This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/sankey.py is in python3-matplotlib 1.5.1-1ubuntu1.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
#!/usr/bin/env python
"""
Module for creating Sankey diagrams using matplotlib
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

from matplotlib.externals import six
from matplotlib.externals.six.moves import zip

# Original version by Yannick Copin (ycopin@ipnl.in2p3.fr) 10/2/2010, available
# at:
#     http://matplotlib.org/examples/api/sankey_demo_old.html
# Modifications by Kevin Davies (kld@alumni.carnegiemellon.edu) 6/3/2011:
#   --Used arcs for the curves (so that the widths of the paths are uniform)
#   --Converted the function to a class and created methods to join multiple
#     simple Sankey diagrams
#   --Provided handling for cases where the total of the inputs isn't 100
#     Now, the default layout is based on the assumption that the inputs sum to
#     1.  A scaling parameter can be used in other cases.
#   --The call structure was changed to be more explicit about layout,
#     including the length of the trunk, length of the paths, gap between the
#     paths, and the margin around the diagram.
#   --Allowed the lengths of paths to be adjusted individually, with an option
#     to automatically justify them
#   --The call structure was changed to make the specification of path
#     orientation more flexible.  Flows are passed through one array, with
#     inputs being positive and outputs being negative.  An orientation
#     argument specifies the direction of the arrows.  The "main"
#     inputs/outputs are now specified via an orientation of 0, and there may
#     be several of each.
#   --Changed assertions to ValueError to catch common calling errors (by
#     Francesco Montesano, franz.bergesung@gmail.com)
#   --Added the physical unit as a string argument to be used in the labels, so
#     that the values of the flows can usually be applied automatically
#   --Added an argument for a minimum magnitude below which flows are not shown
#   --Added a tapered trunk in the case that the flows do not sum to 0
#   --Allowed the diagram to be rotated

import numpy as np

from matplotlib.cbook import iterable, Bunch
from matplotlib.path import Path
from matplotlib.patches import PathPatch
from matplotlib.transforms import Affine2D
from matplotlib import verbose
from matplotlib import docstring

__author__ = "Kevin L. Davies"
__credits__ = ["Yannick Copin"]
__license__ = "BSD"
__version__ = "2011/09/16"

# Angles [deg/90]
RIGHT = 0
UP = 1
# LEFT = 2
DOWN = 3


class Sankey(object):
    """
    Sankey diagram in matplotlib

      Sankey diagrams are a specific type of flow diagram, in which
      the width of the arrows is shown proportionally to the flow
      quantity.  They are typically used to visualize energy or
      material or cost transfers between processes.
      `Wikipedia (6/1/2011) <http://en.wikipedia.org/wiki/Sankey_diagram>`_

    """

    def __init__(self, ax=None, scale=1.0, unit='', format='%G', gap=0.25,
                 radius=0.1, shoulder=0.03, offset=0.15, head_angle=100,
                 margin=0.4, tolerance=1e-6, **kwargs):
        """
        Create a new Sankey instance.

        Optional keyword arguments:

          ===============   ===================================================
          Field             Description
          ===============   ===================================================
          *ax*              axes onto which the data should be plotted
                            If *ax* isn't provided, new axes will be created.
          *scale*           scaling factor for the flows
                            *scale* sizes the width of the paths in order to
                            maintain proper layout.  The same scale is applied
                            to all subdiagrams.  The value should be chosen
                            such that the product of the scale and the sum of
                            the inputs is approximately 1.0 (and the product of
                            the scale and the sum of the outputs is
                            approximately -1.0).
          *unit*            string representing the physical unit associated
                            with the flow quantities
                            If *unit* is None, then none of the quantities are
                            labeled.
          *format*          a Python number formatting string to be used in
                            labeling the flow as a quantity (i.e., a number
                            times a unit, where the unit is given)
          *gap*             space between paths that break in/break away
                            to/from the top or bottom
          *radius*          inner radius of the vertical paths
          *shoulder*        size of the shoulders of output arrowS
          *offset*          text offset (from the dip or tip of the arrow)
          *head_angle*      angle of the arrow heads (and negative of the angle
                            of the tails) [deg]
          *margin*          minimum space between Sankey outlines and the edge
                            of the plot area
          *tolerance*       acceptable maximum of the magnitude of the sum of
                            flows
                            The magnitude of the sum of connected flows cannot
                            be greater than *tolerance*.
          ===============   ===================================================

        The optional arguments listed above are applied to all subdiagrams so
        that there is consistent alignment and formatting.

