This file is indexed.

/usr/lib/python3/dist-packages/mpl_toolkits/axes_grid1/axes_divider.py is in python3-matplotlib 1.5.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
"""
The axes_divider module provides helper classes to adjust the positions of
multiple axes at drawing time.

 Divider: this is the class that is used to calculate the axes
    position. It divides the given rectangular area into several sub
    rectangles. You initialize the divider by setting the horizontal
    and vertical lists of sizes that the division will be based on. You
    then use the new_locator method, whose return value is a callable
    object that can be used to set the axes_locator of the axes.

"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

from matplotlib.externals import six
from matplotlib.externals.six.moves import map

import matplotlib.transforms as mtransforms

from matplotlib.axes import SubplotBase

from . import axes_size as Size


class Divider(object):
    """
    This is the class that is used calculates the axes position. It
    divides the given rectangular area into several
    sub-rectangles. You initialize the divider by setting the
    horizontal and vertical lists of sizes
    (:mod:`mpl_toolkits.axes_grid.axes_size`) that the division will
    be based on. You then use the new_locator method to create a
    callable object that can be used as the axes_locator of the
    axes.
    """

    def __init__(self, fig, pos, horizontal, vertical,
                 aspect=None, anchor="C"):
        """
        Parameters
        ----------
        fig : Figure
        pos : tuple of 4 floats
            position of the rectangle that will be divided
        horizontal : list of :mod:`~mpl_toolkits.axes_grid.axes_size`
            sizes for horizontal division
        vertical : list of :mod:`~mpl_toolkits.axes_grid.axes_size`
            sizes for vertical division
        aspect : bool
            if True, the overall rectangular area is reduced
            so that the relative part of the horizontal and
            vertical scales have the same scale.
        anchor : {'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W'}
            placement of the reduced rectangle when *aspect* is True
        """

        self._fig = fig
        self._pos = pos
        self._horizontal = horizontal
        self._vertical = vertical
        self._anchor = anchor
        self._aspect = aspect
        self._xrefindex = 0
        self._yrefindex = 0
        self._locator = None

    def get_horizontal_sizes(self, renderer):
        return [s.get_size(renderer) for s in self.get_horizontal()]

    def get_vertical_sizes(self, renderer):
        return [s.get_size(renderer) for s in self.get_vertical()]

    def get_vsize_hsize(self):

        from .axes_size import AddList

        vsize = AddList(self.get_vertical())
        hsize = AddList(self.get_horizontal())

        return vsize, hsize

    @staticmethod
    def _calc_k(l, total_size):

        rs_sum, as_sum = 0., 0.

        for _rs, _as in l:
            rs_sum += _rs
            as_sum += _as

        if rs_sum != 0.:
            k = (total_size - as_sum) / rs_sum
            return k
        else:
            return 0.

    @staticmethod
    def _calc_offsets(l, k):

        offsets = [0.]

        #for s in l:
        for _rs, _as in l:
            #_rs, _as = s.get_size(renderer)
            offsets.append(offsets[-1] + _rs*k + _as)

        return offsets

    def set_position(self, pos):
        """
        set the position of the rectangle.

        Parameters
        ----------
        pos : tuple of 4 floats
            position of the rectangle that will be divided
        """
        self._pos = pos

    def get_position(self):
        "return the position of the rectangle."
        return self._pos

    def set_anchor(self, anchor):
        """
        Parameters
        ----------
        anchor : {'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W'}
            anchor position

          =====  ============
          value  description
          =====  ============
          'C'    Center
          'SW'   bottom left
          'S'    bottom
          'SE'   bottom right
          'E'    right
          'NE'   top right
          'N'    top
          'NW'   top left
          'W'    left
          =====  ============

