This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/axes/_base.py is in python3-matplotlib 1.5.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

from matplotlib.externals import six
from matplotlib.externals.six.moves import xrange

import itertools
import warnings
import math
from operator import itemgetter

import numpy as np
from numpy import ma

import matplotlib

from matplotlib import cbook
from matplotlib.cbook import (_check_1d, _string_to_bool, iterable,
                              index_of, get_label)
from matplotlib import docstring
import matplotlib.colors as mcolors
import matplotlib.lines as mlines
import matplotlib.patches as mpatches
import matplotlib.artist as martist
import matplotlib.transforms as mtransforms
import matplotlib.ticker as mticker
import matplotlib.axis as maxis
import matplotlib.scale as mscale
import matplotlib.spines as mspines
import matplotlib.font_manager as font_manager
import matplotlib.text as mtext
import matplotlib.image as mimage
from matplotlib.offsetbox import OffsetBox
from matplotlib.artist import allow_rasterization

from matplotlib.rcsetup import cycler

rcParams = matplotlib.rcParams

is_string_like = cbook.is_string_like
is_sequence_of_strings = cbook.is_sequence_of_strings


def _process_plot_format(fmt):
    """
    Process a MATLAB style color/line style format string.  Return a
    (*linestyle*, *color*) tuple as a result of the processing.  Default
    values are ('-', 'b').  Example format strings include:

    * 'ko': black circles
    * '.b': blue dots
    * 'r--': red dashed lines

    .. seealso::

        :func:`~matplotlib.Line2D.lineStyles` and
        :func:`~matplotlib.pyplot.colors`
            for all possible styles and color format string.
    """

    linestyle = None
    marker = None
    color = None

    # Is fmt just a colorspec?
    try:
        color = mcolors.colorConverter.to_rgb(fmt)

        # We need to differentiate grayscale '1.0' from tri_down marker '1'
        try:
            fmtint = str(int(fmt))
        except ValueError:
            return linestyle, marker, color  # Yes
        else:
            if fmt != fmtint:
                # user definitely doesn't want tri_down marker
                return linestyle, marker, color  # Yes
            else:
                # ignore converted color
                color = None
    except ValueError:
        pass  # No, not just a color.

    # handle the multi char special cases and strip them from the
    # string
    if fmt.find('--') >= 0:
        linestyle = '--'
        fmt = fmt.replace('--', '')
    if fmt.find('-.') >= 0:
        linestyle = '-.'
        fmt = fmt.replace('-.', '')
    if fmt.find(' ') >= 0:
        linestyle = 'None'
        fmt = fmt.replace(' ', '')

    chars = [c for c in fmt]

    for c in chars:
        if c in mlines.lineStyles:
            if linestyle is not None:
                raise ValueError(
                    'Illegal format string "%s"; two linestyle symbols' % fmt)
            linestyle = c
        elif c in mlines.lineMarkers:
            if marker is not None:
                raise ValueError(
                    'Illegal format string "%s"; two marker symbols' % fmt)
            marker = c
        elif c in mcolors.colorConverter.colors:
            if color is not None:
                raise ValueError(
                    'Illegal format string "%s"; two color symbols' % fmt)
            color = c
        else:
            raise ValueError(
                'Unrecognized character %c in format string' % c)

    if linestyle is None and marker is None:
        linestyle = rcParams['lines.linestyle']
    if linestyle is None:
        linestyle = 'None'
    if marker is None:
        marker = 'None'

    return linestyle, marker, color


class _process_plot_var_args(object):
    """
    Process variable length arguments to the plot command, so that
    plot commands like the following are supported::

      plot(t, s)
      plot(t1, s1, t2, s2)
      plot(t1, s1, 'ko', t2, s2)
      plot(t1, s1, 'ko', t2, s2, 'r--', t3, e3)

    an arbitrary number of *x*, *y*, *fmt* are allowed
    """
    def __init__(self, axes, command='plot'):
        self.axes = axes
        self.command = command
        self.set_prop_cycle()

    def __getstate__(self):
        # note: it is not possible to pickle a itertools.cycle instance
        return {'axes': self.axes, 'command': self.command}

    def __setstate__(self, state):
        self.__dict__ = state.copy()
        self.set_prop_cycle()

    def set_prop_cycle(self, *args, **kwargs):
        if not (args or kwargs) or (len(args) == 1 and args[0] is None):
            prop_cycler = rcParams['axes.prop_cycle']
            if prop_cycler is None and 'axes.color_cycle' in rcParams:
                clist = rcParams['axes.color_cycle']
                prop_cycler = cycler('color', clist)
        else:
            prop_cycler = cycler(*args, **kwargs)

        self.prop_cycler = itertools.cycle(prop_cycler)
        # This should make a copy
        self._prop_keys = prop_cycler.keys

    def __call__(self, *args, **kwargs):
        if self.axes.xaxis is not None and self.axes.yaxis is not None:
            xunits = kwargs.pop('xunits', self.axes.xaxis.units)

            if self.axes.name == 'polar':
                xunits = kwargs.pop('thetaunits', xunits)

            yunits = kwargs.pop('yunits', self.axes.yaxis.units)

            if self.axes.name == 'polar':
                yunits = kwargs.pop('runits', yunits)

            if xunits != self.axes.xaxis.units:
                self.axes.xaxis.set_units(xunits)

            if yunits != self.axes.yaxis.units:
                self.axes.yaxis.set_units(yunits)

        ret = self._grab_next_args(*args, **kwargs)
        return ret

    def set_lineprops(self, line, **kwargs):
        assert self.command == 'plot', 'set_lineprops only works with "plot"'
        line.set(**kwargs)

    def set_patchprops(self, fill_poly, **kwargs):
        assert self.command == 'fill', 'set_patchprops only works with "fill"'
        fill_poly.set(**kwargs)

    def _xy_from_xy(self, x, y):
        if self.axes.xaxis is not None and self.axes.yaxis is not None:
            bx = self.axes.xaxis.update_units(x)
            by = self.axes.yaxis.update_units(y)

            if self.command != 'plot':
                # the Line2D class can handle unitized data, with
                # support for post hoc unit changes etc.  Other mpl
                # artists, e.g., Polygon which _process_plot_var_args
                # also serves on calls to fill, cannot.  So this is a
                # hack to say: if you are not "plot", which is
                # creating Line2D, then convert the data now to
                # floats.  If you are plot, pass the raw data through
                # to Line2D which will handle the conversion.  So
                # polygons will not support post hoc conversions of
                # the unit type since they are not storing the orig
                # data.  Hopefully we can rationalize this at a later
                # date - JDH
                if bx:
                    x = self.axes.convert_xunits(x)
                if by:
                    y = self.axes.convert_yunits(y)