        If :class:`Sankey` is instantiated with any keyword arguments other
        than those explicitly listed above (``**kwargs``), they will be passed
        to :meth:`add`, which will create the first subdiagram.

        In order to draw a complex Sankey diagram, create an instance of
        :class:`Sankey` by calling it without any kwargs::

            sankey = Sankey()

        Then add simple Sankey sub-diagrams::

            sankey.add() # 1
            sankey.add() # 2
            #...
            sankey.add() # n

        Finally, create the full diagram::

            sankey.finish()

        Or, instead, simply daisy-chain those calls::

            Sankey().add().add...  .add().finish()

        .. seealso::

            :meth:`add`
            :meth:`finish`


        **Examples:**

            .. plot:: mpl_examples/api/sankey_demo_basics.py
        """
        # Check the arguments.
        if gap < 0:
            raise ValueError(
            "The gap is negative.\nThis isn't allowed because it "
            "would cause the paths to overlap.")
        if radius > gap:
            raise ValueError(
            "The inner radius is greater than the path spacing.\n"
            "This isn't allowed because it would cause the paths to overlap.")
        if head_angle < 0:
            raise ValueError(
            "The angle is negative.\nThis isn't allowed "
            "because it would cause inputs to look like "
            "outputs and vice versa.")
        if tolerance < 0:
            raise ValueError(
            "The tolerance is negative.\nIt must be a magnitude.")

        # Create axes if necessary.
        if ax is None:
            import matplotlib.pyplot as plt
            fig = plt.figure()
            ax = fig.add_subplot(1, 1, 1, xticks=[], yticks=[])

        self.diagrams = []

        # Store the inputs.
        self.ax = ax
        self.unit = unit
        self.format = format
        self.scale = scale
        self.gap = gap
        self.radius = radius
        self.shoulder = shoulder
        self.offset = offset
        self.margin = margin
        self.pitch = np.tan(np.pi * (1 - head_angle / 180.0) / 2.0)
        self.tolerance = tolerance

        # Initialize the vertices of tight box around the diagram(s).
        self.extent = np.array((np.inf, -np.inf, np.inf, -np.inf))

        # If there are any kwargs, create the first subdiagram.
        if len(kwargs):
            self.add(**kwargs)

    def _arc(self, quadrant=0, cw=True, radius=1, center=(0, 0)):
        """
        Return the codes and vertices for a rotated, scaled, and translated
        90 degree arc.

        Optional keyword arguments:

          ===============   ==========================================
          Keyword           Description
          ===============   ==========================================
          *quadrant*        uses 0-based indexing (0, 1, 2, or 3)
          *cw*              if True, clockwise
          *center*          (x, y) tuple of the arc's center
          ===============   ==========================================
        """
        # Note:  It would be possible to use matplotlib's transforms to rotate,
        # scale, and translate the arc, but since the angles are discrete,
        # it's just as easy and maybe more efficient to do it here.
        ARC_CODES = [Path.LINETO,
                     Path.CURVE4,
                     Path.CURVE4,
                     Path.CURVE4,
                     Path.CURVE4,
                     Path.CURVE4,
                     Path.CURVE4]
        # Vertices of a cubic Bezier curve approximating a 90 deg arc
        # These can be determined by Path.arc(0,90).
        ARC_VERTICES = np.array([[1.00000000e+00, 0.00000000e+00],
                                 [1.00000000e+00, 2.65114773e-01],
                                 [8.94571235e-01, 5.19642327e-01],
                                 [7.07106781e-01, 7.07106781e-01],
                                 [5.19642327e-01, 8.94571235e-01],
                                 [2.65114773e-01, 1.00000000e+00],
                                 # Insignificant
                                 # [6.12303177e-17, 1.00000000e+00]])
                                 [0.00000000e+00, 1.00000000e+00]])
        if quadrant == 0 or quadrant == 2:
            if cw:
                vertices = ARC_VERTICES
            else:
                vertices = ARC_VERTICES[:, ::-1]  # Swap x and y.
        elif quadrant == 1 or quadrant == 3:
            # Negate x.
            if cw:
                # Swap x and y.
                vertices = np.column_stack((-ARC_VERTICES[:, 1],
                                             ARC_VERTICES[:, 0]))
            else:
                vertices = np.column_stack((-ARC_VERTICES[:, 0],
                                             ARC_VERTICES[:, 1]))
        if quadrant > 1:
            radius = -radius  # Rotate 180 deg.
        return list(zip(ARC_CODES, radius * vertices +
                        np.tile(center, (ARC_VERTICES.shape[0], 1))))