        """
        if anchor in mtransforms.Bbox.coefs or len(anchor) == 2:
            self._anchor = anchor
        else:
            raise ValueError('argument must be among %s' %
                                ', '.join(mtransforms.BBox.coefs.keys()))

    def get_anchor(self):
        "return the anchor"
        return self._anchor

    def set_horizontal(self, h):
        """
        Parameters
        ----------
        h : list of :mod:`~mpl_toolkits.axes_grid.axes_size`
            sizes for horizontal division
        """
        self._horizontal = h

    def get_horizontal(self):
        "return horizontal sizes"
        return self._horizontal

    def set_vertical(self, v):
        """
        Parameters
        ----------
        v : list of :mod:`~mpl_toolkits.axes_grid.axes_size`
            sizes for vertical division
        """
        self._vertical = v

    def get_vertical(self):
        "return vertical sizes"
        return self._vertical

    def set_aspect(self, aspect=False):
        """
        Parameters
        ----------
        aspect : bool
        """
        self._aspect = aspect

    def get_aspect(self):
        "return aspect"
        return self._aspect

    def set_locator(self, _locator):
        self._locator = _locator

    def get_locator(self):
        return self._locator

    def get_position_runtime(self, ax, renderer):
        if self._locator is None:
            return self.get_position()
        else:
            return self._locator(ax, renderer).bounds

    def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None):
        """
        Parameters
        ----------
        nx, nx1 : int
            Integers specifying the column-position of the
            cell. When *nx1* is None, a single *nx*-th column is
            specified. Otherwise location of columns spanning between *nx*
            to *nx1* (but excluding *nx1*-th column) is specified.
        ny, ny1 : int
            Same as *nx* and *nx1*, but for row positions.
        axes
        renderer
        """

        figW, figH = self._fig.get_size_inches()
        x, y, w, h = self.get_position_runtime(axes, renderer)

        hsizes = self.get_horizontal_sizes(renderer)
        vsizes = self.get_vertical_sizes(renderer)
        k_h = self._calc_k(hsizes, figW*w)
        k_v = self._calc_k(vsizes, figH*h)

        if self.get_aspect():
            k = min(k_h, k_v)
            ox = self._calc_offsets(hsizes, k)
            oy = self._calc_offsets(vsizes, k)

            ww = (ox[-1] - ox[0])/figW
            hh = (oy[-1] - oy[0])/figH
            pb = mtransforms.Bbox.from_bounds(x, y, w, h)
            pb1 = mtransforms.Bbox.from_bounds(x, y, ww, hh)
            pb1_anchored = pb1.anchored(self.get_anchor(), pb)
            x0, y0 = pb1_anchored.x0, pb1_anchored.y0

        else:
            ox = self._calc_offsets(hsizes, k_h)
            oy = self._calc_offsets(vsizes, k_v)
            x0, y0 = x, y

        if nx1 is None:
            nx1 = nx+1
        if ny1 is None:
            ny1 = ny+1

        x1, w1 = x0 + ox[nx]/figW, (ox[nx1] - ox[nx])/figW
        y1, h1 = y0 + oy[ny]/figH, (oy[ny1] - oy[ny])/figH

        return mtransforms.Bbox.from_bounds(x1, y1, w1, h1)

    def new_locator(self, nx, ny, nx1=None, ny1=None):
        """
        Returns a new locator
        (:class:`mpl_toolkits.axes_grid.axes_divider.AxesLocator`) for
        specified cell.

        Parameters
        ----------
        nx, nx1 : int
            Integers specifying the column-position of the
            cell. When *nx1* is None, a single *nx*-th column is
            specified. Otherwise location of columns spanning between *nx*
            to *nx1* (but excluding *nx1*-th column) is specified.
        ny, ny1 : int
            Same as *nx* and *nx1*, but for row positions.
        """
        return AxesLocator(self, nx, ny, nx1, ny1)

    def append_size(self, position, size):

        if position == "left":
            self._horizontal.insert(0, size)
            self._xrefindex += 1
        elif position == "right":
            self._horizontal.append(size)
        elif position == "bottom":
            self._vertical.insert(0, size)
            self._yrefindex += 1
        elif position == "top":
            self._vertical.append(size)
        else:
            raise ValueError("the position must be one of left," +
                             " right, bottom, or top")

    def add_auto_adjustable_area(self,
                                 use_axes, pad=0.1,
                                 adjust_dirs=None,
                                 ):
        if adjust_dirs is None:
            adjust_dirs = ["left", "right", "bottom", "top"]
        from .axes_size import Padded, SizeFromFunc, GetExtentHelper
        for d in adjust_dirs:
            helper = GetExtentHelper(use_axes, d)
            size = SizeFromFunc(helper)
            padded_size = Padded(size, pad)  # pad in inch
            self.append_size(d, padded_size)


