This file is indexed.

/usr/lib/python3/dist-packages/pyopencl/clrandom.py is in python3-pyopencl 2015.1-2build3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
# encoding: utf8


__copyright__ = "Copyright (C) 2009 Andreas Kloeckner"

__license__ = """
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""


# {{{ documentation

__doc__ = """
PyOpenCL now includes and uses the `RANLUXCL random number generator
<https://bitbucket.org/ivarun/ranluxcl/>`_ by Ivar Ursin Nikolaisen.  In
addition to being usable through the convenience functions above, it is
available in any piece of code compiled through PyOpenCL by::

    #include <pyopencl-ranluxcl.cl>

See the `source
<https://github.com/pyopencl/pyopencl/blob/master/src/cl/pyopencl-ranluxcl.cl>`_
for some documentation if you're planning on using RANLUXCL directly.

The RANLUX generator is described in the following two articles. If you use the
generator for scientific purposes, please consider citing them:

* Martin Lüscher, A portable high-quality random number generator for lattice
  field theory simulations, `Computer Physics Communications 79 (1994) 100-110
  <http://dx.doi.org/10.1016/0010-4655(94)90232-1>`_

* F. James, RANLUX: A Fortran implementation of the high-quality pseudorandom
  number generator of Lüscher, `Computer Physics Communications 79 (1994) 111-114
  <http://dx.doi.org/10.1016/0010-4655(94)90233-X>`_
"""

# }}}

import pyopencl as cl
import pyopencl.array as cl_array
from pyopencl.tools import first_arg_dependent_memoize
from pytools import memoize_method

import numpy as np


class RanluxGenerator(object):
    """
    .. versionadded:: 2011.2

    .. attribute:: state

        A :class:`pyopencl.array.Array` containing the state of the generator.

    .. attribute:: nskip

        nskip is an integer which can (optionally) be defined in the kernel
        code as RANLUXCL_NSKIP. If this is done the generator will be faster
        for luxury setting 0 and 1, or when the p-value is manually set to a
        multiple of 24.
    """

    def __init__(self, queue, num_work_items=None,
            luxury=None, seed=None, no_warmup=False,
            use_legacy_init=False, max_work_items=None):
        """
        :param queue: :class:`pyopencl.CommandQueue`, only used for initialization
        :param luxury: the "luxury value" of the generator, and should be 0-4,
            where 0 is fastest and 4 produces the best numbers. It can also be
            >=24, in which case it directly sets the p-value of RANLUXCL.
        :param num_work_items: is the number of generators to initialize,
            usually corresponding to the number of work-items in the NDRange
            RANLUXCL will be used with.  May be `None`, in which case a default
            value is used.
        :param max_work_items: should reflect the maximum number of work-items
            that will be used on any parallel instance of RANLUXCL. So for
            instance if we are launching 5120 work-items on GPU1 and 10240
            work-items on GPU2, GPU1's RANLUXCLTab would be generated by
            calling ranluxcl_intialization with numWorkitems = 5120 while
            GPU2's RANLUXCLTab would use numWorkitems = 10240. However
            maxWorkitems must be at least 10240 for both GPU1 and GPU2, and it
            must be set to the same value for both. (may be `None`)

        .. versionchanged:: 2013.1
            Added default value for `num_work_items`.
        """

        if luxury is None:
            luxury = 4

        if num_work_items is None:
            if queue.device.type & cl.device_type.CPU:
                num_work_items = 8 * queue.device.max_compute_units
            else:
                num_work_items = 64 * queue.device.max_compute_units

        if seed is None:
            from time import time
            seed = int(time()*1e6) % 2 << 30

        self.context = queue.context
        self.luxury = luxury
        self.num_work_items = num_work_items

        from pyopencl.characterize import has_double_support
        self.support_double = has_double_support(queue.device)

        self.no_warmup = no_warmup
        self.use_legacy_init = use_legacy_init
        self.max_work_items = max_work_items

        src = """
            %(defines)s

            #include <pyopencl-ranluxcl.cl>

            kernel void init_ranlux(unsigned seeds,
                global ranluxcl_state_t *ranluxcltab)
            {
              if (get_global_id(0) < %(num_work_items)d)
                ranluxcl_initialization(seeds, ranluxcltab);
            }
            """ % {
                    "defines": self.generate_settings_defines(),
                    "num_work_items": num_work_items
                }
        prg = cl.Program(queue.context, src).build()