    def _add_input(self, path, angle, flow, length):
        """
        Add an input to a path and return its tip and label locations.
        """
        if angle is None:
            return [0, 0], [0, 0]
        else:
            x, y = path[-1][1]  # Use the last point as a reference.
            dipdepth = (flow / 2) * self.pitch
            if angle == RIGHT:
                x -= length
                dip = [x + dipdepth, y + flow / 2.0]
                path.extend([(Path.LINETO, [x, y]),
                             (Path.LINETO, dip),
                             (Path.LINETO, [x, y + flow]),
                             (Path.LINETO, [x + self.gap, y + flow])])
                label_location = [dip[0] - self.offset, dip[1]]
            else:  # Vertical
                x -= self.gap
                if angle == UP:
                    sign = 1
                else:
                    sign = -1

                dip = [x - flow / 2, y - sign * (length - dipdepth)]
                if angle == DOWN:
                    quadrant = 2
                else:
                    quadrant = 1

                # Inner arc isn't needed if inner radius is zero
                if self.radius:
                    path.extend(self._arc(quadrant=quadrant,
                                          cw=angle == UP,
                                          radius=self.radius,
                                          center=(x + self.radius,
                                                  y - sign * self.radius)))
                else:
                    path.append((Path.LINETO, [x, y]))
                path.extend([(Path.LINETO, [x, y - sign * length]),
                             (Path.LINETO, dip),
                             (Path.LINETO, [x - flow, y - sign * length])])
                path.extend(self._arc(quadrant=quadrant,
                                      cw=angle == DOWN,
                                      radius=flow + self.radius,
                                      center=(x + self.radius,
                                              y - sign * self.radius)))
                path.append((Path.LINETO, [x - flow, y + sign * flow]))
                label_location = [dip[0], dip[1] - sign * self.offset]

            return dip, label_location

    def _add_output(self, path, angle, flow, length):
        """
        Append an output to a path and return its tip and label locations.

        .. note:: *flow* is negative for an output.
        """
        if angle is None:
            return [0, 0], [0, 0]
        else:
            x, y = path[-1][1]  # Use the last point as a reference.
            tipheight = (self.shoulder - flow / 2) * self.pitch
            if angle == RIGHT:
                x += length
                tip = [x + tipheight, y + flow / 2.0]
                path.extend([(Path.LINETO, [x, y]),
                             (Path.LINETO, [x, y + self.shoulder]),
                             (Path.LINETO, tip),
                             (Path.LINETO, [x, y - self.shoulder + flow]),
                             (Path.LINETO, [x, y + flow]),
                             (Path.LINETO, [x - self.gap, y + flow])])
                label_location = [tip[0] + self.offset, tip[1]]
            else:  # Vertical
                x += self.gap
                if angle == UP:
                    sign = 1
                else:
                    sign = -1

                tip = [x - flow / 2.0, y + sign * (length + tipheight)]
                if angle == UP:
                    quadrant = 3
                else:
                    quadrant = 0
                # Inner arc isn't needed if inner radius is zero
                if self.radius:
                    path.extend(self._arc(quadrant=quadrant,
                                          cw=angle == UP,
                                          radius=self.radius,
                                          center=(x - self.radius,
                                                  y + sign * self.radius)))
                else:
                    path.append((Path.LINETO, [x, y]))
                path.extend([(Path.LINETO, [x, y + sign * length]),
                             (Path.LINETO, [x - self.shoulder,
                                            y + sign * length]),
                             (Path.LINETO, tip),
                             (Path.LINETO, [x + self.shoulder - flow,
                                            y + sign * length]),
                             (Path.LINETO, [x - flow, y + sign * length])])
                path.extend(self._arc(quadrant=quadrant,
                                      cw=angle == DOWN,
                                      radius=self.radius - flow,
                                      center=(x - self.radius,
                                              y + sign * self.radius)))
                path.append((Path.LINETO, [x - flow, y + sign * flow]))
                label_location = [tip[0], tip[1] + sign * self.offset]
            return tip, label_location