class AxesLocator(object):
    """
    A simple callable object, initialized with AxesDivider class,
    returns the position and size of the given cell.
    """
    def __init__(self, axes_divider, nx, ny, nx1=None, ny1=None):
        """
        Parameters
        ----------
        axes_divider : AxesDivider
        nx, nx1 : int
            Integers specifying the column-position of the
            cell. When *nx1* is None, a single *nx*-th column is
            specified. Otherwise location of columns spanning between *nx*
            to *nx1* (but excluding *nx1*-th column) is specified.
        ny, ny1 : int
            Same as *nx* and *nx1*, but for row positions.
        """
        self._axes_divider = axes_divider

        _xrefindex = axes_divider._xrefindex
        _yrefindex = axes_divider._yrefindex

        self._nx, self._ny = nx - _xrefindex, ny - _yrefindex

        if nx1 is None:
            nx1 = nx+1
        if ny1 is None:
            ny1 = ny+1

        self._nx1 = nx1 - _xrefindex
        self._ny1 = ny1 - _yrefindex

    def __call__(self, axes, renderer):

        _xrefindex = self._axes_divider._xrefindex
        _yrefindex = self._axes_divider._yrefindex

        return self._axes_divider.locate(self._nx + _xrefindex,
                                         self._ny + _yrefindex,
                                         self._nx1 + _xrefindex,
                                         self._ny1 + _yrefindex,
                                         axes,
                                         renderer)

    def get_subplotspec(self):
        if hasattr(self._axes_divider, "get_subplotspec"):
            return self._axes_divider.get_subplotspec()
        else:
            return None


from matplotlib.gridspec import SubplotSpec, GridSpec


class SubplotDivider(Divider):
    """
    The Divider class whose rectangle area is specified as a subplot geometry.
    """

    def __init__(self, fig, *args, **kwargs):
        """
        Parameters
        ----------
        fig : :class:`matplotlib.figure.Figure`
        args : tuple (*numRows*, *numCols*, *plotNum*)
            The array of subplots in the figure has dimensions *numRows*,
            *numCols*, and *plotNum* is the number of the subplot
            being created.  *plotNum* starts at 1 in the upper left
            corner and increases to the right.

            If *numRows* <= *numCols* <= *plotNum* < 10, *args* can be the
            decimal integer *numRows* * 100 + *numCols* * 10 + *plotNum*.
        """

        self.figure = fig

        if len(args) == 1:
            if isinstance(args[0], SubplotSpec):
                self._subplotspec = args[0]
            else:
                try:
                    s = str(int(args[0]))
                    rows, cols, num = list(map(int, s))
                except ValueError:
                    raise ValueError(
                        'Single argument to subplot must be a 3-digit integer')
                self._subplotspec = GridSpec(rows, cols)[num-1]
                # num - 1 for converting from MATLAB to python indexing
        elif len(args) == 3:
            rows, cols, num = args
            rows = int(rows)
            cols = int(cols)
            if isinstance(num, tuple) and len(num) == 2:
                num = [int(n) for n in num]
                self._subplotspec = GridSpec(rows, cols)[num[0]-1:num[1]]
            else:
                self._subplotspec = GridSpec(rows, cols)[int(num)-1]
                # num - 1 for converting from MATLAB to python indexing
        else:
            raise ValueError('Illegal argument(s) to subplot: %s' % (args,))

        # total = rows*cols
        # num -= 1    # convert from matlab to python indexing
        #             # i.e., num in range(0,total)
        # if num >= total:
        #     raise ValueError( 'Subplot number exceeds total subplots')
        # self._rows = rows
        # self._cols = cols
        # self._num = num

        # self.update_params()

        # sets self.fixbox
        self.update_params()

        pos = self.figbox.bounds

        horizontal = kwargs.pop("horizontal", [])
        vertical = kwargs.pop("vertical", [])
        aspect = kwargs.pop("aspect", None)
        anchor = kwargs.pop("anchor", "C")

        if kwargs:
            raise Exception("")

