This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/colorbar.py is in python3-matplotlib 1.5.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
'''
Colorbar toolkit with two classes and a function:

    :class:`ColorbarBase`
        the base class with full colorbar drawing functionality.
        It can be used as-is to make a colorbar for a given colormap;
        a mappable object (e.g., image) is not needed.

    :class:`Colorbar`
        the derived class for use with images or contour plots.

    :func:`make_axes`
        a function for resizing an axes and adding a second axes
        suitable for a colorbar

The :meth:`~matplotlib.figure.Figure.colorbar` method uses :func:`make_axes`
and :class:`Colorbar`; the :func:`~matplotlib.pyplot.colorbar` function
is a thin wrapper over :meth:`~matplotlib.figure.Figure.colorbar`.

'''
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

from matplotlib.externals import six
from matplotlib.externals.six.moves import xrange, zip

import warnings

import numpy as np

import matplotlib as mpl
import matplotlib.artist as martist
import matplotlib.cbook as cbook
import matplotlib.collections as collections
import matplotlib.colors as colors
import matplotlib.contour as contour
import matplotlib.cm as cm
import matplotlib.gridspec as gridspec
import matplotlib.patches as mpatches
import matplotlib.path as mpath
import matplotlib.ticker as ticker
import matplotlib.transforms as mtrans

from matplotlib import docstring

make_axes_kw_doc = '''

    ============= ====================================================
    Property      Description
    ============= ====================================================
    *orientation* vertical or horizontal
    *fraction*    0.15; fraction of original axes to use for colorbar
    *pad*         0.05 if vertical, 0.15 if horizontal; fraction
                  of original axes between colorbar and new image axes
    *shrink*      1.0; fraction by which to shrink the colorbar
    *aspect*      20; ratio of long to short dimensions
    *anchor*      (0.0, 0.5) if vertical; (0.5, 1.0) if horizontal;
                  the anchor point of the colorbar axes
    *panchor*     (1.0, 0.5) if vertical; (0.5, 0.0) if horizontal;
                  the anchor point of the colorbar parent axes. If
                  False, the parent axes' anchor will be unchanged
    ============= ====================================================

'''

colormap_kw_doc = '''

    ============  ====================================================
    Property      Description
    ============  ====================================================
    *extend*      [ 'neither' | 'both' | 'min' | 'max' ]
                  If not 'neither', make pointed end(s) for out-of-
                  range values.  These are set for a given colormap
                  using the colormap set_under and set_over methods.
    *extendfrac*  [ *None* | 'auto' | length | lengths ]
                  If set to *None*, both the minimum and maximum
                  triangular colorbar extensions with have a length of
                  5% of the interior colorbar length (this is the
                  default setting). If set to 'auto', makes the
                  triangular colorbar extensions the same lengths as
                  the interior boxes (when *spacing* is set to
                  'uniform') or the same lengths as the respective
                  adjacent interior boxes (when *spacing* is set to
                  'proportional'). If a scalar, indicates the length
                  of both the minimum and maximum triangular colorbar
                  extensions as a fraction of the interior colorbar
                  length. A two-element sequence of fractions may also
                  be given, indicating the lengths of the minimum and
                  maximum colorbar extensions respectively as a
                  fraction of the interior colorbar length.
    *extendrect*  [ *False* | *True* ]
                  If *False* the minimum and maximum colorbar extensions
                  will be triangular (the default). If *True* the
                  extensions will be rectangular.
    *spacing*     [ 'uniform' | 'proportional' ]
                  Uniform spacing gives each discrete color the same
                  space; proportional makes the space proportional to
                  the data interval.
    *ticks*       [ None | list of ticks | Locator object ]
                  If None, ticks are determined automatically from the
                  input.
    *format*      [ None | format string | Formatter object ]
                  If None, the
                  :class:`~matplotlib.ticker.ScalarFormatter` is used.
                  If a format string is given, e.g., '%.3f', that is
                  used. An alternative
                  :class:`~matplotlib.ticker.Formatter` object may be
                  given instead.
    *drawedges*   [ False | True ] If true, draw lines at color
                  boundaries.
    ============  ====================================================

    The following will probably be useful only in the context of
    indexed colors (that is, when the mappable has norm=NoNorm()),
    or other unusual circumstances.

    ============   ===================================================
    Property       Description
    ============   ===================================================
    *boundaries*   None or a sequence
    *values*       None or a sequence which must be of length 1 less
                   than the sequence of *boundaries*. For each region
                   delimited by adjacent entries in *boundaries*, the
                   color mapped to the corresponding value in values
                   will be used.
    ============   ===================================================

'''

colorbar_doc = '''

Add a colorbar to a plot.

Function signatures for the :mod:`~matplotlib.pyplot` interface; all
but the first are also method signatures for the
:meth:`~matplotlib.figure.Figure.colorbar` method::

  colorbar(**kwargs)
  colorbar(mappable, **kwargs)
  colorbar(mappable, cax=cax, **kwargs)
  colorbar(mappable, ax=ax, **kwargs)

arguments:

  *mappable*
    the :class:`~matplotlib.image.Image`,
    :class:`~matplotlib.contour.ContourSet`, etc. to
    which the colorbar applies; this argument is mandatory for the
    :meth:`~matplotlib.figure.Figure.colorbar` method but optional for the
    :func:`~matplotlib.pyplot.colorbar` function, which sets the
    default to the current image.

keyword arguments:

  *cax*
    None | axes object into which the colorbar will be drawn
  *ax*
    None | parent axes object(s) from which space for a new
    colorbar axes will be stolen. If a list of axes is given
    they will all be resized to make room for the colorbar axes.
  *use_gridspec*
    False | If *cax* is None, a new *cax* is created as an instance of
    Axes. If *ax* is an instance of Subplot and *use_gridspec* is True,
    *cax* is created as an instance of Subplot using the
    grid_spec module.


