_wg_size = max(solutions)
while True:
candidate_scan_info = self.build_scan_kernel(
max_scan_wg_size, self.parsed_args,
_process_code_for_macro(self.input_expr),
self.is_segment_start_expr,
input_fetch_exprs=self.input_fetch_exprs,
is_first_level=True,
store_segment_start_flags=self.store_segment_start_flags,
k_group_size=k_group_size,
use_bank_conflict_avoidance=use_bank_conflict_avoidance)
# Will this device actually let us execute this kernel
# at the desired work group size? Building it is the
# only way to find out.
kernel_max_wg_size = min(
candidate_scan_info.kernel.get_work_group_info(
cl.kernel_work_group_info.WORK_GROUP_SIZE,
dev)
for dev in self.devices)
if candidate_scan_info.wg_size <= kernel_max_wg_size:
break
else:
max_scan_wg_size = min(kernel_max_wg_size, max_scan_wg_size)
trip_count += 1
assert trip_count <= 20
self.first_level_scan_info = candidate_scan_info
assert (_round_down_to_power_of_2(candidate_scan_info.wg_size)
== candidate_scan_info.wg_size)
# }}}
# {{{ build second-level scan
from pyopencl.tools import VectorArg
second_level_arguments = self.parsed_args + [
VectorArg(self.dtype, "interval_sums")]
second_level_build_kwargs = {}
if self.is_segmented:
second_level_arguments.append(
VectorArg(self.index_dtype,
"g_first_segment_start_in_interval_input"))
# is_segment_start_expr answers the question "should previous sums
# spill over into this item". And since
# g_first_segment_start_in_interval_input answers the question if a
# segment boundary was found in an interval of data, then if not,
# it's ok to spill over.
second_level_build_kwargs["is_segment_start_expr"] = \
"g_first_segment_start_in_interval_input[i] != NO_SEG_BOUNDARY"
else:
second_level_build_kwargs["is_segment_start_expr"] = None
self.second_level_scan_info = self.build_scan_kernel(
max_scan_wg_size,
arguments=second_level_arguments,
input_expr="interval_sums[i]",
input_fetch_exprs=[],
is_first_level=False,
store_segment_start_flags=False,
k_group_size=k_group_size,
use_bank_conflict_avoidance=use_bank_conflict_avoidance,
**second_level_build_kwargs)
# }}}
# {{{ build final update kernel
self.update_wg_size = min(max_scan_wg_size, 256)
final_update_tpl = _make_template(UPDATE_SOURCE)
final_update_src = str(final_update_tpl.render(
wg_size=self.update_wg_size,
output_statement=self.output_statement,
argument_signature=", ".join(
arg.declarator() for arg in self.parsed_args),
is_segment_start_expr=self.is_segment_start_expr,
input_expr=_process_code_for_macro(self.input_expr),
use_lookbehind_update=use_lookbehind_update,
**self.code_variables))
final_update_prg = cl.Program(
self.context, final_update_src).build(self.options)
self.final_update_knl = getattr(
final_update_prg,
self.name_prefix+"_final_update")
update_scalar_arg_dtypes = (
get_arg_list_scalar_arg_dtypes(self.parsed_args)
+ [self.index_dtype, self.index_dtype, None, None])
if self.is_segmented:
# g_first_segment_start_in_interval
update_scalar_arg_dtypes.append(None)