        Divider.__init__(self, fig, pos, horizontal, vertical,
                         aspect=aspect, anchor=anchor)

    def get_position(self):
        "return the bounds of the subplot box"

        self.update_params()  # update self.figbox
        return self.figbox.bounds

    # def update_params(self):
    #     'update the subplot position from fig.subplotpars'

    #     rows = self._rows
    #     cols = self._cols
    #     num = self._num

    #     pars = self.figure.subplotpars
    #     left = pars.left
    #     right = pars.right
    #     bottom = pars.bottom
    #     top = pars.top
    #     wspace = pars.wspace
    #     hspace = pars.hspace
    #     totWidth = right-left
    #     totHeight = top-bottom

    #     figH = totHeight/(rows + hspace*(rows-1))
    #     sepH = hspace*figH

    #     figW = totWidth/(cols + wspace*(cols-1))
    #     sepW = wspace*figW

    #     rowNum, colNum =  divmod(num, cols)

    #     figBottom = top - (rowNum+1)*figH - rowNum*sepH
    #     figLeft = left + colNum*(figW + sepW)

    #     self.figbox = mtransforms.Bbox.from_bounds(figLeft, figBottom,
    #                                                figW, figH)

    def update_params(self):
        'update the subplot position from fig.subplotpars'

        self.figbox = self.get_subplotspec().get_position(self.figure)

    def get_geometry(self):
        'get the subplot geometry, e.g., 2,2,3'
        rows, cols, num1, num2 = self.get_subplotspec().get_geometry()
        return rows, cols, num1+1  # for compatibility

    # COVERAGE NOTE: Never used internally or from examples
    def change_geometry(self, numrows, numcols, num):
        'change subplot geometry, e.g., from 1,1,1 to 2,2,3'
        self._subplotspec = GridSpec(numrows, numcols)[num-1]
        self.update_params()
        self.set_position(self.figbox)

    def get_subplotspec(self):
        'get the SubplotSpec instance'
        return self._subplotspec

    def set_subplotspec(self, subplotspec):
        'set the SubplotSpec instance'
        self._subplotspec = subplotspec


class AxesDivider(Divider):
    """
    Divider based on the pre-existing axes.
    """

    def __init__(self, axes, xref=None, yref=None):
        """
        Parameters
        ----------
        axes : :class:`~matplotlib.axes.Axes`
        xref
        yref
        """
        self._axes = axes
        if xref is None:
            self._xref = Size.AxesX(axes)
        else:
            self._xref = xref
        if yref is None:
            self._yref = Size.AxesY(axes)
        else:
            self._yref = yref

        Divider.__init__(self, fig=axes.get_figure(), pos=None,
                         horizontal=[self._xref], vertical=[self._yref],
                         aspect=None, anchor="C")

    def _get_new_axes(self, **kwargs):
        axes = self._axes

        axes_class = kwargs.pop("axes_class", None)

        if axes_class is None:
            if isinstance(axes, SubplotBase):
                axes_class = axes._axes_class
            else:
                axes_class = type(axes)

        ax = axes_class(axes.get_figure(),
                        axes.get_position(original=True), **kwargs)

        return ax

    def new_horizontal(self, size, pad=None, pack_start=False, **kwargs):
        """
        Add a new axes on the right (or left) side of the main axes.

        Parameters
        ----------
        size : :mod:`~mpl_toolkits.axes_grid.axes_size` or float or string
            A width of the axes. If float or string is given, *from_any*
            function is used to create the size, with *ref_size* set to AxesX
            instance of the current axes.
        pad : :mod:`~mpl_toolkits.axes_grid.axes_size` or float or string
            Pad between the axes. It takes same argument as *size*.
        pack_start : bool
            If False, the new axes is appended at the end
            of the list, i.e., it became the right-most axes. If True, it is
            inserted at the start of the list, and becomes the left-most axes.
        kwargs
            All extra keywords arguments are passed to the created axes.
            If *axes_class* is given, the new axes will be created as an
            instance of the given class. Otherwise, the same class of the
            main axes will be used.
        """