Additional keyword arguments are of two kinds:

  axes properties:
%s
  colorbar properties:
%s

If *mappable* is a :class:`~matplotlib.contours.ContourSet`, its *extend*
kwarg is included automatically.

Note that the *shrink* kwarg provides a simple way to keep a vertical
colorbar, for example, from being taller than the axes of the mappable
to which the colorbar is attached; but it is a manual method requiring
some trial and error. If the colorbar is too tall (or a horizontal
colorbar is too wide) use a smaller value of *shrink*.

For more precise control, you can manually specify the positions of
the axes objects in which the mappable and the colorbar are drawn.  In
this case, do not use any of the axes properties kwargs.

It is known that some vector graphics viewer (svg and pdf) renders white gaps
between segments of the colorbar. This is due to bugs in the viewers not
matplotlib. As a workaround the colorbar can be rendered with overlapping
segments::

    cbar = colorbar()
    cbar.solids.set_edgecolor("face")
    draw()

However this has negative consequences in other circumstances. Particularly
with semi transparent images (alpha < 1) and colorbar extensions and is not
enabled by default see (issue #1188).

returns:
    :class:`~matplotlib.colorbar.Colorbar` instance; see also its base class,
    :class:`~matplotlib.colorbar.ColorbarBase`.  Call the
    :meth:`~matplotlib.colorbar.ColorbarBase.set_label` method
    to label the colorbar.

''' % (make_axes_kw_doc, colormap_kw_doc)

docstring.interpd.update(colorbar_doc=colorbar_doc)


def _set_ticks_on_axis_warn(*args, **kw):
    # a top level function which gets put in at the axes'
    # set_xticks set_yticks by _patch_ax
    warnings.warn("Use the colorbar set_ticks() method instead.")


class ColorbarBase(cm.ScalarMappable):
    '''
    Draw a colorbar in an existing axes.

    This is a base class for the :class:`Colorbar` class, which is the
    basis for the :func:`~matplotlib.pyplot.colorbar` function and the
    :meth:`~matplotlib.figure.Figure.colorbar` method, which are the
    usual ways of creating a colorbar.

    It is also useful by itself for showing a colormap.  If the *cmap*
    kwarg is given but *boundaries* and *values* are left as None,
    then the colormap will be displayed on a 0-1 scale. To show the
    under- and over-value colors, specify the *norm* as::

        colors.Normalize(clip=False)

    To show the colors versus index instead of on the 0-1 scale,
    use::

        norm=colors.NoNorm.

    Useful attributes:

        :attr:`ax`
            the Axes instance in which the colorbar is drawn

        :attr:`lines`
            a list of LineCollection if lines were drawn, otherwise
            an empty list

        :attr:`dividers`
            a LineCollection if *drawedges* is True, otherwise None

    Useful public methods are :meth:`set_label` and :meth:`add_lines`.

    '''
    _slice_dict = {'neither': slice(0, None),
                   'both': slice(1, -1),
                   'min': slice(1, None),
                   'max': slice(0, -1)}

    n_rasterize = 50  # rasterize solids if number of colors >= n_rasterize

    def __init__(self, ax, cmap=None,
                 norm=None,
                 alpha=None,
                 values=None,
                 boundaries=None,
                 orientation='vertical',
                 ticklocation='auto',
                 extend='neither',
                 spacing='uniform',  # uniform or proportional
                 ticks=None,
                 format=None,
                 drawedges=False,
                 filled=True,
                 extendfrac=None,
                 extendrect=False,
                 label='',
                 ):
        #: The axes that this colorbar lives in.
        self.ax = ax
        self._patch_ax()
        if cmap is None:
            cmap = cm.get_cmap()
        if norm is None:
            norm = colors.Normalize()
        self.alpha = alpha
        cm.ScalarMappable.__init__(self, cmap=cmap, norm=norm)
        self.values = values
        self.boundaries = boundaries
        self.extend = extend
        self._inside = self._slice_dict[extend]
        self.spacing = spacing
        self.orientation = orientation
        self.drawedges = drawedges
        self.filled = filled
        self.extendfrac = extendfrac
        self.extendrect = extendrect
        self.solids = None
        self.lines = list()
        self.outline = None
        self.patch = None
        self.dividers = None

        if ticklocation == 'auto':
            ticklocation = 'bottom' if orientation == 'horizontal' else 'right'
        self.ticklocation = ticklocation

        self.set_label(label)
        if cbook.iterable(ticks):
            self.locator = ticker.FixedLocator(ticks, nbins=len(ticks))
        else:
            self.locator = ticks    # Handle default in _ticker()
        if format is None:
            if isinstance(self.norm, colors.LogNorm):
                self.formatter = ticker.LogFormatterMathtext()
            else:
                self.formatter = ticker.ScalarFormatter()
        elif cbook.is_string_like(format):
            self.formatter = ticker.FormatStrFormatter(format)
        else:
            self.formatter = format  # Assume it is a Formatter
        # The rest is in a method so we can recalculate when clim changes.
        self.config_axis()
        self.draw_all()

    def _extend_lower(self):
        """Returns whether the lower limit is open ended."""
        return self.extend in ('both', 'min')

    def _extend_upper(self):
        """Returns whether the uper limit is open ended."""
        return self.extend in ('both', 'max')

    def _patch_ax(self):
        # bind some methods to the axes to warn users
        # against using those methods.
        self.ax.set_xticks = _set_ticks_on_axis_warn
        self.ax.set_yticks = _set_ticks_on_axis_warn