    def _revert(self, path, first_action=Path.LINETO):
        """
        A path is not simply revertable by path[::-1] since the code
        specifies an action to take from the **previous** point.
        """
        reverse_path = []
        next_code = first_action
        for code, position in path[::-1]:
            reverse_path.append((next_code, position))
            next_code = code
        return reverse_path
        # This might be more efficient, but it fails because 'tuple' object
        # doesn't support item assignment:
        # path[1] = path[1][-1:0:-1]
        # path[1][0] = first_action
        # path[2] = path[2][::-1]
        # return path

    @docstring.dedent_interpd
    def add(self, patchlabel='', flows=None, orientations=None, labels='',
            trunklength=1.0, pathlengths=0.25, prior=None, connect=(0, 0),
            rotation=0, **kwargs):
        """
        Add a simple Sankey diagram with flows at the same hierarchical level.

        Return value is the instance of :class:`Sankey`.

        Optional keyword arguments:

          ===============   ===================================================
          Keyword           Description
          ===============   ===================================================
          *patchlabel*      label to be placed at the center of the diagram
                            Note: *label* (not *patchlabel*) will be passed to
                            the patch through ``**kwargs`` and can be used to
                            create an entry in the legend.
          *flows*           array of flow values
                            By convention, inputs are positive and outputs are
                            negative.
          *orientations*    list of orientations of the paths
                            Valid values are 1 (from/to the top), 0 (from/to
                            the left or right), or -1 (from/to the bottom).  If
                            *orientations* == 0, inputs will break in from the
                            left and outputs will break away to the right.
          *labels*          list of specifications of the labels for the flows
                            Each value may be *None* (no labels), '' (just
                            label the quantities), or a labeling string.  If a
                            single value is provided, it will be applied to all
                            flows.  If an entry is a non-empty string, then the
                            quantity for the corresponding flow will be shown
                            below the string.  However, if the *unit* of the
                            main diagram is None, then quantities are never
                            shown, regardless of the value of this argument.
          *trunklength*     length between the bases of the input and output
                            groups
          *pathlengths*     list of lengths of the arrows before break-in or
                            after break-away
                            If a single value is given, then it will be applied
                            to the first (inside) paths on the top and bottom,
                            and the length of all other arrows will be
                            justified accordingly.  The *pathlengths* are not
                            applied to the horizontal inputs and outputs.
          *prior*           index of the prior diagram to which this diagram
                            should be connected
          *connect*         a (prior, this) tuple indexing the flow of the
                            prior diagram and the flow of this diagram which
                            should be connected
                            If this is the first diagram or *prior* is *None*,
                            *connect* will be ignored.
          *rotation*        angle of rotation of the diagram [deg]
                            *rotation* is ignored if this diagram is connected
                            to an existing one (using *prior* and *connect*).
                            The interpretation of the *orientations* argument
                            will be rotated accordingly (e.g., if *rotation*
                            == 90, an *orientations* entry of 1 means to/from
                            the left).
          ===============   ===================================================

        Valid kwargs are :meth:`matplotlib.patches.PathPatch` arguments:

        %(Patch)s

        As examples, ``fill=False`` and ``label='A legend entry'``.
        By default, ``facecolor='#bfd1d4'`` (light blue) and
        ``linewidth=0.5``.

        The indexing parameters (*prior* and *connect*) are zero-based.

        The flows are placed along the top of the diagram from the inside out
        in order of their index within the *flows* list or array.  They are
        placed along the sides of the diagram from the top down and along the
        bottom from the outside in.

        If the sum of the inputs and outputs is nonzero, the discrepancy
        will appear as a cubic Bezier curve along the top and bottom edges of
        the trunk.