        if pad:
            if not isinstance(pad, Size._Base):
                pad = Size.from_any(pad,
                                    fraction_ref=self._xref)
            if pack_start:
                self._horizontal.insert(0, pad)
                self._xrefindex += 1
            else:
                self._horizontal.append(pad)

        if not isinstance(size, Size._Base):
            size = Size.from_any(size,
                                 fraction_ref=self._xref)

        if pack_start:
            self._horizontal.insert(0, size)
            self._xrefindex += 1
            locator = self.new_locator(nx=0, ny=self._yrefindex)
        else:
            self._horizontal.append(size)
            locator = self.new_locator(nx=len(self._horizontal)-1, ny=self._yrefindex)

        ax = self._get_new_axes(**kwargs)
        ax.set_axes_locator(locator)

        return ax

    def new_vertical(self, size, pad=None, pack_start=False, **kwargs):
        """
        Add a new axes on the top (or bottom) side of the main axes.

        Parameters
        ----------
        size : :mod:`~mpl_toolkits.axes_grid.axes_size` or float or string
            A height of the axes. If float or string is given, *from_any*
            function is used to create the size, with *ref_size* set to AxesX
            instance of the current axes.
        pad : :mod:`~mpl_toolkits.axes_grid.axes_size` or float or string
            Pad between the axes. It takes same argument as *size*.
        pack_start : bool
            If False, the new axes is appended at the end
            of the list, i.e., it became the right-most axes. If True, it is
            inserted at the start of the list, and becomes the left-most axes.
        kwargs
            All extra keywords arguments are passed to the created axes.
            If *axes_class* is given, the new axes will be created as an
            instance of the given class. Otherwise, the same class of the
            main axes will be used.
        """

        if pad:
            if not isinstance(pad, Size._Base):
                pad = Size.from_any(pad,
                                    fraction_ref=self._yref)
            if pack_start:
                self._vertical.insert(0, pad)
                self._yrefindex += 1
            else:
                self._vertical.append(pad)

        if not isinstance(size, Size._Base):
            size = Size.from_any(size,
                                 fraction_ref=self._yref)

        if pack_start:
            self._vertical.insert(0, size)
            self._yrefindex += 1
            locator = self.new_locator(nx=self._xrefindex, ny=0)
        else:
            self._vertical.append(size)
            locator = self.new_locator(nx=self._xrefindex, ny=len(self._vertical)-1)

        ax = self._get_new_axes(**kwargs)
        ax.set_axes_locator(locator)

        return ax

    def append_axes(self, position, size, pad=None, add_to_figure=True,
                    **kwargs):
        """
        create an axes at the given *position* with the same height
        (or width) of the main axes.

         *position*
           ["left"|"right"|"bottom"|"top"]

         *size* and *pad* should be axes_grid.axes_size compatible.
        """

        if position == "left":
            ax = self.new_horizontal(size, pad, pack_start=True, **kwargs)
        elif position == "right":
            ax = self.new_horizontal(size, pad, pack_start=False, **kwargs)
        elif position == "bottom":
            ax = self.new_vertical(size, pad, pack_start=True, **kwargs)
        elif position == "top":
            ax = self.new_vertical(size, pad, pack_start=False, **kwargs)
        else:
            raise ValueError("the position must be one of left," +
                             " right, bottom, or top")

        if add_to_figure:
            self._fig.add_axes(ax)
        return ax

    def get_aspect(self):
        if self._aspect is None:
            aspect = self._axes.get_aspect()
            if aspect == "auto":
                return False
            else:
                return True
        else:
            return self._aspect

    def get_position(self):
        if self._pos is None:
            bbox = self._axes.get_position(original=True)
            return bbox.bounds
        else:
            return self._pos

    def get_anchor(self):
        if self._anchor is None:
            return self._axes.get_anchor()
        else:
            return self._anchor

    def get_subplotspec(self):
        if hasattr(self._axes, "get_subplotspec"):
            return self._axes.get_subplotspec()
        else:
            return None


class HBoxDivider(SubplotDivider):

    def __init__(self, fig, *args, **kwargs):
        SubplotDivider.__init__(self, fig, *args, **kwargs)