    def draw_all(self):
        '''
        Calculate any free parameters based on the current cmap and norm,
        and do all the drawing.
        '''
        self._process_values()
        self._find_range()
        X, Y = self._mesh()
        C = self._values[:, np.newaxis]
        self._config_axes(X, Y)
        if self.filled:
            self._add_solids(X, Y, C)

    def config_axis(self):
        ax = self.ax
        if self.orientation == 'vertical':
            ax.xaxis.set_ticks([])
            # location is either one of 'bottom' or 'top'
            ax.yaxis.set_label_position(self.ticklocation)
            ax.yaxis.set_ticks_position(self.ticklocation)
        else:
            ax.yaxis.set_ticks([])
            # location is either one of 'left' or 'right'
            ax.xaxis.set_label_position(self.ticklocation)
            ax.xaxis.set_ticks_position(self.ticklocation)

        self._set_label()

    def update_ticks(self):
        """
        Force the update of the ticks and ticklabels. This must be
        called whenever the tick locator and/or tick formatter changes.
        """
        ax = self.ax
        ticks, ticklabels, offset_string = self._ticker()
        if self.orientation == 'vertical':
            ax.yaxis.set_ticks(ticks)
            ax.set_yticklabels(ticklabels)
            ax.yaxis.get_major_formatter().set_offset_string(offset_string)

        else:
            ax.xaxis.set_ticks(ticks)
            ax.set_xticklabels(ticklabels)
            ax.xaxis.get_major_formatter().set_offset_string(offset_string)

    def set_ticks(self, ticks, update_ticks=True):
        """
        set tick locations. Tick locations are updated immediately unless
        update_ticks is *False*. To manually update the ticks, call
        *update_ticks* method explicitly.
        """
        if cbook.iterable(ticks):
            self.locator = ticker.FixedLocator(ticks, nbins=len(ticks))
        else:
            self.locator = ticks

        if update_ticks:
            self.update_ticks()
        self.stale = True

    def set_ticklabels(self, ticklabels, update_ticks=True):
        """
        set tick labels. Tick labels are updated immediately unless
        update_ticks is *False*. To manually update the ticks, call
        *update_ticks* method explicitly.
        """
        if isinstance(self.locator, ticker.FixedLocator):
            self.formatter = ticker.FixedFormatter(ticklabels)
            if update_ticks:
                self.update_ticks()
        else:
            warnings.warn("set_ticks() must have been called.")
        self.stale = True

    def _config_axes(self, X, Y):
        '''
        Make an axes patch and outline.
        '''
        ax = self.ax
        ax.set_frame_on(False)
        ax.set_navigate(False)
        xy = self._outline(X, Y)
        ax.update_datalim(xy)
        ax.set_xlim(*ax.dataLim.intervalx)
        ax.set_ylim(*ax.dataLim.intervaly)
        if self.outline is not None:
            self.outline.remove()
        self.outline = mpatches.Polygon(
            xy, edgecolor=mpl.rcParams['axes.edgecolor'],
            facecolor='none',
            linewidth=mpl.rcParams['axes.linewidth'],
            closed=True,
            zorder=2)
        ax.add_artist(self.outline)
        self.outline.set_clip_box(None)
        self.outline.set_clip_path(None)
        c = mpl.rcParams['axes.facecolor']
        if self.patch is not None:
            self.patch.remove()
        self.patch = mpatches.Polygon(xy, edgecolor=c,
                                      facecolor=c,
                                      linewidth=0.01,
                                      zorder=-1)
        ax.add_artist(self.patch)

        self.update_ticks()

    def _set_label(self):
        if self.orientation == 'vertical':
            self.ax.set_ylabel(self._label, **self._labelkw)
        else:
            self.ax.set_xlabel(self._label, **self._labelkw)
        self.stale = True

    def set_label(self, label, **kw):
        '''
        Label the long axis of the colorbar
        '''
        self._label = '%s' % (label, )
        self._labelkw = kw
        self._set_label()

    def _outline(self, X, Y):
        '''
        Return *x*, *y* arrays of colorbar bounding polygon,
        taking orientation into account.
        '''
        N = X.shape[0]
        ii = [0, 1, N - 2, N - 1, 2 * N - 1, 2 * N - 2, N + 1, N, 0]
        x = np.take(np.ravel(np.transpose(X)), ii)
        y = np.take(np.ravel(np.transpose(Y)), ii)
        x = x.reshape((len(x), 1))
        y = y.reshape((len(y), 1))
        if self.orientation == 'horizontal':
            return np.hstack((y, x))
        return np.hstack((x, y))

    def _edges(self, X, Y):
        '''
        Return the separator line segments; helper for _add_solids.
        '''
        N = X.shape[0]
        # Using the non-array form of these line segments is much
        # simpler than making them into arrays.
        if self.orientation == 'vertical':
            return [list(zip(X[i], Y[i])) for i in xrange(1, N - 1)]
        else:
            return [list(zip(Y[i], X[i])) for i in xrange(1, N - 1)]

    def _add_solids(self, X, Y, C):
        '''
        Draw the colors using :meth:`~matplotlib.axes.Axes.pcolormesh`;
        optionally add separators.
        '''
        if self.orientation == 'vertical':
            args = (X, Y, C)
        else:
            args = (np.transpose(Y), np.transpose(X), np.transpose(C))
        kw = dict(cmap=self.cmap,
                  norm=self.norm,
                  alpha=self.alpha,
                  edgecolors='None')
        # Save, set, and restore hold state to keep pcolor from
        # clearing the axes. Ordinarily this will not be needed,
        # since the axes object should already have hold set.
        _hold = self.ax.ishold()
        self.ax.hold(True)
        col = self.ax.pcolormesh(*args, **kw)
        self.ax.hold(_hold)
        #self.add_observer(col) # We should observe, not be observed...

        if self.solids is not None:
            self.solids.remove()
        self.solids = col
        if self.dividers is not None:
            self.dividers.remove()
            self.dividers = None
        if self.drawedges:
            linewidths = (0.5 * mpl.rcParams['axes.linewidth'],)
            self.dividers = collections.LineCollection(self._edges(X, Y),
                                    colors=(mpl.rcParams['axes.edgecolor'],),
                                    linewidths=linewidths)
            self.ax.add_collection(self.dividers)
        elif len(self._y) >= self.n_rasterize:
            self.solids.set_rasterized(True)

    def add_lines(self, levels, colors, linewidths, erase=True):
        '''
        Draw lines on the colorbar.