        .. seealso::

            :meth:`finish`
        """
        # Check and preprocess the arguments.
        if flows is None:
            flows = np.array([1.0, -1.0])
        else:
            flows = np.array(flows)
        n = flows.shape[0]  # Number of flows
        if rotation is None:
            rotation = 0
        else:
            # In the code below, angles are expressed in deg/90.
            rotation /= 90.0
        if orientations is None:
            orientations = [0, 0]
        if len(orientations) != n:
            raise ValueError(
            "orientations and flows must have the same length.\n"
            "orientations has length %d, but flows has length %d."
            % (len(orientations), n))
        if labels != '' and getattr(labels, '__iter__', False):
            # iterable() isn't used because it would give True if labels is a
            # string
            if len(labels) != n:
                raise ValueError(
                "If labels is a list, then labels and flows must have the "
                "same length.\nlabels has length %d, but flows has length %d."
                % (len(labels), n))
        else:
            labels = [labels] * n
        if trunklength < 0:
            raise ValueError(
            "trunklength is negative.\nThis isn't allowed, because it would "
            "cause poor layout.")
        if np.absolute(np.sum(flows)) > self.tolerance:
            verbose.report(
                "The sum of the flows is nonzero (%f).\nIs the "
                "system not at steady state?" % np.sum(flows), 'helpful')
        scaled_flows = self.scale * flows
        gain = sum(max(flow, 0) for flow in scaled_flows)
        loss = sum(min(flow, 0) for flow in scaled_flows)
        if not (0.5 <= gain <= 2.0):
            verbose.report(
                "The scaled sum of the inputs is %f.\nThis may "
                "cause poor layout.\nConsider changing the scale so"
                " that the scaled sum is approximately 1.0." % gain, 'helpful')
        if not (-2.0 <= loss <= -0.5):
            verbose.report(
                "The scaled sum of the outputs is %f.\nThis may "
                "cause poor layout.\nConsider changing the scale so"
                " that the scaled sum is approximately 1.0." % gain, 'helpful')
        if prior is not None:
            if prior < 0:
                raise ValueError("The index of the prior diagram is negative.")
            if min(connect) < 0:
                raise ValueError(
                "At least one of the connection indices is negative.")
            if prior >= len(self.diagrams):
                raise ValueError(
                "The index of the prior diagram is %d, but there are "
                "only %d other diagrams.\nThe index is zero-based."
                % (prior, len(self.diagrams)))
            if connect[0] >= len(self.diagrams[prior].flows):
                raise ValueError(
                "The connection index to the source diagram is %d, but "
                "that diagram has only %d flows.\nThe index is zero-based."
                % (connect[0], len(self.diagrams[prior].flows)))
            if connect[1] >= n:
                raise ValueError(
                "The connection index to this diagram is %d, but this diagram"
                "has only %d flows.\n The index is zero-based."
                % (connect[1], n))
            if self.diagrams[prior].angles[connect[0]] is None:
                raise ValueError(
                "The connection cannot be made.  Check that the magnitude "
                "of flow %d of diagram %d is greater than or equal to the "
                "specified tolerance." % (connect[0], prior))
            flow_error = (self.diagrams[prior].flows[connect[0]] +
                          flows[connect[1]])
            if abs(flow_error) >= self.tolerance:
                raise ValueError(
                "The scaled sum of the connected flows is %f, which is not "
                "within the tolerance (%f)." % (flow_error, self.tolerance))

        # Determine if the flows are inputs.
        are_inputs = [None] * n
        for i, flow in enumerate(flows):
            if flow >= self.tolerance:
                are_inputs[i] = True
            elif flow <= -self.tolerance:
                are_inputs[i] = False
            else:
                verbose.report(
                    "The magnitude of flow %d (%f) is below the "
                    "tolerance (%f).\nIt will not be shown, and it "
                    "cannot be used in a connection."
                    % (i, flow, self.tolerance), 'helpful')