if self.store_segment_start_flags:
update_scalar_arg_dtypes.append(None) # g_segment_start_flags
self.final_update_knl.set_scalar_arg_dtypes(update_scalar_arg_dtypes)
# }}}
# {{{ scan kernel build/properties
def get_local_mem_use(self, k_group_size, wg_size, use_bank_conflict_avoidance):
arg_dtypes = {}
for arg in self.parsed_args:
arg_dtypes[arg.name] = arg.dtype
fetch_expr_offsets = {}
for name, arg_name, ife_offset in self.input_fetch_exprs:
fetch_expr_offsets.setdefault(arg_name, set()).add(ife_offset)
itemsize = self.dtype.itemsize
if use_bank_conflict_avoidance:
itemsize += 4
return (
# ldata
itemsize*(k_group_size+1)*(wg_size+1)
# l_segment_start_flags
+ k_group_size*wg_size
# l_first_segment_start_in_subtree
+ self.index_dtype.itemsize*wg_size
+ k_group_size*wg_size*sum(
arg_dtypes[arg_name].itemsize
for arg_name, ife_offsets in list(fetch_expr_offsets.items())
if -1 in ife_offsets or len(ife_offsets) > 1))
def build_scan_kernel(self, max_wg_size, arguments, input_expr,
is_segment_start_expr, input_fetch_exprs, is_first_level,
store_segment_start_flags, k_group_size,
use_bank_conflict_avoidance):
scalar_arg_dtypes = get_arg_list_scalar_arg_dtypes(arguments)
# Empirically found on Nv hardware: no need to be bigger than this size
wg_size = _round_down_to_power_of_2(
min(max_wg_size, 256))
kernel_name = self.code_variables["name_prefix"]+"_scan_intervals"
if is_first_level:
kernel_name += "_lev1"
else:
kernel_name += "_lev2"
scan_tpl = _make_template(SCAN_INTERVALS_SOURCE)
scan_src = str(scan_tpl.render(
wg_size=wg_size,
input_expr=input_expr,
k_group_size=k_group_size,
argument_signature=", ".join(arg.declarator() for arg in arguments),
is_segment_start_expr=is_segment_start_expr,
input_fetch_exprs=input_fetch_exprs,
is_first_level=is_first_level,
store_segment_start_flags=store_segment_start_flags,
use_bank_conflict_avoidance=use_bank_conflict_avoidance,
kernel_name=kernel_name,
**self.code_variables))
prg = cl.Program(self.context, scan_src).build(self.options)
knl = getattr(prg, kernel_name)
scalar_arg_dtypes.extend(
(None, self.index_dtype, self. index_dtype))
if is_first_level:
scalar_arg_dtypes.append(None) # interval_results
if self.is_segmented and is_first_level:
scalar_arg_dtypes.append(None) # g_first_segment_start_in_interval
if store_segment_start_flags:
scalar_arg_dtypes.append(None) # g_segment_start_flags
knl.set_scalar_arg_dtypes(scalar_arg_dtypes)
return _ScanKernelInfo(
kernel=knl, wg_size=wg_size, knl=knl, k_group_size=k_group_size)
# }}}
def __call__(self, *args, **kwargs):
# {{{ argument processing
allocator = kwargs.get("allocator")
queue = kwargs.get("queue")
n = kwargs.get("size")
wait_for = kwargs.get("wait_for")
if len(args) != len(self.parsed_args):
raise TypeError("expected %d arguments, got %d" %
(len(self.parsed_args), len(args)))
first_array = args[self.first_array_idx]
allocator = allocator or first_array.allocator
queue = queue or first_array.queue
if n is None:
n, = first_array.shape
if n == 0:
