This file is indexed.

/usr/lib/python3/dist-packages/mpl_toolkits/mplot3d/proj3d.py is in python3-matplotlib 1.5.1-1ubuntu1.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#!/usr/bin/python
# 3dproj.py
#
"""
Various transforms used for by the 3D code
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

from matplotlib.externals import six
from matplotlib.externals.six.moves import zip

from matplotlib.collections import LineCollection
from matplotlib.patches import Circle
import numpy as np
import numpy.linalg as linalg



def line2d(p0, p1):
    """
    Return 2D equation of line in the form ax+by+c = 0
    """
    # x + x1  = 0
    x0, y0 = p0[:2]
    x1, y1 = p1[:2]
    #
    if x0 == x1:
        a = -1
        b = 0
        c = x1
    elif y0 == y1:
        a = 0
        b = 1
        c = -y1
    else:
        a = (y0-y1)
        b = (x0-x1)
        c = (x0*y1 - x1*y0)
    return a, b, c

def line2d_dist(l, p):
    """
    Distance from line to point
    line is a tuple of coefficients a,b,c
    """
    a, b, c = l
    x0, y0 = p
    return abs((a*x0 + b*y0 + c)/np.sqrt(a**2+b**2))


def line2d_seg_dist(p1, p2, p0):
    """distance(s) from line defined by p1 - p2 to point(s) p0

    p0[0] = x(s)
    p0[1] = y(s)

    intersection point p = p1 + u*(p2-p1)
    and intersection point lies within segment if u is between 0 and 1
    """

    x21 = p2[0] - p1[0]
    y21 = p2[1] - p1[1]
    x01 = np.asarray(p0[0]) - p1[0]
    y01 = np.asarray(p0[1]) - p1[1]

    u = (x01*x21 + y01*y21)/float(abs(x21**2 + y21**2))
    u = np.clip(u, 0, 1)
    d = np.sqrt((x01 - u*x21)**2 + (y01 - u*y21)**2)

    return d

def test_lines_dists():
    import pylab
    ax = pylab.gca()

    xs, ys = (0,30), (20,150)
    pylab.plot(xs, ys)
    points = list(zip(xs, ys))
    p0, p1 = points

    xs, ys = (0,0,20,30), (100,150,30,200)
    pylab.scatter(xs, ys)

    dist = line2d_seg_dist(p0, p1, (xs[0], ys[0]))
    dist = line2d_seg_dist(p0, p1, np.array((xs, ys)))
    for x, y, d in zip(xs, ys, dist):
        c = Circle((x, y), d, fill=0)
        ax.add_patch(c)

    pylab.xlim(-200, 200)
    pylab.ylim(-200, 200)
    pylab.show()

def mod(v):
    """3d vector length"""
    return np.sqrt(v[0]**2+v[1]**2+v[2]**2)

def world_transformation(xmin, xmax,
                         ymin, ymax,
                         zmin, zmax):
    dx, dy, dz = (xmax-xmin), (ymax-ymin), (zmax-zmin)
    return np.array([
        [1.0/dx,0,0,-xmin/dx],
        [0,1.0/dy,0,-ymin/dy],
        [0,0,1.0/dz,-zmin/dz],
        [0,0,0,1.0]])

def test_world():
    xmin, xmax = 100, 120
    ymin, ymax = -100, 100
    zmin, zmax = 0.1, 0.2
    M = world_transformation(xmin, xmax, ymin, ymax, zmin, zmax)
    print(M)

def view_transformation(E, R, V):
    n = (E - R)
    ## new
#    n /= mod(n)
#    u = np.cross(V,n)
#    u /= mod(u)
#    v = np.cross(n,u)
#    Mr = np.diag([1.]*4)
#    Mt = np.diag([1.]*4)
#    Mr[:3,:3] = u,v,n
#    Mt[:3,-1] = -E
    ## end new

    ## old
    n = n / mod(n)
    u = np.cross(V, n)
    u = u / mod(u)
    v = np.cross(n, u)
    Mr = [[u[0],u[1],u[2],0],
          [v[0],v[1],v[2],0],
          [n[0],n[1],n[2],0],
          [0,   0,   0,   1],
          ]
    #
    Mt = [[1, 0, 0, -E[0]],
          [0, 1, 0, -E[1]],
          [0, 0, 1, -E[2]],
          [0, 0, 0, 1]]
    ## end old

    return np.dot(Mr, Mt)

def persp_transformation(zfront, zback):
    a = (zfront+zback)/(zfront-zback)
    b = -2*(zfront*zback)/(zfront-zback)
    return np.array([[1,0,0,0],
                     [0,1,0,0],
                     [0,0,a,b],
                     [0,0,-1,0]
                     ])