        *colors* and *linewidths* must be scalars or
        sequences the same length as *levels*.

        Set *erase* to False to add lines without first
        removing any previously added lines.
        '''
        y = self._locate(levels)
        igood = (y < 1.001) & (y > -0.001)
        y = y[igood]
        if cbook.iterable(colors):
            colors = np.asarray(colors)[igood]
        if cbook.iterable(linewidths):
            linewidths = np.asarray(linewidths)[igood]
        N = len(y)
        x = np.array([0.0, 1.0])
        X, Y = np.meshgrid(x, y)
        if self.orientation == 'vertical':
            xy = [list(zip(X[i], Y[i])) for i in xrange(N)]
        else:
            xy = [list(zip(Y[i], X[i])) for i in xrange(N)]
        col = collections.LineCollection(xy, linewidths=linewidths)

        if erase and self.lines:
            for lc in self.lines:
                lc.remove()
            self.lines = []
        self.lines.append(col)
        col.set_color(colors)
        self.ax.add_collection(col)
        self.stale = True

    def _ticker(self):
        '''
        Return the sequence of ticks (colorbar data locations),
        ticklabels (strings), and the corresponding offset string.
        '''
        locator = self.locator
        formatter = self.formatter
        if locator is None:
            if self.boundaries is None:
                if isinstance(self.norm, colors.NoNorm):
                    nv = len(self._values)
                    base = 1 + int(nv / 10)
                    locator = ticker.IndexLocator(base=base, offset=0)
                elif isinstance(self.norm, colors.BoundaryNorm):
                    b = self.norm.boundaries
                    locator = ticker.FixedLocator(b, nbins=10)
                elif isinstance(self.norm, colors.LogNorm):
                    locator = ticker.LogLocator()
                else:
                    locator = ticker.MaxNLocator()
            else:
                b = self._boundaries[self._inside]
                locator = ticker.FixedLocator(b, nbins=10)
        if isinstance(self.norm, colors.NoNorm) and self.boundaries is None:
            intv = self._values[0], self._values[-1]
        else:
            intv = self.vmin, self.vmax
        locator.create_dummy_axis(minpos=intv[0])
        formatter.create_dummy_axis(minpos=intv[0])
        locator.set_view_interval(*intv)
        locator.set_data_interval(*intv)
        formatter.set_view_interval(*intv)
        formatter.set_data_interval(*intv)

        b = np.array(locator())
        if isinstance(locator, ticker.LogLocator):
            eps = 1e-10
            b = b[(b <= intv[1] * (1 + eps)) & (b >= intv[0] * (1 - eps))]
        else:
            eps = (intv[1] - intv[0]) * 1e-10
            b = b[(b <= intv[1] + eps) & (b >= intv[0] - eps)]
        ticks = self._locate(b)
        formatter.set_locs(b)
        ticklabels = [formatter(t, i) for i, t in enumerate(b)]
        offset_string = formatter.get_offset()
        return ticks, ticklabels, offset_string

    def _process_values(self, b=None):
        '''
        Set the :attr:`_boundaries` and :attr:`_values` attributes
        based on the input boundaries and values.  Input boundaries
        can be *self.boundaries* or the argument *b*.
        '''
        if b is None:
            b = self.boundaries
        if b is not None:
            self._boundaries = np.asarray(b, dtype=float)
            if self.values is None:
                self._values = 0.5 * (self._boundaries[:-1]
                                      + self._boundaries[1:])
                if isinstance(self.norm, colors.NoNorm):
                    self._values = (self._values + 0.00001).astype(np.int16)
                return
            self._values = np.array(self.values)
            return
        if self.values is not None:
            self._values = np.array(self.values)
            if self.boundaries is None:
                b = np.zeros(len(self.values) + 1, 'd')
                b[1:-1] = 0.5 * (self._values[:-1] - self._values[1:])
                b[0] = 2.0 * b[1] - b[2]
                b[-1] = 2.0 * b[-2] - b[-3]
                self._boundaries = b
                return
            self._boundaries = np.array(self.boundaries)
            return
        # Neither boundaries nor values are specified;
        # make reasonable ones based on cmap and norm.
        if isinstance(self.norm, colors.NoNorm):
            b = self._uniform_y(self.cmap.N + 1) * self.cmap.N - 0.5
            v = np.zeros((len(b) - 1,), dtype=np.int16)
            v[self._inside] = np.arange(self.cmap.N, dtype=np.int16)
            if self._extend_lower():
                v[0] = -1
            if self._extend_upper():
                v[-1] = self.cmap.N
            self._boundaries = b
            self._values = v
            return
        elif isinstance(self.norm, colors.BoundaryNorm):
            b = list(self.norm.boundaries)
            if self._extend_lower():
                b = [b[0] - 1] + b
            if self._extend_upper():
                b = b + [b[-1] + 1]
            b = np.array(b)
            v = np.zeros((len(b) - 1,), dtype=float)
            bi = self.norm.boundaries
            v[self._inside] = 0.5 * (bi[:-1] + bi[1:])
            if self._extend_lower():
                v[0] = b[0] - 1
            if self._extend_upper():
                v[-1] = b[-1] + 1
            self._boundaries = b
            self._values = v
            return
        else:
            if not self.norm.scaled():
                self.norm.vmin = 0
                self.norm.vmax = 1