        # like asanyarray, but converts scalar to array, and doesn't change
        # existing compatible sequences
        x = _check_1d(x)
        y = _check_1d(y)
        if x.shape[0] != y.shape[0]:
            raise ValueError("x and y must have same first dimension")
        if x.ndim > 2 or y.ndim > 2:
            raise ValueError("x and y can be no greater than 2-D")

        if x.ndim == 1:
            x = x[:, np.newaxis]
        if y.ndim == 1:
            y = y[:, np.newaxis]
        return x, y

    def _getdefaults(self, ignore, *kwargs):
        """
        Only advance the cycler if the cycler has information that
        is not specified in any of the supplied tuple of dicts.
        Ignore any keys specified in the `ignore` set.

        Returns a copy of defaults dictionary if there are any
        keys that are not found in any of the supplied dictionaries.
        If the supplied dictionaries have non-None values for
        everything the property cycler has, then just return
        an empty dictionary. Ignored keys are excluded from the
        returned dictionary.

        """
        prop_keys = self._prop_keys
        if ignore is None:
            ignore = set([])
        prop_keys = prop_keys - ignore

        if any(all(kw.get(k, None) is None for kw in kwargs)
               for k in prop_keys):
            # Need to copy this dictionary or else the next time around
            # in the cycle, the dictionary could be missing entries.
            default_dict = six.next(self.prop_cycler).copy()
            for p in ignore:
                default_dict.pop(p, None)
        else:
            default_dict = {}
        return default_dict

    def _setdefaults(self, defaults, *kwargs):
        """
        Given a defaults dictionary, and any other dictionaries,
        update those other dictionaries with information in defaults if
        none of the other dictionaries contains that information.

        """
        for k in defaults:
            if all(kw.get(k, None) is None for kw in kwargs):
                for kw in kwargs:
                    kw[k] = defaults[k]

    def _makeline(self, x, y, kw, kwargs):
        kw = kw.copy()  # Don't modify the original kw.
        kwargs = kwargs.copy()
        default_dict = self._getdefaults(None, kw, kwargs)
        self._setdefaults(default_dict, kw, kwargs)
        seg = mlines.Line2D(x, y, **kw)
        self.set_lineprops(seg, **kwargs)
        return seg

    def _makefill(self, x, y, kw, kwargs):
        kw = kw.copy()  # Don't modify the original kw.
        kwargs = kwargs.copy()

        # Ignore 'marker'-related properties as they aren't Polygon
        # properties, but they are Line2D properties, and so they are
        # likely to appear in the default cycler construction.
        # This is done here to the defaults dictionary as opposed to the
        # other two dictionaries because we do want to capture when a
        # *user* explicitly specifies a marker which should be an error.
        # We also want to prevent advancing the cycler if there are no
        # defaults needed after ignoring the given properties.
        ignores = set(['marker', 'markersize', 'markeredgecolor',
                       'markerfacecolor', 'markeredgewidth'])
        # Also ignore anything provided by *kwargs*.
        for k, v in six.iteritems(kwargs):
            if v is not None:
                ignores.add(k)

        # Only using the first dictionary to use as basis
        # for getting defaults for back-compat reasons.
        # Doing it with both seems to mess things up in
        # various places (probably due to logic bugs elsewhere).
        default_dict = self._getdefaults(ignores, kw)
        self._setdefaults(default_dict, kw)

        # Looks like we don't want "color" to be interpreted to
        # mean both facecolor and edgecolor for some reason.
        # So the "kw" dictionary is thrown out, and only its
        # 'color' value is kept and translated as a 'facecolor'.
        # This design should probably be revisited as it increases
        # complexity.
        facecolor = kw.get('color', None)

        # Throw out 'color' as it is now handled as a facecolor
        default_dict.pop('color', None)

        # To get other properties set from the cycler
        # modify the kwargs dictionary.
        self._setdefaults(default_dict, kwargs)

        seg = mpatches.Polygon(np.hstack((x[:, np.newaxis],
                                          y[:, np.newaxis])),
                               facecolor=facecolor,
                               fill=True,
                               closed=kw['closed'])
        self.set_patchprops(seg, **kwargs)
        return seg

    def _plot_args(self, tup, kwargs):
        ret = []
        if len(tup) > 1 and is_string_like(tup[-1]):
            linestyle, marker, color = _process_plot_format(tup[-1])
            tup = tup[:-1]
        elif len(tup) == 3:
            raise ValueError('third arg must be a format string')
        else:
            linestyle, marker, color = None, None, None

        # Don't allow any None value; These will be up-converted
        # to one element array of None which causes problems
        # downstream.
        if any(v is None for v in tup):
            raise ValueError("x and y must not be None")

        kw = {}
        for k, v in zip(('linestyle', 'marker', 'color'),
                        (linestyle, marker, color)):
            if v is not None:
                kw[k] = v

        if 'label' not in kwargs or kwargs['label'] is None:
            kwargs['label'] = get_label(tup[-1], None)

        if len(tup) == 2:
            x = _check_1d(tup[0])
            y = _check_1d(tup[-1])
        else:
            x, y = index_of(tup[-1])

        x, y = self._xy_from_xy(x, y)

        if self.command == 'plot':
            func = self._makeline
        else:
            kw['closed'] = kwargs.get('closed', True)
            func = self._makefill

        ncx, ncy = x.shape[1], y.shape[1]
        for j in xrange(max(ncx, ncy)):
            seg = func(x[:, j % ncx], y[:, j % ncy], kw, kwargs)
            ret.append(seg)
        return ret

    def _grab_next_args(self, *args, **kwargs):

        remaining = args
        while 1:

            if len(remaining) == 0:
                return
            if len(remaining) <= 3:
                for seg in self._plot_args(remaining, kwargs):
                    yield seg
                return

            if is_string_like(remaining[2]):
                isplit = 3
            else:
                isplit = 2

            for seg in self._plot_args(remaining[:isplit], kwargs):
                yield seg
            remaining = remaining[isplit:]


class _AxesBase(martist.Artist):
    """
    """
    name = "rectilinear"