def proj_transform_vec(vec, M):
    vecw = np.dot(M, vec)
    w = vecw[3]
    # clip here..
    txs, tys, tzs = vecw[0]/w, vecw[1]/w, vecw[2]/w
    return txs, tys, tzs

def proj_transform_vec_clip(vec, M):
    vecw = np.dot(M, vec)
    w = vecw[3]
    # clip here..
    txs, tys, tzs = vecw[0]/w, vecw[1]/w, vecw[2]/w
    tis = (vecw[0] >= 0) * (vecw[0] <= 1) * (vecw[1] >= 0) * (vecw[1] <= 1)
    if np.sometrue(tis):
        tis =  vecw[1] < 1
    return txs, tys, tzs, tis

def inv_transform(xs, ys, zs, M):
    iM = linalg.inv(M)
    vec = vec_pad_ones(xs, ys, zs)
    vecr = np.dot(iM, vec)
    try:
        vecr = vecr/vecr[3]
    except OverflowError:
        pass
    return vecr[0], vecr[1], vecr[2]

def vec_pad_ones(xs, ys, zs):
    try:
        try:
            vec = np.array([xs,ys,zs,np.ones(xs.shape)])
        except (AttributeError,TypeError):
            vec = np.array([xs,ys,zs,np.ones((len(xs)))])
    except TypeError:
        vec = np.array([xs,ys,zs,1])
    return vec

def proj_transform(xs, ys, zs, M):
    """
    Transform the points by the projection matrix
    """
    vec = vec_pad_ones(xs, ys, zs)
    return proj_transform_vec(vec, M)

def proj_transform_clip(xs, ys, zs, M):
    """
    Transform the points by the projection matrix
    and return the clipping result
    returns txs,tys,tzs,tis
    """
    vec = vec_pad_ones(xs, ys, zs)
    return proj_transform_vec_clip(vec, M)
transform = proj_transform

def proj_points(points, M):
    return list(zip(*proj_trans_points(points, M)))

def proj_trans_points(points, M):
    xs, ys, zs = list(zip(*points))
    return proj_transform(xs, ys, zs, M)

def proj_trans_clip_points(points, M):
    xs, ys, zs = list(zip(*points))
    return proj_transform_clip(xs, ys, zs, M)

def test_proj_draw_axes(M, s=1):
    import pylab
    xs, ys, zs = [0, s, 0, 0], [0, 0, s, 0], [0, 0, 0, s]
    txs, tys, tzs = proj_transform(xs, ys, zs, M)
    o, ax, ay, az = (txs[0], tys[0]), (txs[1], tys[1]), \
            (txs[2], tys[2]), (txs[3], tys[3])
    lines = [(o, ax), (o, ay), (o, az)]

    ax = pylab.gca()
    linec = LineCollection(lines)
    ax.add_collection(linec)
    for x, y, t in zip(txs, tys, ['o', 'x', 'y', 'z']):
        pylab.text(x, y, t)

def test_proj_make_M(E=None):
    # eye point
    E = E or np.array([1, -1, 2]) * 1000
    #E = np.array([20,10,20])
    R = np.array([1, 1, 1]) * 100
    V = np.array([0, 0, 1])
    viewM = view_transformation(E, R, V)
    perspM = persp_transformation(100, -100)
    M = np.dot(perspM, viewM)
    return M

def test_proj():
    import pylab
    M = test_proj_make_M()

    ts = ['%d' % i for i in [0,1,2,3,0,4,5,6,7,4]]
    xs, ys, zs = [0,1,1,0,0, 0,1,1,0,0], [0,0,1,1,0, 0,0,1,1,0], \
            [0,0,0,0,0, 1,1,1,1,1]
    xs, ys, zs = [np.array(v)*300 for v in (xs, ys, zs)]
    #
    test_proj_draw_axes(M, s=400)
    txs, tys, tzs = proj_transform(xs, ys, zs, M)
    ixs, iys, izs = inv_transform(txs, tys, tzs, M)

    pylab.scatter(txs, tys, c=tzs)
    pylab.plot(txs, tys, c='r')
    for x, y, t in zip(txs, tys, ts):
        pylab.text(x, y, t)

    pylab.xlim(-0.2, 0.2)
    pylab.ylim(-0.2, 0.2)

    pylab.show()

def rot_x(V, alpha):
    cosa, sina = np.cos(alpha), np.sin(alpha)
    M1 = np.array([[1,0,0,0],
                   [0,cosa,-sina,0],
                   [0,sina,cosa,0],
                   [0,0,0,0]])

    return np.dot(M1, V)

def test_rot():
    V = [1,0,0,1]
    print(rot_x(V, np.pi/6))
    V = [0,1,0,1]
    print(rot_x(V, np.pi/6))


if __name__ == "__main__":
    test_proj()