            self.norm.vmin, self.norm.vmax = mtrans.nonsingular(self.norm.vmin,
                                                                self.norm.vmax,
                                                                expander=0.1)

            b = self.norm.inverse(self._uniform_y(self.cmap.N + 1))
            if self._extend_lower():
                b[0] = b[0] - 1
            if self._extend_upper():
                b[-1] = b[-1] + 1
        self._process_values(b)

    def _find_range(self):
        '''
        Set :attr:`vmin` and :attr:`vmax` attributes to the first and
        last boundary excluding extended end boundaries.
        '''
        b = self._boundaries[self._inside]
        self.vmin = b[0]
        self.vmax = b[-1]

    def _central_N(self):
        '''number of boundaries **before** extension of ends'''
        nb = len(self._boundaries)
        if self.extend == 'both':
            nb -= 2
        elif self.extend in ('min', 'max'):
            nb -= 1
        return nb

    def _extended_N(self):
        '''
        Based on the colormap and extend variable, return the
        number of boundaries.
        '''
        N = self.cmap.N + 1
        if self.extend == 'both':
            N += 2
        elif self.extend in ('min', 'max'):
            N += 1
        return N

    def _get_extension_lengths(self, frac, automin, automax, default=0.05):
        '''
        Get the lengths of colorbar extensions.

        A helper method for _uniform_y and _proportional_y.
        '''
        # Set the default value.
        extendlength = np.array([default, default])
        if isinstance(frac, six.string_types):
            if frac.lower() == 'auto':
                # Use the provided values when 'auto' is required.
                extendlength[0] = automin
                extendlength[1] = automax
            else:
                # Any other string is invalid.
                raise ValueError('invalid value for extendfrac')
        elif frac is not None:
            try:
                # Try to set min and max extension fractions directly.
                extendlength[:] = frac
                # If frac is a sequence contaning None then NaN may
                # be encountered. This is an error.
                if np.isnan(extendlength).any():
                    raise ValueError()
            except (TypeError, ValueError):
                # Raise an error on encountering an invalid value for frac.
                raise ValueError('invalid value for extendfrac')
        return extendlength

    def _uniform_y(self, N):
        '''
        Return colorbar data coordinates for *N* uniformly
        spaced boundaries, plus ends if required.
        '''
        if self.extend == 'neither':
            y = np.linspace(0, 1, N)
        else:
            automin = automax = 1. / (N - 1.)
            extendlength = self._get_extension_lengths(self.extendfrac,
                                                       automin, automax,
                                                       default=0.05)
            if self.extend == 'both':
                y = np.zeros(N + 2, 'd')
                y[0] = 0. - extendlength[0]
                y[-1] = 1. + extendlength[1]
            elif self.extend == 'min':
                y = np.zeros(N + 1, 'd')
                y[0] = 0. - extendlength[0]
            else:
                y = np.zeros(N + 1, 'd')
                y[-1] = 1. + extendlength[1]
            y[self._inside] = np.linspace(0, 1, N)
        return y

    def _proportional_y(self):
        '''
        Return colorbar data coordinates for the boundaries of
        a proportional colorbar.
        '''
        if isinstance(self.norm, colors.BoundaryNorm):
            y = (self._boundaries - self._boundaries[0])
            y = y / (self._boundaries[-1] - self._boundaries[0])
        else:
            y = self.norm(self._boundaries.copy())
        if self.extend == 'min':
            # Exclude leftmost interval of y.
            clen = y[-1] - y[1]
            automin = (y[2] - y[1]) / clen
            automax = (y[-1] - y[-2]) / clen
        elif self.extend == 'max':
            # Exclude rightmost interval in y.
            clen = y[-2] - y[0]
            automin = (y[1] - y[0]) / clen
            automax = (y[-2] - y[-3]) / clen
        else:
            # Exclude leftmost and rightmost intervals in y.
            clen = y[-2] - y[1]
            automin = (y[2] - y[1]) / clen
            automax = (y[-2] - y[-3]) / clen
        extendlength = self._get_extension_lengths(self.extendfrac,
                                                   automin, automax,
                                                   default=0.05)
        if self.extend in ('both', 'min'):
            y[0] = 0. - extendlength[0]
        if self.extend in ('both', 'max'):
            y[-1] = 1. + extendlength[1]
        yi = y[self._inside]
        norm = colors.Normalize(yi[0], yi[-1])
        y[self._inside] = norm(yi)
        return y

    def _mesh(self):
        '''
        Return X,Y, the coordinate arrays for the colorbar pcolormesh.
        These are suitable for a vertical colorbar; swapping and
        transposition for a horizontal colorbar are done outside
        this function.
        '''
        x = np.array([0.0, 1.0])
        if self.spacing == 'uniform':
            y = self._uniform_y(self._central_N())
        else:
            y = self._proportional_y()
        self._y = y
        X, Y = np.meshgrid(x, y)
        if self._extend_lower() and not self.extendrect:
            X[0, :] = 0.5
        if self._extend_upper() and not self.extendrect:
            X[-1, :] = 0.5
        return X, Y

    def _locate(self, x):
        '''
        Given a set of color data values, return their
        corresponding colorbar data coordinates.
        '''
        if isinstance(self.norm, (colors.NoNorm, colors.BoundaryNorm)):
            b = self._boundaries
            xn = x
        else:
            # Do calculations using normalized coordinates so
            # as to make the interpolation more accurate.
            b = self.norm(self._boundaries, clip=False).filled()
            xn = self.norm(x, clip=False).filled()