    _shared_x_axes = cbook.Grouper()
    _shared_y_axes = cbook.Grouper()

    def __str__(self):
        return "Axes(%g,%g;%gx%g)" % tuple(self._position.bounds)

    def __init__(self, fig, rect,
                 axisbg=None,  # defaults to rc axes.facecolor
                 frameon=True,
                 sharex=None,  # use Axes instance's xaxis info
                 sharey=None,  # use Axes instance's yaxis info
                 label='',
                 xscale=None,
                 yscale=None,
                 **kwargs
                 ):
        """
        Build an :class:`Axes` instance in
        :class:`~matplotlib.figure.Figure` *fig* with
        *rect=[left, bottom, width, height]* in
        :class:`~matplotlib.figure.Figure` coordinates

        Optional keyword arguments:

          ================   =========================================
          Keyword            Description
          ================   =========================================
          *adjustable*       [ 'box' | 'datalim' | 'box-forced']
          *alpha*            float: the alpha transparency (can be None)
          *anchor*           [ 'C', 'SW', 'S', 'SE', 'E', 'NE', 'N',
                               'NW', 'W' ]
          *aspect*           [ 'auto' | 'equal' | aspect_ratio ]
          *autoscale_on*     [ *True* | *False* ] whether or not to
                             autoscale the *viewlim*
          *axis_bgcolor*     any matplotlib color, see
                             :func:`~matplotlib.pyplot.colors`
          *axisbelow*        draw the grids and ticks below the other
                             artists
          *cursor_props*     a (*float*, *color*) tuple
          *figure*           a :class:`~matplotlib.figure.Figure`
                             instance
          *frame_on*         a boolean - draw the axes frame
          *label*            the axes label
          *navigate*         [ *True* | *False* ]
          *navigate_mode*    [ 'PAN' | 'ZOOM' | None ] the navigation
                             toolbar button status
          *position*         [left, bottom, width, height] in
                             class:`~matplotlib.figure.Figure` coords
          *sharex*           an class:`~matplotlib.axes.Axes` instance
                             to share the x-axis with
          *sharey*           an class:`~matplotlib.axes.Axes` instance
                             to share the y-axis with
          *title*            the title string
          *visible*          [ *True* | *False* ] whether the axes is
                             visible
          *xlabel*           the xlabel
          *xlim*             (*xmin*, *xmax*) view limits
          *xscale*           [%(scale)s]
          *xticklabels*      sequence of strings
          *xticks*           sequence of floats
          *ylabel*           the ylabel strings
          *ylim*             (*ymin*, *ymax*) view limits
          *yscale*           [%(scale)s]
          *yticklabels*      sequence of strings
          *yticks*           sequence of floats
          ================   =========================================
        """ % {'scale': ' | '.join(
            [repr(x) for x in mscale.get_scale_names()])}
        martist.Artist.__init__(self)
        if isinstance(rect, mtransforms.Bbox):
            self._position = rect
        else:
            self._position = mtransforms.Bbox.from_bounds(*rect)
        self._originalPosition = self._position.frozen()
        # self.set_axes(self)
        self.axes = self
        self.set_aspect('auto')
        self._adjustable = 'box'
        self.set_anchor('C')
        self._sharex = sharex
        self._sharey = sharey
        if sharex is not None:
            self._shared_x_axes.join(self, sharex)
            if sharex._adjustable == 'box':
                sharex._adjustable = 'datalim'
                #warnings.warn(
                #    'shared axes: "adjustable" is being changed to "datalim"')
            self._adjustable = 'datalim'
        if sharey is not None:
            self._shared_y_axes.join(self, sharey)
            if sharey._adjustable == 'box':
                sharey._adjustable = 'datalim'
                #warnings.warn(
                #    'shared axes: "adjustable" is being changed to "datalim"')
            self._adjustable = 'datalim'
        self.set_label(label)
        self.set_figure(fig)

        self.set_axes_locator(kwargs.get("axes_locator", None))

        self.spines = self._gen_axes_spines()

        # this call may differ for non-sep axes, e.g., polar
        self._init_axis()

        if axisbg is None:
            axisbg = rcParams['axes.facecolor']
        self._axisbg = axisbg
        self._frameon = frameon
        self._axisbelow = rcParams['axes.axisbelow']

        self._rasterization_zorder = None

        self._hold = rcParams['axes.hold']
        self._connected = {}  # a dict from events to (id, func)
        self.cla()
        # funcs used to format x and y - fall back on major formatters
        self.fmt_xdata = None
        self.fmt_ydata = None

        self.set_cursor_props((1, 'k'))  # set the cursor properties for axes

        self._cachedRenderer = None
        self.set_navigate(True)
        self.set_navigate_mode(None)

        if xscale:
            self.set_xscale(xscale)
        if yscale:
            self.set_yscale(yscale)

        if len(kwargs):
            self.update(kwargs)

        if self.xaxis is not None:
            self._xcid = self.xaxis.callbacks.connect('units finalize',
                                                      self.relim)

        if self.yaxis is not None:
            self._ycid = self.yaxis.callbacks.connect('units finalize',
                                                      self.relim)

    def __setstate__(self, state):
        self.__dict__ = state
        # put the _remove_method back on all artists contained within the axes
        for container_name in ['lines', 'collections', 'tables', 'patches',
                               'texts', 'images']:
            container = getattr(self, container_name)
            for artist in container:
                artist._remove_method = container.remove
        self._stale = True

    def get_window_extent(self, *args, **kwargs):
        """
        get the axes bounding box in display space; *args* and
        *kwargs* are empty
        """
        return self.bbox