        # Determine the angles of the arrows (before rotation).
        angles = [None] * n
        for i, (orient, is_input) in enumerate(zip(orientations, are_inputs)):
            if orient == 1:
                if is_input:
                    angles[i] = DOWN
                elif not is_input:
                    # Be specific since is_input can be None.
                    angles[i] = UP
            elif orient == 0:
                if is_input is not None:
                    angles[i] = RIGHT
            else:
                if orient != -1:
                    raise ValueError(
                    "The value of orientations[%d] is %d, "
                    "but it must be [ -1 | 0 | 1 ]." % (i, orient))
                if is_input:
                    angles[i] = UP
                elif not is_input:
                    angles[i] = DOWN

        # Justify the lengths of the paths.
        if iterable(pathlengths):
            if len(pathlengths) != n:
                raise ValueError(
                "If pathlengths is a list, then pathlengths and flows must "
                "have the same length.\npathlengths has length %d, but flows "
                "has length %d." % (len(pathlengths), n))
        else:  # Make pathlengths into a list.
            urlength = pathlengths
            ullength = pathlengths
            lrlength = pathlengths
            lllength = pathlengths
            d = dict(RIGHT=pathlengths)
            pathlengths = [d.get(angle, 0) for angle in angles]
            # Determine the lengths of the top-side arrows
            # from the middle outwards.
            for i, (angle, is_input, flow) in enumerate(zip(angles, are_inputs,
                                                            scaled_flows)):
                if angle == DOWN and is_input:
                    pathlengths[i] = ullength
                    ullength += flow
                elif angle == UP and not is_input:
                    pathlengths[i] = urlength
                    urlength -= flow  # Flow is negative for outputs.
            # Determine the lengths of the bottom-side arrows
            # from the middle outwards.
            for i, (angle, is_input, flow) in enumerate(reversed(list(zip(
                  angles, are_inputs, scaled_flows)))):
                if angle == UP and is_input:
                    pathlengths[n - i - 1] = lllength
                    lllength += flow
                elif angle == DOWN and not is_input:
                    pathlengths[n - i - 1] = lrlength
                    lrlength -= flow
            # Determine the lengths of the left-side arrows
            # from the bottom upwards.
            has_left_input = False
            for i, (angle, is_input, spec) in enumerate(reversed(list(zip(
                  angles, are_inputs, zip(scaled_flows, pathlengths))))):
                if angle == RIGHT:
                    if is_input:
                        if has_left_input:
                            pathlengths[n - i - 1] = 0
                        else:
                            has_left_input = True
            # Determine the lengths of the right-side arrows
            # from the top downwards.
            has_right_output = False
            for i, (angle, is_input, spec) in enumerate(zip(
                  angles, are_inputs, list(zip(scaled_flows, pathlengths)))):
                if angle == RIGHT:
                    if not is_input:
                        if has_right_output:
                            pathlengths[i] = 0
                        else:
                            has_right_output = True

        # Begin the subpaths, and smooth the transition if the sum of the flows
        # is nonzero.
        urpath = [(Path.MOVETO, [(self.gap - trunklength / 2.0),  # Upper right
                                 gain / 2.0]),
                  (Path.LINETO, [(self.gap - trunklength / 2.0) / 2.0,
                                 gain / 2.0]),
                  (Path.CURVE4, [(self.gap - trunklength / 2.0) / 8.0,
                                 gain / 2.0]),
                  (Path.CURVE4, [(trunklength / 2.0 - self.gap) / 8.0,
                                 -loss / 2.0]),
                  (Path.LINETO, [(trunklength / 2.0 - self.gap) / 2.0,
                                 -loss / 2.0]),
                  (Path.LINETO, [(trunklength / 2.0 - self.gap),
                                 -loss / 2.0])]
        llpath = [(Path.LINETO, [(trunklength / 2.0 - self.gap),  # Lower left
                                 loss / 2.0]),
                  (Path.LINETO, [(trunklength / 2.0 - self.gap) / 2.0,
                                 loss / 2.0]),
                  (Path.CURVE4, [(trunklength / 2.0 - self.gap) / 8.0,
                                 loss / 2.0]),
                  (Path.CURVE4, [(self.gap - trunklength / 2.0) / 8.0,
                                 -gain / 2.0]),
                  (Path.LINETO, [(self.gap - trunklength / 2.0) / 2.0,
                                 -gain / 2.0]),
                  (Path.LINETO, [(self.gap - trunklength / 2.0),
                                 -gain / 2.0])]
        lrpath = [(Path.LINETO, [(trunklength / 2.0 - self.gap),  # Lower right
                                 loss / 2.0])]
        ulpath = [(Path.LINETO, [self.gap - trunklength / 2.0,  # Upper left
                                 gain / 2.0])]