        # The rest is linear interpolation with extrapolation at ends.
        ii = np.searchsorted(b, xn)
        i0 = ii - 1
        itop = (ii == len(b))
        ibot = (ii == 0)
        i0[itop] -= 1
        ii[itop] -= 1
        i0[ibot] += 1
        ii[ibot] += 1

        db = np.take(b, ii) - np.take(b, i0)
        y = self._y
        dy = np.take(y, ii) - np.take(y, i0)
        z = np.take(y, i0) + (xn - np.take(b, i0)) * dy / db
        return z

    def set_alpha(self, alpha):
        self.alpha = alpha

    def remove(self):
        """
        Remove this colorbar from the figure
        """

        fig = self.ax.figure
        fig.delaxes(self.ax)


class Colorbar(ColorbarBase):
    """
    This class connects a :class:`ColorbarBase` to a
    :class:`~matplotlib.cm.ScalarMappable` such as a
    :class:`~matplotlib.image.AxesImage` generated via
    :meth:`~matplotlib.axes.Axes.imshow`.

    It is not intended to be instantiated directly; instead,
    use :meth:`~matplotlib.figure.Figure.colorbar` or
    :func:`~matplotlib.pyplot.colorbar` to make your colorbar.

    """
    def __init__(self, ax, mappable, **kw):
        # Ensure the given mappable's norm has appropriate vmin and vmax set
        # even if mappable.draw has not yet been called.
        mappable.autoscale_None()

        self.mappable = mappable
        kw['cmap'] = cmap = mappable.cmap
        kw['norm'] = norm = mappable.norm

        if isinstance(mappable, contour.ContourSet):
            CS = mappable
            kw['alpha'] = mappable.get_alpha()
            kw['boundaries'] = CS._levels
            kw['values'] = CS.cvalues
            kw['extend'] = CS.extend
            #kw['ticks'] = CS._levels
            kw.setdefault('ticks', ticker.FixedLocator(CS.levels, nbins=10))
            kw['filled'] = CS.filled
            ColorbarBase.__init__(self, ax, **kw)
            if not CS.filled:
                self.add_lines(CS)
        else:
            if getattr(cmap, 'colorbar_extend', False) is not False:
                kw.setdefault('extend', cmap.colorbar_extend)

            if isinstance(mappable, martist.Artist):
                kw['alpha'] = mappable.get_alpha()

            ColorbarBase.__init__(self, ax, **kw)

    def on_mappable_changed(self, mappable):
        """
        Updates this colorbar to match the mappable's properties.

        Typically this is automatically registered as an event handler
        by :func:`colorbar_factory` and should not be called manually.

        """
        self.set_cmap(mappable.get_cmap())
        self.set_clim(mappable.get_clim())
        self.update_normal(mappable)

    def add_lines(self, CS, erase=True):
        '''
        Add the lines from a non-filled
        :class:`~matplotlib.contour.ContourSet` to the colorbar.

        Set *erase* to False if these lines should be added to
        any pre-existing lines.
        '''
        if not isinstance(CS, contour.ContourSet) or CS.filled:
            raise ValueError('add_lines is only for a ContourSet of lines')
        tcolors = [c[0] for c in CS.tcolors]
        tlinewidths = [t[0] for t in CS.tlinewidths]
        # The following was an attempt to get the colorbar lines
        # to follow subsequent changes in the contour lines,
        # but more work is needed: specifically, a careful
        # look at event sequences, and at how
        # to make one object track another automatically.
        #tcolors = [col.get_colors()[0] for col in CS.collections]
        #tlinewidths = [col.get_linewidth()[0] for lw in CS.collections]
        #print 'tlinewidths:', tlinewidths
        ColorbarBase.add_lines(self, CS.levels, tcolors, tlinewidths,
                               erase=erase)

    def update_normal(self, mappable):
        '''
        update solid, lines, etc. Unlike update_bruteforce, it does
        not clear the axes.  This is meant to be called when the image
        or contour plot to which this colorbar belongs is changed.
        '''
        self.draw_all()
        if isinstance(self.mappable, contour.ContourSet):
            CS = self.mappable
            if not CS.filled:
                self.add_lines(CS)
        self.stale = True

    def update_bruteforce(self, mappable):
        '''
        Destroy and rebuild the colorbar.  This is
        intended to become obsolete, and will probably be
        deprecated and then removed.  It is not called when
        the pyplot.colorbar function or the Figure.colorbar
        method are used to create the colorbar.

        '''
        # We are using an ugly brute-force method: clearing and
        # redrawing the whole thing.  The problem is that if any
        # properties have been changed by methods other than the
        # colorbar methods, those changes will be lost.
        self.ax.cla()
        # clearing the axes will delete outline, patch, solids, and lines:
        self.outline = None
        self.patch = None
        self.solids = None
        self.lines = list()
        self.dividers = None
        self.set_alpha(mappable.get_alpha())
        self.cmap = mappable.cmap
        self.norm = mappable.norm
        self.config_axis()
        self.draw_all()
        if isinstance(self.mappable, contour.ContourSet):
            CS = self.mappable
            if not CS.filled:
                self.add_lines(CS)
            #if self.lines is not None:
            #    tcolors = [c[0] for c in CS.tcolors]
            #    self.lines.set_color(tcolors)
        #Fixme? Recalculate boundaries, ticks if vmin, vmax have changed.
        #Fixme: Some refactoring may be needed; we should not
        # be recalculating everything if there was a simple alpha
        # change.

    def remove(self):
        """
        Remove this colorbar from the figure.  If the colorbar was created with
        ``use_gridspec=True`` then restore the gridspec to its previous value.
        """