    def _init_axis(self):
        "move this out of __init__ because non-separable axes don't use it"
        self.xaxis = maxis.XAxis(self)
        self.spines['bottom'].register_axis(self.xaxis)
        self.spines['top'].register_axis(self.xaxis)
        self.yaxis = maxis.YAxis(self)
        self.spines['left'].register_axis(self.yaxis)
        self.spines['right'].register_axis(self.yaxis)
        self._update_transScale()

    def set_figure(self, fig):
        """
        Set the class:`~matplotlib.axes.Axes` figure

        accepts a class:`~matplotlib.figure.Figure` instance
        """
        martist.Artist.set_figure(self, fig)

        self.bbox = mtransforms.TransformedBbox(self._position,
                                                fig.transFigure)
        # these will be updated later as data is added
        self.dataLim = mtransforms.Bbox.null()
        self.viewLim = mtransforms.Bbox.unit()
        self.transScale = mtransforms.TransformWrapper(
            mtransforms.IdentityTransform())

        self._set_lim_and_transforms()

    def _set_lim_and_transforms(self):
        """
        set the *dataLim* and *viewLim*
        :class:`~matplotlib.transforms.Bbox` attributes and the
        *transScale*, *transData*, *transLimits* and *transAxes*
        transformations.

        .. note::

            This method is primarily used by rectilinear projections
            of the :class:`~matplotlib.axes.Axes` class, and is meant
            to be overridden by new kinds of projection axes that need
            different transformations and limits. (See
            :class:`~matplotlib.projections.polar.PolarAxes` for an
            example.

        """
        self.transAxes = mtransforms.BboxTransformTo(self.bbox)

        # Transforms the x and y axis separately by a scale factor.
        # It is assumed that this part will have non-linear components
        # (e.g., for a log scale).
        self.transScale = mtransforms.TransformWrapper(
            mtransforms.IdentityTransform())

        # An affine transformation on the data, generally to limit the
        # range of the axes
        self.transLimits = mtransforms.BboxTransformFrom(
            mtransforms.TransformedBbox(self.viewLim, self.transScale))

        # The parentheses are important for efficiency here -- they
        # group the last two (which are usually affines) separately
        # from the first (which, with log-scaling can be non-affine).
        self.transData = self.transScale + (self.transLimits + self.transAxes)

        self._xaxis_transform = mtransforms.blended_transform_factory(
            self.transData, self.transAxes)
        self._yaxis_transform = mtransforms.blended_transform_factory(
            self.transAxes, self.transData)

    def get_xaxis_transform(self, which='grid'):
        """
        Get the transformation used for drawing x-axis labels, ticks
        and gridlines.  The x-direction is in data coordinates and the
        y-direction is in axis coordinates.

        .. note::

            This transformation is primarily used by the
            :class:`~matplotlib.axis.Axis` class, and is meant to be
            overridden by new kinds of projections that may need to
            place axis elements in different locations.

        """
        if which == 'grid':
            return self._xaxis_transform
        elif which == 'tick1':
            # for cartesian projection, this is bottom spine
            return self.spines['bottom'].get_spine_transform()
        elif which == 'tick2':
            # for cartesian projection, this is top spine
            return self.spines['top'].get_spine_transform()
        else:
            raise ValueError('unknown value for which')

    def get_xaxis_text1_transform(self, pad_points):
        """
        Get the transformation used for drawing x-axis labels, which
        will add the given amount of padding (in points) between the
        axes and the label.  The x-direction is in data coordinates
        and the y-direction is in axis coordinates.  Returns a
        3-tuple of the form::

          (transform, valign, halign)

        where *valign* and *halign* are requested alignments for the
        text.

        .. note::

            This transformation is primarily used by the
            :class:`~matplotlib.axis.Axis` class, and is meant to be
            overridden by new kinds of projections that may need to
            place axis elements in different locations.

        """
        return (self.get_xaxis_transform(which='tick1') +
                mtransforms.ScaledTranslation(0, -1 * pad_points / 72.0,
                                              self.figure.dpi_scale_trans),
                "top", "center")

    def get_xaxis_text2_transform(self, pad_points):
        """
        Get the transformation used for drawing the secondary x-axis
        labels, which will add the given amount of padding (in points)
        between the axes and the label.  The x-direction is in data
        coordinates and the y-direction is in axis coordinates.
        Returns a 3-tuple of the form::

          (transform, valign, halign)

        where *valign* and *halign* are requested alignments for the
        text.

        .. note::

            This transformation is primarily used by the
            :class:`~matplotlib.axis.Axis` class, and is meant to be
            overridden by new kinds of projections that may need to
            place axis elements in different locations.

        """
        return (self.get_xaxis_transform(which='tick2') +
                mtransforms.ScaledTranslation(0, pad_points / 72.0,
                                              self.figure.dpi_scale_trans),
                "bottom", "center")

    def get_yaxis_transform(self, which='grid'):
        """
        Get the transformation used for drawing y-axis labels, ticks
        and gridlines.  The x-direction is in axis coordinates and the
        y-direction is in data coordinates.

        .. note::

            This transformation is primarily used by the
            :class:`~matplotlib.axis.Axis` class, and is meant to be
            overridden by new kinds of projections that may need to
            place axis elements in different locations.

        """
        if which == 'grid':
            return self._yaxis_transform
        elif which == 'tick1':
            # for cartesian projection, this is bottom spine
            return self.spines['left'].get_spine_transform()
        elif which == 'tick2':
            # for cartesian projection, this is top spine
            return self.spines['right'].get_spine_transform()
        else:
            raise ValueError('unknown value for which')

    def get_yaxis_text1_transform(self, pad_points):
        """
        Get the transformation used for drawing y-axis labels, which
        will add the given amount of padding (in points) between the
        axes and the label.  The x-direction is in axis coordinates
        and the y-direction is in data coordinates.  Returns a 3-tuple
        of the form::

          (transform, valign, halign)

        where *valign* and *halign* are requested alignments for the
        text.

        .. note::

            This transformation is primarily used by the
            :class:`~matplotlib.axis.Axis` class, and is meant to be
            overridden by new kinds of projections that may need to
            place axis elements in different locations.