    @staticmethod
    def _determine_karray(equivalent_sizes, appended_sizes,
                          max_equivalent_size,
                          total_appended_size):

        n = len(equivalent_sizes)
        import numpy as np
        A = np.mat(np.zeros((n+1, n+1), dtype="d"))
        B = np.zeros((n+1), dtype="d")
        # AxK = B

        # populated A
        for i, (r, a) in enumerate(equivalent_sizes):
            A[i, i] = r
            A[i, -1] = -1
            B[i] = -a
        A[-1, :-1] = [r for r, a in appended_sizes]
        B[-1] = total_appended_size - sum([a for rs, a in appended_sizes])

        karray_H = (A.I*np.mat(B).T).A1
        karray = karray_H[:-1]
        H = karray_H[-1]

        if H > max_equivalent_size:
            karray = ((max_equivalent_size -
                      np.array([a for r, a in equivalent_sizes]))
                      / np.array([r for r, a in equivalent_sizes]))
        return karray

    @staticmethod
    def _calc_offsets(appended_sizes, karray):
        offsets = [0.]

        #for s in l:
        for (r, a), k in zip(appended_sizes, karray):
            offsets.append(offsets[-1] + r*k + a)

        return offsets

    def new_locator(self, nx, nx1=None):
        """
        returns a new locator
        (:class:`mpl_toolkits.axes_grid.axes_divider.AxesLocator`) for
        specified cell.

        Parameters
        ----------
        nx, nx1 : int
            Integers specifying the column-position of the
            cell. When *nx1* is None, a single *nx*-th column is
            specified. Otherwise location of columns spanning between *nx*
            to *nx1* (but excluding *nx1*-th column) is specified.
        ny, ny1 : int
            Same as *nx* and *nx1*, but for row positions.
        """
        return AxesLocator(self, nx, 0, nx1, None)

    def _locate(self, x, y, w, h,
                y_equivalent_sizes, x_appended_sizes,
                figW, figH):
        """
        Parameters
        ----------
        x
        y
        w
        h
        y_equivalent_sizes
        x_appended_sizes
        figW
        figH
        """

        equivalent_sizes = y_equivalent_sizes
        appended_sizes = x_appended_sizes

        max_equivalent_size = figH*h
        total_appended_size = figW*w
        karray = self._determine_karray(equivalent_sizes, appended_sizes,
                                        max_equivalent_size,
                                        total_appended_size)

        ox = self._calc_offsets(appended_sizes, karray)

        ww = (ox[-1] - ox[0])/figW
        ref_h = equivalent_sizes[0]
        hh = (karray[0]*ref_h[0] + ref_h[1])/figH
        pb = mtransforms.Bbox.from_bounds(x, y, w, h)
        pb1 = mtransforms.Bbox.from_bounds(x, y, ww, hh)
        pb1_anchored = pb1.anchored(self.get_anchor(), pb)
        x0, y0 = pb1_anchored.x0, pb1_anchored.y0

        return x0, y0, ox, hh

    def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None):
        """
        Parameters
        ----------
        axes_divider : AxesDivider
        nx, nx1 : int
            Integers specifying the column-position of the
            cell. When *nx1* is None, a single *nx*-th column is
            specified. Otherwise location of columns spanning between *nx*
            to *nx1* (but excluding *nx1*-th column) is specified.
        ny, ny1 : int
            Same as *nx* and *nx1*, but for row positions.
        axes
        renderer
        """

        figW, figH = self._fig.get_size_inches()
        x, y, w, h = self.get_position_runtime(axes, renderer)

        y_equivalent_sizes = self.get_vertical_sizes(renderer)
        x_appended_sizes = self.get_horizontal_sizes(renderer)
        x0, y0, ox, hh = self._locate(x, y, w, h,
                                      y_equivalent_sizes, x_appended_sizes,
                                      figW, figH)
        if nx1 is None:
            nx1 = nx+1

        x1, w1 = x0 + ox[nx]/figW, (ox[nx1] - ox[nx])/figW
        y1, h1 = y0, hh

        return mtransforms.Bbox.from_bounds(x1, y1, w1, h1)


class VBoxDivider(HBoxDivider):
    """
    The Divider class whose rectangle area is specified as a subplot geometry.
    """

    def new_locator(self, ny, ny1=None):
        """
        returns a new locator
        (:class:`mpl_toolkits.axes_grid.axes_divider.AxesLocator`) for
        specified cell.

