This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/tests/test_path.py is in python3-matplotlib 1.5.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

from matplotlib.externals import six

import numpy as np

from matplotlib.path import Path
from matplotlib.patches import Polygon
from nose.tools import assert_raises, assert_equal
from matplotlib.testing.decorators import image_comparison
import matplotlib.pyplot as plt
from matplotlib import transforms


def test_readonly_path():
    path = Path.unit_circle()

    def modify_vertices():
        path.vertices = path.vertices * 2.0

    assert_raises(AttributeError, modify_vertices)


def test_point_in_path():
    # Test #1787
    verts2 = [(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)]

    path = Path(verts2, closed=True)
    points = [(0.5, 0.5), (1.5, 0.5)]

    assert np.all(path.contains_points(points) == [True, False])


def test_contains_points_negative_radius():
    path = Path.unit_circle()

    points = [(0.0, 0.0), (1.25, 0.0), (0.9, 0.9)]
    expected = [True, False, False]
    result = path.contains_points(points, radius=-0.5)

    assert result.dtype == np.bool
    assert np.all(result == expected)


@image_comparison(baseline_images=['path_clipping'],
                  extensions=['svg'], remove_text=True)
def test_path_clipping():
    fig = plt.figure(figsize=(6.0, 6.2))

    for i, xy in enumerate([
            [(200, 200), (200, 350), (400, 350), (400, 200)],
            [(200, 200), (200, 350), (400, 350), (400, 100)],
            [(200, 100), (200, 350), (400, 350), (400, 100)],
            [(200, 100), (200, 415), (400, 350), (400, 100)],
            [(200, 100), (200, 415), (400, 415), (400, 100)],
            [(200, 415), (400, 415), (400, 100), (200, 100)],
            [(400, 415), (400, 100), (200, 100), (200, 415)]]):
        ax = fig.add_subplot(4, 2, i+1)
        bbox = [0, 140, 640, 260]
        ax.set_xlim(bbox[0], bbox[0] + bbox[2])
        ax.set_ylim(bbox[1], bbox[1] + bbox[3])
        ax.add_patch(Polygon(
            xy, facecolor='none', edgecolor='red', closed=True))


def test_point_in_path_nan():
    box = np.array([[0, 0], [1, 0], [1, 1], [0, 1], [0, 0]])
    p = Path(box)
    test = np.array([[np.nan, 0.5]])
    contains = p.contains_points(test)
    assert len(contains) == 1
    assert not contains[0]


@image_comparison(baseline_images=['semi_log_with_zero'], extensions=['png'])
def test_log_transform_with_zero():
    x = np.arange(-10, 10)
    y = (1.0 - 1.0/(x**2+1))**20

    fig, ax = plt.subplots()
    ax.semilogy(x, y, "-o", lw=15)
    ax.grid(True)


def test_make_compound_path_empty():
    # We should be able to make a compound path with no arguments.
    # This makes it easier to write generic path based code.
    r = Path.make_compound_path()
    assert_equal(r.vertices.shape, (0, 2))


@image_comparison(baseline_images=['xkcd'], remove_text=True)
def test_xkcd():
    x = np.linspace(0, 2.0 * np.pi, 100.0)
    y = np.sin(x)

    with plt.xkcd():
        fig, ax = plt.subplots()
        ax.plot(x, y)


@image_comparison(baseline_images=['marker_paths'], extensions=['pdf'],
                  remove_text=True)
def test_marker_paths_pdf():
    N = 7

    plt.errorbar(np.arange(N),
                 np.ones(N) + 4,
                 np.ones(N))
    plt.xlim(-1, N)
    plt.ylim(-1, 7)


def test_path_no_doubled_point_in_to_polygon():
    hand = np.array(
        [[1.64516129, 1.16145833],
         [1.64516129, 1.59375],
         [1.35080645, 1.921875],
         [1.375, 2.18229167],
         [1.68548387, 1.9375],
         [1.60887097, 2.55208333],
         [1.68548387, 2.69791667],
         [1.76209677, 2.56770833],
         [1.83064516, 1.97395833],
         [1.89516129, 2.75],
         [1.9516129, 2.84895833],
         [2.01209677, 2.76041667],
         [1.99193548, 1.99479167],
         [2.11290323, 2.63020833],
         [2.2016129, 2.734375],
         [2.25403226, 2.60416667],
         [2.14919355, 1.953125],
         [2.30645161, 2.36979167],
         [2.39112903, 2.36979167],
         [2.41532258, 2.1875],
         [2.1733871, 1.703125],
         [2.07782258, 1.16666667]])

    (r0, c0, r1, c1) = (1.0, 1.5, 2.1, 2.5)

    poly = Path(np.vstack((hand[:, 1], hand[:, 0])).T, closed=True)
    clip_rect = transforms.Bbox([[r0, c0], [r1, c1]])
    poly_clipped = poly.clip_to_bbox(clip_rect).to_polygons()[0]

    assert np.all(poly_clipped[-2] != poly_clipped[-1])
    assert np.all(poly_clipped[-1] == poly_clipped[0])


if __name__ == '__main__':
    import nose
    nose.runmodule(argv=['-s', '--with-doctest'], exit=False)