        """
        return (self.get_yaxis_transform(which='tick1') +
                mtransforms.ScaledTranslation(-1 * pad_points / 72.0, 0,
                                              self.figure.dpi_scale_trans),
                "center", "right")

    def get_yaxis_text2_transform(self, pad_points):
        """
        Get the transformation used for drawing the secondary y-axis
        labels, which will add the given amount of padding (in points)
        between the axes and the label.  The x-direction is in axis
        coordinates and the y-direction is in data coordinates.
        Returns a 3-tuple of the form::

          (transform, valign, halign)

        where *valign* and *halign* are requested alignments for the
        text.

        .. note::

            This transformation is primarily used by the
            :class:`~matplotlib.axis.Axis` class, and is meant to be
            overridden by new kinds of projections that may need to
            place axis elements in different locations.

        """
        return (self.get_yaxis_transform(which='tick2') +
                mtransforms.ScaledTranslation(pad_points / 72.0, 0,
                                              self.figure.dpi_scale_trans),
                "center", "left")

    def _update_transScale(self):
        self.transScale.set(
            mtransforms.blended_transform_factory(
                self.xaxis.get_transform(), self.yaxis.get_transform()))
        if hasattr(self, "lines"):
            for line in self.lines:
                try:
                    line._transformed_path.invalidate()
                except AttributeError:
                    pass

    def get_position(self, original=False):
        'Return the a copy of the axes rectangle as a Bbox'
        if original:
            return self._originalPosition.frozen()
        else:
            return self._position.frozen()

    def set_position(self, pos, which='both'):
        """
        Set the axes position with::

          pos = [left, bottom, width, height]

        in relative 0,1 coords, or *pos* can be a
        :class:`~matplotlib.transforms.Bbox`

        There are two position variables: one which is ultimately
        used, but which may be modified by :meth:`apply_aspect`, and a
        second which is the starting point for :meth:`apply_aspect`.


        Optional keyword arguments:
          *which*

            ==========   ====================
            value        description
            ==========   ====================
            'active'     to change the first
            'original'   to change the second
            'both'       to change both
            ==========   ====================

        """
        if not isinstance(pos, mtransforms.BboxBase):
            pos = mtransforms.Bbox.from_bounds(*pos)
        if which in ('both', 'active'):
            self._position.set(pos)
        if which in ('both', 'original'):
            self._originalPosition.set(pos)
        self.stale = True

    def reset_position(self):
        """Make the original position the active position"""
        pos = self.get_position(original=True)
        self.set_position(pos, which='active')

    def set_axes_locator(self, locator):
        """
        set axes_locator

        ACCEPT: a callable object which takes an axes instance and renderer and
                 returns a bbox.
        """
        self._axes_locator = locator
        self.stale = True

    def get_axes_locator(self):
        """
        return axes_locator
        """
        return self._axes_locator

    def _set_artist_props(self, a):
        """set the boilerplate props for artists added to axes"""
        a.set_figure(self.figure)
        if not a.is_transform_set():
            a.set_transform(self.transData)

        a.axes = self
        if a.mouseover:
            self.mouseover_set.add(a)

    def _gen_axes_patch(self):
        """
        Returns the patch used to draw the background of the axes.  It
        is also used as the clipping path for any data elements on the
        axes.

        In the standard axes, this is a rectangle, but in other
        projections it may not be.

        .. note::

            Intended to be overridden by new projection types.

        """
        return mpatches.Rectangle((0.0, 0.0), 1.0, 1.0)

    def _gen_axes_spines(self, locations=None, offset=0.0, units='inches'):
        """
        Returns a dict whose keys are spine names and values are
        Line2D or Patch instances. Each element is used to draw a
        spine of the axes.

        In the standard axes, this is a single line segment, but in
        other projections it may not be.

        .. note::

            Intended to be overridden by new projection types.

        """
        return {
            'left': mspines.Spine.linear_spine(self, 'left'),
            'right': mspines.Spine.linear_spine(self, 'right'),
            'bottom': mspines.Spine.linear_spine(self, 'bottom'),
            'top': mspines.Spine.linear_spine(self, 'top'), }

    def cla(self):
        """Clear the current axes."""
        # Note: this is called by Axes.__init__()

        # stash the current visibility state
        if hasattr(self, 'patch'):
            patch_visible = self.patch.get_visible()
        else:
            patch_visible = True

        xaxis_visible = self.xaxis.get_visible()
        yaxis_visible = self.yaxis.get_visible()

        self.xaxis.cla()
        self.yaxis.cla()
        for name, spine in six.iteritems(self.spines):
            spine.cla()

        self.ignore_existing_data_limits = True
        self.callbacks = cbook.CallbackRegistry()

        if self._sharex is not None:
            # major and minor are class instances with
            # locator and formatter attributes
            self.xaxis.major = self._sharex.xaxis.major
            self.xaxis.minor = self._sharex.xaxis.minor
            x0, x1 = self._sharex.get_xlim()
            self.set_xlim(x0, x1, emit=False, auto=None)

            # Save the current formatter/locator so we don't lose it
            majf = self._sharex.xaxis.get_major_formatter()
            minf = self._sharex.xaxis.get_minor_formatter()
            majl = self._sharex.xaxis.get_major_locator()
            minl = self._sharex.xaxis.get_minor_locator()

            # This overwrites the current formatter/locator
            self.xaxis._set_scale(self._sharex.xaxis.get_scale())

            # Reset the formatter/locator
            self.xaxis.set_major_formatter(majf)
            self.xaxis.set_minor_formatter(minf)
            self.xaxis.set_major_locator(majl)
            self.xaxis.set_minor_locator(minl)
        else:
            self.xaxis._set_scale('linear')

        if self._sharey is not None:
            self.yaxis.major = self._sharey.yaxis.major
            self.yaxis.minor = self._sharey.yaxis.minor
            y0, y1 = self._sharey.get_ylim()
            self.set_ylim(y0, y1, emit=False, auto=None)