        # {{{ compute work group size

        wg_size = None

        import sys
        import platform
        if ("darwin" in sys.platform
                and "Apple" in queue.device.platform.vendor
                and platform.mac_ver()[0].startswith("10.7")
                and queue.device.type & cl.device_type.CPU):
            wg_size = (1,)

        self.wg_size = wg_size

        # }}}

        self.state = cl_array.empty(queue, (num_work_items, 112), dtype=np.uint8)
        self.state.fill(17)

        prg.init_ranlux(queue, (num_work_items,), self.wg_size, np.uint32(seed),
                self.state.data)

    def generate_settings_defines(self, include_double_pragma=True):
        lines = []
        if include_double_pragma and self.support_double:
            lines.append("""
                #if __OPENCL_C_VERSION__ < 120
                #pragma OPENCL EXTENSION cl_khr_fp64: enable
                #endif
                """)

        lines.append("#define RANLUXCL_LUX %d" % self.luxury)

        if self.no_warmup:
            lines.append("#define RANLUXCL_NO_WARMUP")

        if self.support_double:
            lines.append("#define RANLUXCL_SUPPORT_DOUBLE")

        if self.use_legacy_init:
            lines.append("#define RANLUXCL_USE_LEGACY_INITIALIZATION")

            if self.max_work_items:
                lines.append(
                        "#define RANLUXCL_MAXWORKITEMS %d" % self.max_work_items)

        return "\n".join(lines)

    @memoize_method
    def get_gen_kernel(self, dtype, distribution="uniform"):
        size_multiplier = 1
        arg_dtype = dtype

        if dtype == np.float64:
            bits = 64
            c_type = "double"
            rng_expr = "(shift + scale * gen)"
        elif dtype == np.float32:
            bits = 32
            c_type = "float"
            rng_expr = "(shift + scale * gen)"
        elif dtype == cl_array.vec.float2:
            bits = 32
            c_type = "float"
            rng_expr = "(shift + scale * gen)"
            size_multiplier = 2
            arg_dtype = np.float32
        elif dtype in [cl_array.vec.float3, cl_array.vec.float4]:
            bits = 32
            c_type = "float"
            rng_expr = "(shift + scale * gen)"
            size_multiplier = 4
            arg_dtype = np.float32
        elif dtype == np.int32:
            assert distribution == "uniform"
            bits = 32
            c_type = "int"
            rng_expr = ("(shift "
                    "+ convert_int4((float) scale * gen) "
                    "+ convert_int4((float) (scale / (1<<24)) * gen))")
        else:
            raise TypeError("unsupported RNG data type '%s'" % dtype)

        rl_flavor = "%d%s" % (bits, {
                "uniform": "",
                "normal": "norm"
                }[distribution])

        src = """//CL//
            %(defines)s

            #include <pyopencl-ranluxcl.cl>

            typedef %(output_t)s output_t;
            typedef %(output_t)s4 output_vec_t;
            #define NUM_WORKITEMS %(num_work_items)d
            #define RANLUX_FUNC ranluxcl%(rlflavor)s
            #define GET_RANDOM_NUM(gen) %(rng_expr)s

            kernel void generate(
                global ranluxcl_state_t *ranluxcltab,
                global output_t *output,
                unsigned long out_size,
                output_t scale,
                output_t shift)
            {

              ranluxcl_state_t ranluxclstate;
              ranluxcl_download_seed(&ranluxclstate, ranluxcltab);

              // output bulk
              unsigned long idx = get_global_id(0)*4;
              while (idx + 4 < out_size)
              {
                  vstore4(
                      GET_RANDOM_NUM(RANLUX_FUNC(&ranluxclstate)),
                      idx >> 2, output);
                  idx += 4*NUM_WORKITEMS;
              }