        Parameters
        ----------
        ny, ny1 : int
            Integers specifying the row-position of the
            cell. When *ny1* is None, a single *ny*-th row is
            specified. Otherwise location of rows spanning between *ny*
            to *ny1* (but excluding *ny1*-th row) is specified.
        """
        return AxesLocator(self, 0, ny, None, ny1)

    def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None):
        """
        Parameters
        ----------
        axes_divider : AxesDivider
        nx, nx1 : int
            Integers specifying the column-position of the
            cell. When *nx1* is None, a single *nx*-th column is
            specified. Otherwise location of columns spanning between *nx*
            to *nx1* (but excluding *nx1*-th column) is specified.
        ny, ny1 : int
            Same as *nx* and *nx1*, but for row positions.
        axes
        renderer
        """

        figW, figH = self._fig.get_size_inches()
        x, y, w, h = self.get_position_runtime(axes, renderer)

        x_equivalent_sizes = self.get_horizontal_sizes(renderer)
        y_appended_sizes = self.get_vertical_sizes(renderer)

        y0, x0, oy, ww = self._locate(y, x, h, w,
                                      x_equivalent_sizes, y_appended_sizes,
                                      figH, figW)
        if ny1 is None:
            ny1 = ny+1

        x1, w1 = x0, ww
        y1, h1 = y0 + oy[ny]/figH, (oy[ny1] - oy[ny])/figH

        return mtransforms.Bbox.from_bounds(x1, y1, w1, h1)


class LocatableAxesBase(object):
    def __init__(self, *kl, **kw):

        self._axes_class.__init__(self, *kl, **kw)

        self._locator = None
        self._locator_renderer = None

    def set_axes_locator(self, locator):
        self._locator = locator

    def get_axes_locator(self):
        return self._locator

    def apply_aspect(self, position=None):

        if self.get_axes_locator() is None:
            self._axes_class.apply_aspect(self, position)
        else:
            pos = self.get_axes_locator()(self, self._locator_renderer)
            self._axes_class.apply_aspect(self, position=pos)

    def draw(self, renderer=None, inframe=False):

        self._locator_renderer = renderer

        self._axes_class.draw(self, renderer, inframe)

    def _make_twin_axes(self, *kl, **kwargs):
        """
        Need to overload so that twinx/twiny will work with
        these axes.
        """
        ax2 = type(self)(self.figure, self.get_position(True), *kl, **kwargs)
        ax2.set_axes_locator(self.get_axes_locator())
        self.figure.add_axes(ax2)
        return ax2

_locatableaxes_classes = {}


def locatable_axes_factory(axes_class):

    new_class = _locatableaxes_classes.get(axes_class)
    if new_class is None:
        new_class = type(str("Locatable%s" % (axes_class.__name__)),
                         (LocatableAxesBase, axes_class),
                         {'_axes_class': axes_class})

        _locatableaxes_classes[axes_class] = new_class

    return new_class

#if hasattr(maxes.Axes, "get_axes_locator"):
#    LocatableAxes = maxes.Axes
#else:


def make_axes_locatable(axes):
    if not hasattr(axes, "set_axes_locator"):
        new_class = locatable_axes_factory(type(axes))
        axes.__class__ = new_class

    divider = AxesDivider(axes)
    locator = divider.new_locator(nx=0, ny=0)
    axes.set_axes_locator(locator)

    return divider


def make_axes_area_auto_adjustable(ax,
                                   use_axes=None, pad=0.1,
                                   adjust_dirs=None):
    if adjust_dirs is None:
        adjust_dirs = ["left", "right", "bottom", "top"]
    divider = make_axes_locatable(ax)

    if use_axes is None:
        use_axes = ax

    divider.add_auto_adjustable_area(use_axes=use_axes, pad=pad,
                                     adjust_dirs=adjust_dirs)

#from matplotlib.axes import Axes
from .mpl_axes import Axes
LocatableAxes = locatable_axes_factory(Axes)