            # Save the current formatter/locator so we don't lose it
            majf = self._sharey.yaxis.get_major_formatter()
            minf = self._sharey.yaxis.get_minor_formatter()
            majl = self._sharey.yaxis.get_major_locator()
            minl = self._sharey.yaxis.get_minor_locator()

            # This overwrites the current formatter/locator
            self.yaxis._set_scale(self._sharey.yaxis.get_scale())

            # Reset the formatter/locator
            self.yaxis.set_major_formatter(majf)
            self.yaxis.set_minor_formatter(minf)
            self.yaxis.set_major_locator(majl)
            self.yaxis.set_minor_locator(minl)
        else:
            self.yaxis._set_scale('linear')

        # update the minor locator for x and y axis based on rcParams
        if (rcParams['xtick.minor.visible']):
            self.xaxis.set_minor_locator(mticker.AutoMinorLocator())

        if (rcParams['ytick.minor.visible']):
            self.yaxis.set_minor_locator(mticker.AutoMinorLocator())

        self._autoscaleXon = True
        self._autoscaleYon = True
        self._xmargin = rcParams['axes.xmargin']
        self._ymargin = rcParams['axes.ymargin']
        self._tight = False
        self._update_transScale()  # needed?

        self._get_lines = _process_plot_var_args(self)
        self._get_patches_for_fill = _process_plot_var_args(self, 'fill')

        self._gridOn = rcParams['axes.grid']
        self.lines = []
        self.patches = []
        self.texts = []
        self.tables = []
        self.artists = []
        self.images = []
        self.mouseover_set = set()
        self._current_image = None  # strictly for pyplot via _sci, _gci
        self.legend_ = None
        self.collections = []  # collection.Collection instances
        self.containers = []

        self.grid(False)  # Disable grid on init to use rcParameter
        self.grid(self._gridOn, which=rcParams['axes.grid.which'],
                    axis=rcParams['axes.grid.axis'])
        props = font_manager.FontProperties(
                    size=rcParams['axes.titlesize'],
                    weight=rcParams['axes.titleweight']
                )

        self.titleOffsetTrans = mtransforms.ScaledTranslation(
            0.0, 5.0 / 72.0, self.figure.dpi_scale_trans)
        self.title = mtext.Text(
            x=0.5, y=1.0, text='',
            fontproperties=props,
            verticalalignment='baseline',
            horizontalalignment='center',
            )
        self._left_title = mtext.Text(
            x=0.0, y=1.0, text='',
            fontproperties=props.copy(),
            verticalalignment='baseline',
            horizontalalignment='left', )
        self._right_title = mtext.Text(
            x=1.0, y=1.0, text='',
            fontproperties=props.copy(),
            verticalalignment='baseline',
            horizontalalignment='right',
            )

        for _title in (self.title, self._left_title, self._right_title):
            _title.set_transform(self.transAxes + self.titleOffsetTrans)
            _title.set_clip_box(None)
            self._set_artist_props(_title)

        # the patch draws the background of the axes.  we want this to
        # be below the other artists; the axesPatch name is
        # deprecated.  We use the frame to draw the edges so we are
        # setting the edgecolor to None
        self.patch = self.axesPatch = self._gen_axes_patch()
        self.patch.set_figure(self.figure)
        self.patch.set_facecolor(self._axisbg)
        self.patch.set_edgecolor('None')
        self.patch.set_linewidth(0)
        self.patch.set_transform(self.transAxes)

        self.set_axis_on()

        self.xaxis.set_clip_path(self.patch)
        self.yaxis.set_clip_path(self.patch)

        self._shared_x_axes.clean()
        self._shared_y_axes.clean()
        if self._sharex:
            self.xaxis.set_visible(xaxis_visible)
            self.patch.set_visible(patch_visible)

        if self._sharey:
            self.yaxis.set_visible(yaxis_visible)
            self.patch.set_visible(patch_visible)
        self.stale = True

    def clear(self):
        """clear the axes"""
        self.cla()

    def set_prop_cycle(self, *args, **kwargs):
        """
        Set the property cycle for any future plot commands on this Axes.

        set_prop_cycle(arg)
        set_prop_cycle(label, itr)
        set_prop_cycle(label1=itr1[, label2=itr2[, ...]])

        Form 1 simply sets given `Cycler` object.

        Form 2 creates and sets  a `Cycler` from a label and an iterable.

        Form 3 composes and sets  a `Cycler` as an inner product of the
        pairs of keyword arguments. In other words, all of the
        iterables are cycled simultaneously, as if through zip().

        Parameters
        ----------
        arg : Cycler
            Set the given Cycler.
            Can also be `None` to reset to the cycle defined by the
            current style.

        label : str
            The property key. Must be a valid `Artist` property.
            For example, 'color' or 'linestyle'. Aliases are allowed,
            such as 'c' for 'color' and 'lw' for 'linewidth'.

        itr : iterable
            Finite-length iterable of the property values. These values
            are validated and will raise a ValueError if invalid.

        See Also
        --------
            :func:`cycler`      Convenience function for creating your
                                own cyclers.

        """
        if args and kwargs:
            raise TypeError("Cannot supply both positional and keyword "
                            "arguments to this method.")
        if len(args) == 1 and args[0] is None:
            prop_cycle = None
        else:
            prop_cycle = cycler(*args, **kwargs)
        self._get_lines.set_prop_cycle(prop_cycle)
        self._get_patches_for_fill.set_prop_cycle(prop_cycle)

    def set_color_cycle(self, clist):
        """
        Set the color cycle for any future plot commands on this Axes.

        *clist* is a list of mpl color specifiers.

        .. deprecated:: 1.5
        """
        cbook.warn_deprecated(
                '1.5', name='set_color_cycle', alternative='set_prop_cycle')
        if clist is None:
            # Calling set_color_cycle() or set_prop_cycle() with None
            # effectively resets the cycle, but you can't do
            # set_prop_cycle('color', None). So we are special-casing this.
            self.set_prop_cycle(None)
        else:
            self.set_prop_cycle('color', clist)

    def ishold(self):
        """return the HOLD status of the axes"""
        return self._hold

    def hold(self, b=None):
        """
        Call signature::

          hold(b=None)

        Set the hold state.  If *hold* is *None* (default), toggle the
        *hold* state.  Else set the *hold* state to boolean value *b*.