# We're done here. (But pretend to return an event.)
return cl.enqueue_marker(queue, wait_for=wait_for)
data_args = []
from pyopencl.tools import VectorArg
for arg_descr, arg_val in zip(self.parsed_args, args):
if isinstance(arg_descr, VectorArg):
data_args.append(arg_val.data)
else:
data_args.append(arg_val)
# }}}
l1_info = self.first_level_scan_info
l2_info = self.second_level_scan_info
# see CL source above for terminology
unit_size = l1_info.wg_size * l1_info.k_group_size
max_intervals = 3*max(dev.max_compute_units for dev in self.devices)
from pytools import uniform_interval_splitting
interval_size, num_intervals = uniform_interval_splitting(
n, unit_size, max_intervals)
# {{{ allocate some buffers
interval_results = cl.array.empty(queue,
num_intervals, dtype=self.dtype,
allocator=allocator)
partial_scan_buffer = cl.array.empty(
queue, n, dtype=self.dtype,
allocator=allocator)
if self.store_segment_start_flags:
segment_start_flags = cl.array.empty(
queue, n, dtype=np.bool,
allocator=allocator)
# }}}
# {{{ first level scan of interval (one interval per block)
scan1_args = data_args + [
partial_scan_buffer.data, n, interval_size, interval_results.data,
]
if self.is_segmented:
first_segment_start_in_interval = cl.array.empty(queue,
num_intervals, dtype=self.index_dtype,
allocator=allocator)
scan1_args.append(first_segment_start_in_interval.data)
if self.store_segment_start_flags:
scan1_args.append(segment_start_flags.data)
l1_evt = l1_info.kernel(
queue, (num_intervals,), (l1_info.wg_size,),
*scan1_args, **dict(g_times_l=True, wait_for=wait_for))
# }}}
# {{{ second level scan of per-interval results
# can scan at most one interval
assert interval_size >= num_intervals
scan2_args = data_args + [
interval_results.data, # interval_sums
]
if self.is_segmented:
scan2_args.append(first_segment_start_in_interval.data)
scan2_args = scan2_args + [
interval_results.data, # partial_scan_buffer
num_intervals, interval_size]
l2_evt = l2_info.kernel(
queue, (1,), (l1_info.wg_size,),
*scan2_args, **dict(g_times_l=True, wait_for=[l1_evt]))
# }}}
# {{{ update intervals with result of interval scan
upd_args = data_args + [
n, interval_size, interval_results.data, partial_scan_buffer.data]
if self.is_segmented:
upd_args.append(first_segment_start_in_interval.data)
if self.store_segment_start_flags:
upd_args.append(segment_start_flags.data)
return self.final_update_knl(
queue, (num_intervals,), (self.update_wg_size,),
*upd_args, **dict(g_times_l=True, wait_for=[l2_evt]))
# }}}
# }}}
# {{{ debug kernel
DEBUG_SCAN_TEMPLATE = SHARED_PREAMBLE + r"""//CL//
KERNEL
REQD_WG_SIZE(1, 1, 1)
void ${name_prefix}_debug_scan(
${argument_signature},
const index_type N)
{
scan_type item = ${neutral};
scan_type prev_item;
for (index_type i = 0; i < N; ++i)
{
%for name, arg_name, ife_offset in input_fetch_exprs:
${arg_ctypes[arg_name]} ${name};
%if ife_offset < 0:
if (i+${ife_offset} >= 0)
${name} = ${arg_name}[i+offset];
%else:
${name} = ${arg_name}[i];
%endif
%endfor
scan_type my_val = INPUT_EXPR(i);
prev_item = item;
%if is_segmented:
bool is_seg_start = IS_SEG_START(i, my_val);
%endif
item = SCAN_EXPR(prev_item, my_val,
%if is_segmented:
is_seg_start
%else:
false
%endif
);
{
${output_statement};
}
}
}
"""
class GenericDebugScanKernel(_GenericScanKernelBase):
def finish_setup(self):
scan_tpl = _make_template(DEBUG_SCAN_TEMPLATE)
scan_src = str(scan_tpl.render(
output_statement=self.output_statement,
argument_signature=", ".join(
arg.declarator() for arg in self.parsed_args),
is_segment_start_expr=self.is_segment_start_expr,
input_expr=_process_code_for_macro(self.input_expr),
input_fetch_exprs=self.input_fetch_exprs,
wg_size=1,
**self.code_variables))
scan_prg = cl.Program(self.context, scan_src).build(self.options)
self.kernel = getattr(
scan_prg, self.name_prefix+"_debug_scan")
scalar_arg_dtypes = (
get_arg_list_scalar_arg_dtypes(self.parsed_args)
+ [self.index_dtype])
self.kernel.set_scalar_arg_dtypes(scalar_arg_dtypes)
def __call__(self, *args, **kwargs):
# {{{ argument processing
allocator = kwargs.get("allocator")
queue = kwargs.get("queue")