        # Add the subpaths and assign the locations of the tips and labels.
        tips = np.zeros((n, 2))
        label_locations = np.zeros((n, 2))
        # Add the top-side inputs and outputs from the middle outwards.
        for i, (angle, is_input, spec) in enumerate(zip(
              angles, are_inputs, list(zip(scaled_flows, pathlengths)))):
            if angle == DOWN and is_input:
                tips[i, :], label_locations[i, :] = self._add_input(
                    ulpath, angle, *spec)
            elif angle == UP and not is_input:
                tips[i, :], label_locations[i, :] = self._add_output(
                    urpath, angle, *spec)
        # Add the bottom-side inputs and outputs from the middle outwards.
        for i, (angle, is_input, spec) in enumerate(reversed(list(zip(
              angles, are_inputs, list(zip(scaled_flows, pathlengths)))))):
            if angle == UP and is_input:
                tip, label_location = self._add_input(llpath, angle, *spec)
                tips[n - i - 1, :] = tip
                label_locations[n - i - 1, :] = label_location
            elif angle == DOWN and not is_input:
                tip, label_location = self._add_output(lrpath, angle, *spec)
                tips[n - i - 1, :] = tip
                label_locations[n - i - 1, :] = label_location
        # Add the left-side inputs from the bottom upwards.
        has_left_input = False
        for i, (angle, is_input, spec) in enumerate(reversed(list(zip(
              angles, are_inputs, list(zip(scaled_flows, pathlengths)))))):
            if angle == RIGHT and is_input:
                if not has_left_input:
                    # Make sure the lower path extends
                    # at least as far as the upper one.
                    if llpath[-1][1][0] > ulpath[-1][1][0]:
                        llpath.append((Path.LINETO, [ulpath[-1][1][0],
                                                     llpath[-1][1][1]]))
                    has_left_input = True
                tip, label_location = self._add_input(llpath, angle, *spec)
                tips[n - i - 1, :] = tip
                label_locations[n - i - 1, :] = label_location
        # Add the right-side outputs from the top downwards.
        has_right_output = False
        for i, (angle, is_input, spec) in enumerate(zip(
              angles, are_inputs, list(zip(scaled_flows, pathlengths)))):
            if angle == RIGHT and not is_input:
                if not has_right_output:
                    # Make sure the upper path extends
                    # at least as far as the lower one.
                    if urpath[-1][1][0] < lrpath[-1][1][0]:
                        urpath.append((Path.LINETO, [lrpath[-1][1][0],
                                                     urpath[-1][1][1]]))
                    has_right_output = True
                tips[i, :], label_locations[i, :] = self._add_output(
                    urpath, angle, *spec)
        # Trim any hanging vertices.
        if not has_left_input:
            ulpath.pop()
            llpath.pop()
        if not has_right_output:
            lrpath.pop()
            urpath.pop()

        # Concatenate the subpaths in the correct order (clockwise from top).
        path = (urpath + self._revert(lrpath) + llpath + self._revert(ulpath) +
                [(Path.CLOSEPOLY, urpath[0][1])])

        # Create a patch with the Sankey outline.
        codes, vertices = list(zip(*path))
        vertices = np.array(vertices)

        def _get_angle(a, r):
            if a is None:
                return None
            else:
                return a + r