        Examples::

          # toggle hold
          hold()

          # turn hold on
          hold(True)

          # turn hold off
          hold(False)

        When hold is *True*, subsequent plot commands will be added to
        the current axes.  When hold is *False*, the current axes and
        figure will be cleared on the next plot command

        """
        if b is None:
            self._hold = not self._hold
        else:
            self._hold = b

    def get_aspect(self):
        return self._aspect

    def set_aspect(self, aspect, adjustable=None, anchor=None):
        """
        *aspect*

          ========   ================================================
          value      description
          ========   ================================================
          'auto'     automatic; fill position rectangle with data
          'normal'   same as 'auto'; deprecated
          'equal'    same scaling from data to plot units for x and y
           num       a circle will be stretched such that the height
                     is num times the width. aspect=1 is the same as
                     aspect='equal'.
          ========   ================================================

        *adjustable*

          ============   =====================================
          value          description
          ============   =====================================
          'box'          change physical size of axes
          'datalim'      change xlim or ylim
          'box-forced'   same as 'box', but axes can be shared
          ============   =====================================

        'box' does not allow axes sharing, as this can cause
        unintended side effect. For cases when sharing axes is
        fine, use 'box-forced'.

        *anchor*

          =====   =====================
          value   description
          =====   =====================
          'C'     centered
          'SW'    lower left corner
          'S'     middle of bottom edge
          'SE'    lower right corner
          etc.
          =====   =====================

        .. deprecated:: 1.2
            the option 'normal' for aspect is deprecated. Use 'auto' instead.
        """
        if aspect == 'normal':
            cbook.warn_deprecated(
                '1.2', name='normal', alternative='auto', obj_type='aspect')
            self._aspect = 'auto'

        elif aspect in ('equal', 'auto'):
            self._aspect = aspect
        else:
            self._aspect = float(aspect)  # raise ValueError if necessary

        if adjustable is not None:
            self.set_adjustable(adjustable)
        if anchor is not None:
            self.set_anchor(anchor)
        self.stale = True

    def get_adjustable(self):
        return self._adjustable

    def set_adjustable(self, adjustable):
        """
        ACCEPTS: [ 'box' | 'datalim' | 'box-forced']
        """
        if adjustable in ('box', 'datalim', 'box-forced'):
            if self in self._shared_x_axes or self in self._shared_y_axes:
                if adjustable == 'box':
                    raise ValueError(
                        'adjustable must be "datalim" for shared axes')
            self._adjustable = adjustable
        else:
            raise ValueError('argument must be "box", or "datalim"')
        self.stale = True

    def get_anchor(self):
        return self._anchor

    def set_anchor(self, anchor):
        """
        *anchor*

          =====  ============
          value  description
          =====  ============
          'C'    Center
          'SW'   bottom left
          'S'    bottom
          'SE'   bottom right
          'E'    right
          'NE'   top right
          'N'    top
          'NW'   top left
          'W'    left
          =====  ============

        """
        if (anchor in list(six.iterkeys(mtransforms.Bbox.coefs)) or
                len(anchor) == 2):
            self._anchor = anchor
        else:
            raise ValueError('argument must be among %s' %
                             ', '.join(six.iterkeys(mtransforms.Bbox.coefs)))
        self.stale = True

    def get_data_ratio(self):
        """
        Returns the aspect ratio of the raw data.

        This method is intended to be overridden by new projection
        types.
        """
        xmin, xmax = self.get_xbound()
        ymin, ymax = self.get_ybound()

        xsize = max(math.fabs(xmax - xmin), 1e-30)
        ysize = max(math.fabs(ymax - ymin), 1e-30)

        return ysize / xsize

    def get_data_ratio_log(self):
        """
        Returns the aspect ratio of the raw data in log scale.
        Will be used when both axis scales are in log.
        """
        xmin, xmax = self.get_xbound()
        ymin, ymax = self.get_ybound()

        xsize = max(math.fabs(math.log10(xmax) - math.log10(xmin)), 1e-30)
        ysize = max(math.fabs(math.log10(ymax) - math.log10(ymin)), 1e-30)

        return ysize / xsize

    def apply_aspect(self, position=None):
        """
        Use :meth:`_aspect` and :meth:`_adjustable` to modify the
        axes box or the view limits.
        """
        if position is None:
            position = self.get_position(original=True)

        aspect = self.get_aspect()

        if self.name != 'polar':
            xscale, yscale = self.get_xscale(), self.get_yscale()
            if xscale == "linear" and yscale == "linear":
                aspect_scale_mode = "linear"
            elif xscale == "log" and yscale == "log":
                aspect_scale_mode = "log"
            elif ((xscale == "linear" and yscale == "log") or
                  (xscale == "log" and yscale == "linear")):
                if aspect != "auto":
                    warnings.warn(
                        'aspect is not supported for Axes with xscale=%s, '
                        'yscale=%s' % (xscale, yscale))
                    aspect = "auto"
            else:  # some custom projections have their own scales.
                pass
        else:
            aspect_scale_mode = "linear"

        if aspect == 'auto':
            self.set_position(position, which='active')
            return

        if aspect == 'equal':
            A = 1
        else:
            A = aspect

        # Ensure at drawing time that any Axes involved in axis-sharing
        # does not have its position changed.
        if self in self._shared_x_axes or self in self._shared_y_axes:
            if self._adjustable == 'box':
                self._adjustable = 'datalim'
                warnings.warn(
                    'shared axes: "adjustable" is being changed to "datalim"')

        figW, figH = self.get_figure().get_size_inches()
        fig_aspect = figH / figW
        if self._adjustable in ['box', 'box-forced']:
            if aspect_scale_mode == "log":
                box_aspect = A * self.get_data_ratio_log()
            else:
                box_aspect = A * self.get_data_ratio()
            pb = position.frozen()
            pb1 = pb.shrunk_to_aspect(box_aspect, pb, fig_aspect)
            self.set_position(pb1.anchored(self.get_anchor(), pb), 'active')
            return