n = kwargs.get("size")
wait_for = kwargs.get("wait_for")
if len(args) != len(self.parsed_args):
raise TypeError("expected %d arguments, got %d" %
(len(self.parsed_args), len(args)))
first_array = args[self.first_array_idx]
allocator = allocator or first_array.allocator
queue = queue or first_array.queue
if n is None:
n, = first_array.shape
data_args = []
from pyopencl.tools import VectorArg
for arg_descr, arg_val in zip(self.parsed_args, args):
if isinstance(arg_descr, VectorArg):
data_args.append(arg_val.data)
else:
data_args.append(arg_val)
# }}}
return self.kernel(queue, (1,), (1,),
*(data_args + [n]), **dict(wait_for=wait_for))
# }}}
# {{{ compatibility interface
class _LegacyScanKernelBase(GenericScanKernel):
def __init__(self, ctx, dtype,
scan_expr, neutral=None,
name_prefix="scan", options=[], preamble="", devices=None):
scan_ctype = dtype_to_ctype(dtype)
GenericScanKernel.__init__(self,
ctx, dtype,
arguments="__global %s *input_ary, __global %s *output_ary" % (
scan_ctype, scan_ctype),
input_expr="input_ary[i]",
scan_expr=scan_expr,
neutral=neutral,
output_statement=self.ary_output_statement,
options=options, preamble=preamble, devices=devices)
def __call__(self, input_ary, output_ary=None, allocator=None, queue=None):
allocator = allocator or input_ary.allocator
queue = queue or input_ary.queue or output_ary.queue
if output_ary is None:
output_ary = input_ary
if isinstance(output_ary, str) and output_ary == "new":
output_ary = cl.array.empty_like(input_ary, allocator=allocator)
if input_ary.shape != output_ary.shape:
raise ValueError("input and output must have the same shape")
if not input_ary.flags.forc:
raise RuntimeError("ScanKernel cannot "
"deal with non-contiguous arrays")
n, = input_ary.shape
if not n:
return output_ary
GenericScanKernel.__call__(self,
input_ary, output_ary, allocator=allocator, queue=queue)
return output_ary
class InclusiveScanKernel(_LegacyScanKernelBase):
ary_output_statement = "output_ary[i] = item;"
class ExclusiveScanKernel(_LegacyScanKernelBase):
ary_output_statement = "output_ary[i] = prev_item;"
# }}}
# {{{ template
class ScanTemplate(KernelTemplateBase):
def __init__(self,
arguments, input_expr, scan_expr, neutral, output_statement,
is_segment_start_expr=None, input_fetch_exprs=[],
name_prefix="scan", preamble="", template_processor=None):
KernelTemplateBase.__init__(self, template_processor=template_processor)
self.arguments = arguments
self.input_expr = input_expr
self.scan_expr = scan_expr
self.neutral = neutral
self.output_statement = output_statement
self.is_segment_start_expr = is_segment_start_expr
self.input_fetch_exprs = input_fetch_exprs
self.name_prefix = name_prefix
self.preamble = preamble
def build_inner(self, context, type_aliases=(), var_values=(),
more_preamble="", more_arguments=(), declare_types=(),
options=(), devices=None, scan_cls=GenericScanKernel):
renderer = self.get_renderer(type_aliases, var_values, context, options)
arg_list = renderer.render_argument_list(self.arguments, more_arguments)
type_decl_preamble = renderer.get_type_decl_preamble(
context.devices[0], declare_types, arg_list)
return scan_cls(context, renderer.type_aliases["scan_t"],
renderer.render_argument_list(self.arguments, more_arguments),
renderer(self.input_expr), renderer(self.scan_expr),
renderer(self.neutral), renderer(self.output_statement),
is_segment_start_expr=renderer(self.is_segment_start_expr),
input_fetch_exprs=self.input_fetch_exprs,
index_dtype=renderer.type_aliases.get("index_t", np.int32),
name_prefix=renderer(self.name_prefix), options=list(options),
preamble=(
type_decl_preamble
+ "\n"
+ renderer(self.preamble + "\n" + more_preamble)),
devices=devices)
# }}}
# {{{ 'canned' scan kernels
@context_dependent_memoize
def get_cumsum_kernel(context, input_dtype, output_dtype):
from pyopencl.tools import VectorArg
return GenericScanKernel(
context, output_dtype,
arguments=[
VectorArg(input_dtype, "input"),
VectorArg(output_dtype, "output"),
],
input_expr="input[i]",
scan_expr="a+b", neutral="0",
output_statement="""
output[i] = item;
""")
# }}}
# vim: filetype=pyopencl:fdm=marker
|