              // output tail
              output_vec_t tail_ran = GET_RANDOM_NUM(RANLUX_FUNC(&ranluxclstate));
              if (idx < out_size)
                output[idx] = tail_ran.x;
              if (idx+1 < out_size)
                output[idx+1] = tail_ran.y;
              if (idx+2 < out_size)
                output[idx+2] = tail_ran.z;
              if (idx+3 < out_size)
                output[idx+3] = tail_ran.w;

              ranluxcl_upload_seed(&ranluxclstate, ranluxcltab);
            }
            """ % {
                "defines": self.generate_settings_defines(),
                "rlflavor": rl_flavor,
                "output_t": c_type,
                "num_work_items": self.num_work_items,
                "rng_expr": rng_expr
            }

        prg = cl.Program(self.context, src).build()
        knl = prg.generate
        knl.set_scalar_arg_dtypes([None, None, np.uint64, arg_dtype, arg_dtype])

        return knl, size_multiplier

    def fill_uniform(self, ary, a=0, b=1, queue=None):
        """Fill *ary* with uniformly distributed random numbers in the interval
        *(a, b)*, endpoints excluded.

        :return: a :class:`pyopencl.Event`

        .. versionchanged:: 2014.1.1

            Added return value.
        """

        if queue is None:
            queue = ary.queue

        knl, size_multiplier = self.get_gen_kernel(ary.dtype, "uniform")
        return knl(queue,
                (self.num_work_items,), None,
                self.state.data, ary.data, ary.size*size_multiplier,
                b-a, a)

    def uniform(self, *args, **kwargs):
        """Make a new empty array, apply :meth:`fill_uniform` to it.
        """
        a = kwargs.pop("a", 0)
        b = kwargs.pop("b", 1)

        result = cl_array.empty(*args, **kwargs)

        self.fill_uniform(result, queue=result.queue, a=a, b=b)
        return result

    def fill_normal(self, ary, mu=0, sigma=1, queue=None):
        """Fill *ary* with normally distributed numbers with mean *mu* and
        standard deviation *sigma*.

        .. versionchanged:: 2014.1.1

            Added return value.
        """

        if queue is None:
            queue = ary.queue

        knl, size_multiplier = self.get_gen_kernel(ary.dtype, "normal")
        return knl(queue,
                (self.num_work_items,), self.wg_size,
                self.state.data, ary.data, ary.size*size_multiplier, sigma, mu)

    def normal(self, *args, **kwargs):
        """Make a new empty array, apply :meth:`fill_normal` to it.
        """
        mu = kwargs.pop("mu", 0)
        sigma = kwargs.pop("sigma", 1)

        result = cl_array.empty(*args, **kwargs)

        result.add_event(
                self.fill_normal(result, queue=result.queue, mu=mu, sigma=sigma))
        return result

    @memoize_method
    def get_sync_kernel(self):
        src = """//CL//
            %(defines)s

            #include <pyopencl-ranluxcl.cl>

            kernel void sync(
                global ranluxcl_state_t *ranluxcltab)
            {
              ranluxcl_state_t ranluxclstate;
              ranluxcl_download_seed(&ranluxclstate, ranluxcltab);
              ranluxcl_synchronize(&ranluxclstate);
              ranluxcl_upload_seed(&ranluxclstate, ranluxcltab);
            }
            """ % {
                "defines": self.generate_settings_defines(),
            }
        prg = cl.Program(self.context, src).build()
        return prg.sync

    def synchronize(self, queue):
        """The generator gets inefficient when different work items invoke the
        generator a differing number of times. This function ensures
        efficiency.
        """

        self.get_sync_kernel()(queue, (self.num_work_items,),
                self.wg_size, self.state.data)


@first_arg_dependent_memoize
def _get_generator(queue, luxury=None):
    gen = RanluxGenerator(queue, luxury=luxury)
    queue.finish()
    return gen


def fill_rand(result, queue=None, luxury=4, a=0, b=1):
    """Fill *result* with random values of `dtype` in the range [0,1).
    """
    if queue is None:
        queue = result.queue
    gen = _get_generator(queue, luxury=luxury)
    gen.fill_uniform(result, a=a, b=b)


def rand(queue, shape, dtype, luxury=None, a=0, b=1):
    """Return an array of `shape` filled with random values of `dtype`
    in the range [a,b).
    """

    from pyopencl.array import Array
    gen = _get_generator(queue, luxury)
    result = Array(queue, shape, dtype)
    result.add_event(
            gen.fill_uniform(result, a=a, b=b))
    return result


# vim: filetype=pyopencl:foldmethod=marker