        ColorbarBase.remove(self)
        self.mappable.callbacksSM.disconnect(self.mappable.colorbar_cid)
        self.mappable.colorbar = None
        self.mappable.colorbar_cid = None

        try:
            ax = self.mappable.axes
        except AttributeError:
            return

        try:
            gs = ax.get_subplotspec().get_gridspec()
            subplotspec = gs.get_topmost_subplotspec()
        except AttributeError:
            # use_gridspec was False
            pos = ax.get_position(original=True)
            ax.set_position(pos)
        else:
            # use_gridspec was True
            ax.set_subplotspec(subplotspec)


@docstring.Substitution(make_axes_kw_doc)
def make_axes(parents, location=None, orientation=None, fraction=0.15,
              shrink=1.0, aspect=20, **kw):
    '''
    Resize and reposition parent axes, and return a child
    axes suitable for a colorbar::

        cax, kw = make_axes(parent, **kw)

    Keyword arguments may include the following (with defaults):

        location : [None|'left'|'right'|'top'|'bottom']
            The position, relative to **parents**, where the colorbar axes
            should be created. If None, the value will either come from the
            given ``orientation``, else it will default to 'right'.

        orientation :  [None|'vertical'|'horizontal']
            The orientation of the colorbar. Typically, this keyword shouldn't
            be used, as it can be derived from the ``location`` keyword.

    %s

    Returns (cax, kw), the child axes and the reduced kw dictionary to be
    passed when creating the colorbar instance.
    '''
    locations = ["left", "right", "top", "bottom"]
    if orientation is not None and location is not None:
        msg = ('position and orientation are mutually exclusive. '
               'Consider setting the position to any of '
               '{0}'.format(', '.join(locations)))
        raise TypeError(msg)

    # provide a default location
    if location is None and orientation is None:
        location = 'right'

    # allow the user to not specify the location by specifying the
    # orientation instead
    if location is None:
        location = 'right' if orientation == 'vertical' else 'bottom'

    if location not in locations:
        raise ValueError('Invalid colorbar location. Must be one '
                         'of %s' % ', '.join(locations))

    default_location_settings = {'left':   {'anchor': (1.0, 0.5),
                                            'panchor': (0.0, 0.5),
                                            'pad': 0.10,
                                            'orientation': 'vertical'},
                                 'right':  {'anchor': (0.0, 0.5),
                                            'panchor': (1.0, 0.5),
                                            'pad': 0.05,
                                            'orientation': 'vertical'},
                                 'top':    {'anchor': (0.5, 0.0),
                                            'panchor': (0.5, 1.0),
                                            'pad': 0.05,
                                            'orientation': 'horizontal'},
                                 'bottom': {'anchor': (0.5, 1.0),
                                            'panchor': (0.5, 0.0),
                                            'pad': 0.15,  # backwards compat
                                            'orientation': 'horizontal'},
                                 }

    loc_settings = default_location_settings[location]

    # put appropriate values into the kw dict for passing back to
    # the Colorbar class
    kw['orientation'] = loc_settings['orientation']
    kw['ticklocation'] = location

    anchor = kw.pop('anchor', loc_settings['anchor'])
    parent_anchor = kw.pop('panchor', loc_settings['panchor'])
    pad = kw.pop('pad', loc_settings['pad'])

    # turn parents into a list if it is not already
    if not isinstance(parents, (list, tuple)):
        parents = [parents]

    fig = parents[0].get_figure()
    if not all(fig is ax.get_figure() for ax in parents):
        raise ValueError('Unable to create a colorbar axes as not all '
                         'parents share the same figure.')

    # take a bounding box around all of the given axes
    parents_bbox = mtrans.Bbox.union([ax.get_position(original=True).frozen()
                                      for ax in parents])

    pb = parents_bbox
    if location in ('left', 'right'):
        if location == 'left':
            pbcb, _, pb1 = pb.splitx(fraction, fraction + pad)
        else:
            pb1, _, pbcb = pb.splitx(1 - fraction - pad, 1 - fraction)
        pbcb = pbcb.shrunk(1.0, shrink).anchored(anchor, pbcb)
    else:
        if location == 'bottom':
            pbcb, _, pb1 = pb.splity(fraction, fraction + pad)
        else:
            pb1, _, pbcb = pb.splity(1 - fraction - pad, 1 - fraction)
        pbcb = pbcb.shrunk(shrink, 1.0).anchored(anchor, pbcb)

        # define the aspect ratio in terms of y's per x rather than x's per y
        aspect = 1.0 / aspect

    # define a transform which takes us from old axes coordinates to
    # new axes coordinates
    shrinking_trans = mtrans.BboxTransform(parents_bbox, pb1)

    # transform each of the axes in parents using the new transform
    for ax in parents:
        new_posn = shrinking_trans.transform(ax.get_position())
        new_posn = mtrans.Bbox(new_posn)
        ax.set_position(new_posn)
        if parent_anchor is not False:
            ax.set_anchor(parent_anchor)

    cax = fig.add_axes(pbcb)
    cax.set_aspect(aspect, anchor=anchor, adjustable='box')
    return cax, kw


@docstring.Substitution(make_axes_kw_doc)
def make_axes_gridspec(parent, **kw):
    '''
    Resize and reposition a parent axes, and return a child axes
    suitable for a colorbar. This function is similar to
    make_axes. Prmary differences are

     * *make_axes_gridspec* only handles the *orientation* keyword
       and cannot handle the "location" keyword.

     * *make_axes_gridspec* should only be used with a subplot parent.

     * *make_axes* creates an instance of Axes. *make_axes_gridspec*
        creates an instance of Subplot.

     * *make_axes* updates the position of the
        parent. *make_axes_gridspec* replaces the grid_spec attribute
        of the parent with a new one.