        if prior is None:
            if rotation != 0:  # By default, none of this is needed.
                angles = [_get_angle(angle, rotation) for angle in angles]
                rotate = Affine2D().rotate_deg(rotation * 90).transform_affine
                tips = rotate(tips)
                label_locations = rotate(label_locations)
                vertices = rotate(vertices)
            text = self.ax.text(0, 0, s=patchlabel, ha='center', va='center')
        else:
            rotation = (self.diagrams[prior].angles[connect[0]] -
                        angles[connect[1]])
            angles = [_get_angle(angle, rotation) for angle in angles]
            rotate = Affine2D().rotate_deg(rotation * 90).transform_affine
            tips = rotate(tips)
            offset = self.diagrams[prior].tips[connect[0]] - tips[connect[1]]
            translate = Affine2D().translate(*offset).transform_affine
            tips = translate(tips)
            label_locations = translate(rotate(label_locations))
            vertices = translate(rotate(vertices))
            kwds = dict(s=patchlabel, ha='center', va='center')
            text = self.ax.text(*offset, **kwds)
        if False:  # Debug
            print("llpath\n", llpath)
            print("ulpath\n", self._revert(ulpath))
            print("urpath\n", urpath)
            print("lrpath\n", self._revert(lrpath))
            xs, ys = list(zip(*vertices))
            self.ax.plot(xs, ys, 'go-')
        patch = PathPatch(Path(vertices, codes),
                          fc=kwargs.pop('fc', kwargs.pop('facecolor',
                                        '#bfd1d4')),  # Custom defaults
                          lw=kwargs.pop('lw', kwargs.pop('linewidth', 0.5)),
                          **kwargs)
        self.ax.add_patch(patch)

        # Add the path labels.
        texts = []
        for number, angle, label, location in zip(flows, angles, labels,
                                                  label_locations):
            if label is None or angle is None:
                label = ''
            elif self.unit is not None:
                quantity = self.format % abs(number) + self.unit
                if label != '':
                    label += "\n"
                label += quantity
            texts.append(self.ax.text(x=location[0], y=location[1],
                                      s=label,
                                      ha='center', va='center'))
        # Text objects are placed even they are empty (as long as the magnitude
        # of the corresponding flow is larger than the tolerance) in case the
        # user wants to provide labels later.

        # Expand the size of the diagram if necessary.
        self.extent = (min(np.min(vertices[:, 0]),
                           np.min(label_locations[:, 0]),
                           self.extent[0]),
                       max(np.max(vertices[:, 0]),
                           np.max(label_locations[:, 0]),
                           self.extent[1]),
                       min(np.min(vertices[:, 1]),
                           np.min(label_locations[:, 1]),
                           self.extent[2]),
                       max(np.max(vertices[:, 1]),
                           np.max(label_locations[:, 1]),
                           self.extent[3]))
        # Include both vertices _and_ label locations in the extents; there are
        # where either could determine the margins (e.g., arrow shoulders).

        # Add this diagram as a subdiagram.
        self.diagrams.append(Bunch(patch=patch, flows=flows, angles=angles,
                                   tips=tips, text=text, texts=texts))

        # Allow a daisy-chained call structure (see docstring for the class).
        return self

    def finish(self):
        """
        Adjust the axes and return a list of information about the Sankey
        subdiagram(s).

        Return value is a list of subdiagrams represented with the following
        fields:

          ===============   ===================================================
          Field             Description
          ===============   ===================================================
          *patch*           Sankey outline (an instance of
                            :class:`~maplotlib.patches.PathPatch`)
          *flows*           values of the flows (positive for input, negative
                            for output)
          *angles*          list of angles of the arrows [deg/90]
                            For example, if the diagram has not been rotated,
                            an input to the top side will have an angle of 3
                            (DOWN), and an output from the top side will have
                            an angle of 1 (UP).  If a flow has been skipped
                            (because its magnitude is less than *tolerance*),
                            then its angle will be *None*.
          *tips*            array in which each row is an [x, y] pair
                            indicating the positions of the tips (or "dips") of
                            the flow paths
                            If the magnitude of a flow is less the *tolerance*
                            for the instance of :class:`Sankey`, the flow is
                            skipped and its tip will be at the center of the
                            diagram.
          *text*            :class:`~matplotlib.text.Text` instance for the
                            label of the diagram
          *texts*           list of :class:`~matplotlib.text.Text` instances
                            for the labels of flows
          ===============   ===================================================

        .. seealso::

            :meth:`add`
        """
        self.ax.axis([self.extent[0] - self.margin,
                      self.extent[1] + self.margin,
                      self.extent[2] - self.margin,
                      self.extent[3] + self.margin])
        self.ax.set_aspect('equal', adjustable='datalim')
        return self.diagrams