    While this function is meant to be compatible with *make_axes*,
    there could be some minor differences.::

        cax, kw = make_axes_gridspec(parent, **kw)

    Keyword arguments may include the following (with defaults):

        *orientation*
            'vertical' or 'horizontal'

    %s

    All but the first of these are stripped from the input kw set.

    Returns (cax, kw), the child axes and the reduced kw dictionary to be
    passed when creating the colorbar instance.
    '''

    orientation = kw.setdefault('orientation', 'vertical')
    kw['ticklocation'] = 'auto'

    fraction = kw.pop('fraction', 0.15)
    shrink = kw.pop('shrink', 1.0)
    aspect = kw.pop('aspect', 20)

    x1 = 1.0 - fraction

    # for shrinking
    pad_s = (1. - shrink) * 0.5
    wh_ratios = [pad_s, shrink, pad_s]

    gs_from_subplotspec = gridspec.GridSpecFromSubplotSpec
    if orientation == 'vertical':
        pad = kw.pop('pad', 0.05)
        wh_space = 2 * pad / (1 - pad)

        gs = gs_from_subplotspec(1, 2,
                                 subplot_spec=parent.get_subplotspec(),
                                 wspace=wh_space,
                                 width_ratios=[x1 - pad, fraction]
                                 )

        gs2 = gs_from_subplotspec(3, 1,
                                  subplot_spec=gs[1],
                                  hspace=0.,
                                  height_ratios=wh_ratios,
                                  )

        anchor = (0.0, 0.5)
        panchor = (1.0, 0.5)
    else:
        pad = kw.pop('pad', 0.15)
        wh_space = 2 * pad / (1 - pad)

        gs = gs_from_subplotspec(2, 1,
                                 subplot_spec=parent.get_subplotspec(),
                                 hspace=wh_space,
                                 height_ratios=[x1 - pad, fraction]
                                 )

        gs2 = gs_from_subplotspec(1, 3,
                                  subplot_spec=gs[1],
                                  wspace=0.,
                                  width_ratios=wh_ratios,
                                  )

        aspect = 1.0 / aspect
        anchor = (0.5, 1.0)
        panchor = (0.5, 0.0)

    parent.set_subplotspec(gs[0])
    parent.update_params()
    parent.set_position(parent.figbox)
    parent.set_anchor(panchor)

    fig = parent.get_figure()
    cax = fig.add_subplot(gs2[1])
    cax.set_aspect(aspect, anchor=anchor, adjustable='box')
    return cax, kw


class ColorbarPatch(Colorbar):
    """
    A Colorbar which is created using :class:`~matplotlib.patches.Patch`
    rather than the default :func:`~matplotlib.axes.pcolor`.

    It uses a list of Patch instances instead of a
    :class:`~matplotlib.collections.PatchCollection` because the
    latter does not allow the hatch pattern to vary among the
    members of the collection.
    """
    def __init__(self, ax, mappable, **kw):
        # we do not want to override the behaviour of solids
        # so add a new attribute which will be a list of the
        # colored patches in the colorbar
        self.solids_patches = []
        Colorbar.__init__(self, ax, mappable, **kw)

    def _add_solids(self, X, Y, C):
        """
        Draw the colors using :class:`~matplotlib.patches.Patch`;
        optionally add separators.
        """
        # Save, set, and restore hold state to keep pcolor from
        # clearing the axes. Ordinarily this will not be needed,
        # since the axes object should already have hold set.
        _hold = self.ax.ishold()
        self.ax.hold(True)

        kw = {'alpha': self.alpha, }

        n_segments = len(C)

        # ensure there are sufficent hatches
        hatches = self.mappable.hatches * n_segments

        patches = []
        for i in xrange(len(X) - 1):
            val = C[i][0]
            hatch = hatches[i]

            xy = np.array([[X[i][0], Y[i][0]],
                           [X[i][1], Y[i][0]],
                           [X[i + 1][1], Y[i + 1][0]],
                           [X[i + 1][0], Y[i + 1][1]]])

            if self.orientation == 'horizontal':
                # if horizontal swap the xs and ys
                xy = xy[..., ::-1]

            patch = mpatches.PathPatch(mpath.Path(xy),
                                       facecolor=self.cmap(self.norm(val)),
                                       hatch=hatch, linewidth=0,
                                       antialiased=False, **kw)
            self.ax.add_patch(patch)
            patches.append(patch)

        if self.solids_patches:
            for solid in self.solids_patches:
                solid.remove()

        self.solids_patches = patches

        if self.dividers is not None:
            self.dividers.remove()
            self.dividers = None

        if self.drawedges:
            self.dividers = collections.LineCollection(self._edges(X, Y),
                    colors=(mpl.rcParams['axes.edgecolor'],),
                    linewidths=(0.5 * mpl.rcParams['axes.linewidth'],))
            self.ax.add_collection(self.dividers)

        self.ax.hold(_hold)


def colorbar_factory(cax, mappable, **kwargs):
    """
    Creates a colorbar on the given axes for the given mappable.

    Typically, for automatic colorbar placement given only a mappable use
    :meth:`~matplotlib.figure.Figure.colorbar`.

    """
    # if the given mappable is a contourset with any hatching, use
    # ColorbarPatch else use Colorbar
    if (isinstance(mappable, contour.ContourSet)
            and any([hatch is not None for hatch in mappable.hatches])):
        cb = ColorbarPatch(cax, mappable, **kwargs)
    else:
        cb = Colorbar(cax, mappable, **kwargs)

    cid = mappable.callbacksSM.connect('changed', cb.on_mappable_changed)
    mappable.colorbar = cb
    mappable.colorbar_cid = cid

    return cb