        # reset active to original in case it had been changed
        # by prior use of 'box'
        self.set_position(position, which='active')

        xmin, xmax = self.get_xbound()
        ymin, ymax = self.get_ybound()

        if aspect_scale_mode == "log":
            xmin, xmax = math.log10(xmin), math.log10(xmax)
            ymin, ymax = math.log10(ymin), math.log10(ymax)

        xsize = max(math.fabs(xmax - xmin), 1e-30)
        ysize = max(math.fabs(ymax - ymin), 1e-30)

        l, b, w, h = position.bounds
        box_aspect = fig_aspect * (h / w)
        data_ratio = box_aspect / A

        y_expander = (data_ratio * xsize / ysize - 1.0)
        # If y_expander > 0, the dy/dx viewLim ratio needs to increase
        if abs(y_expander) < 0.005:
            return

        if aspect_scale_mode == "log":
            dL = self.dataLim
            dL_width = math.log10(dL.x1) - math.log10(dL.x0)
            dL_height = math.log10(dL.y1) - math.log10(dL.y0)
            xr = 1.05 * dL_width
            yr = 1.05 * dL_height
        else:
            dL = self.dataLim
            xr = 1.05 * dL.width
            yr = 1.05 * dL.height

        xmarg = xsize - xr
        ymarg = ysize - yr
        Ysize = data_ratio * xsize
        Xsize = ysize / data_ratio
        Xmarg = Xsize - xr
        Ymarg = Ysize - yr
        # Setting these targets to, e.g., 0.05*xr does not seem to
        # help.
        xm = 0
        ym = 0

        changex = (self in self._shared_y_axes and
                   self not in self._shared_x_axes)
        changey = (self in self._shared_x_axes and
                   self not in self._shared_y_axes)
        if changex and changey:
            warnings.warn("adjustable='datalim' cannot work with shared "
                          "x and y axes")
            return
        if changex:
            adjust_y = False
        else:
            if xmarg > xm and ymarg > ym:
                adjy = ((Ymarg > 0 and y_expander < 0) or
                        (Xmarg < 0 and y_expander > 0))
            else:
                adjy = y_expander > 0
            adjust_y = changey or adjy  # (Ymarg > xmarg)
        if adjust_y:
            yc = 0.5 * (ymin + ymax)
            y0 = yc - Ysize / 2.0
            y1 = yc + Ysize / 2.0
            if aspect_scale_mode == "log":
                self.set_ybound((10. ** y0, 10. ** y1))
            else:
                self.set_ybound((y0, y1))
        else:
            xc = 0.5 * (xmin + xmax)
            x0 = xc - Xsize / 2.0
            x1 = xc + Xsize / 2.0
            if aspect_scale_mode == "log":
                self.set_xbound((10. ** x0, 10. ** x1))
            else:
                self.set_xbound((x0, x1))

    def axis(self, *v, **kwargs):
        """Set axis properties.

        Valid signatures::

          xmin, xmax, ymin, ymax = axis()
          xmin, xmax, ymin, ymax = axis(list_arg)
          xmin, xmax, ymin, ymax = axis(string_arg)
          xmin, xmax, ymin, ymax = axis(**kwargs)

        Parameters
        ----------
        v : list of float or {'on', 'off', 'equal', 'tight', 'scaled',\
            'normal', 'auto', 'image', 'square'}
            Optional positional argument

            Axis data limits set from a list; or a command relating to axes:

                ========== ================================================
                Value      Description
                ========== ================================================
                'on'       Toggle axis lines and labels on
                'off'      Toggle axis lines and labels off
                'equal'    Equal scaling by changing limits
                'scaled'   Equal scaling by changing box dimensions
                'tight'    Limits set such that all data is shown
                'auto'     Automatic scaling, fill rectangle with data
                'normal'   Same as 'auto'; deprecated
                'image'    'scaled' with axis limits equal to data limits
                'square'   Square plot; similar to 'scaled', but initially\
                           forcing xmax-xmin = ymax-ymin
                ========== ================================================

        emit : bool, optional
            Passed to set_{x,y}lim functions, if observers
            are notified of axis limit change

        xmin, ymin, xmax, ymax : float, optional
            The axis limits to be set

        Returns
        -------
        xmin, xmax, ymin, ymax : float
            The axis limits

        """

        if len(v) == 0 and len(kwargs) == 0:
            xmin, xmax = self.get_xlim()
            ymin, ymax = self.get_ylim()
            return xmin, xmax, ymin, ymax

        emit = kwargs.get('emit', True)

        if len(v) == 1 and is_string_like(v[0]):
            s = v[0].lower()
            if s == 'on':
                self.set_axis_on()
            elif s == 'off':
                self.set_axis_off()
            elif s in ('equal', 'tight', 'scaled', 'normal',
                       'auto', 'image', 'square'):
                self.set_autoscale_on(True)
                self.set_aspect('auto')
                self.autoscale_view(tight=False)
                # self.apply_aspect()
                if s == 'equal':
                    self.set_aspect('equal', adjustable='datalim')
                elif s == 'scaled':
                    self.set_aspect('equal', adjustable='box', anchor='C')
                    self.set_autoscale_on(False)  # Req. by Mark Bakker
                elif s == 'tight':
                    self.autoscale_view(tight=True)
                    self.set_autoscale_on(False)
                elif s == 'image':
                    self.autoscale_view(tight=True)
                    self.set_autoscale_on(False)
                    self.set_aspect('equal', adjustable='box', anchor='C')
                elif s == 'square':
                    self.set_aspect('equal', adjustable='box', anchor='C')
                    self.set_autoscale_on(False)
                    xlim = self.get_xlim()
                    ylim = self.get_ylim()
                    edge_size = max(np.diff(xlim), np.diff(ylim))
                    self.set_xlim([xlim[0], xlim[0] + edge_size],
                                  emit=emit, auto=False)
                    self.set_ylim([ylim[0], ylim[0] + edge_size],
                                  emit=emit, auto=False)
            else:
                raise ValueError('Unrecognized string %s to axis; '
                                 'try on or off' % s)
            xmin, xmax = self.get_xlim()
            ymin, ymax = self.get_ylim()
            return xmin, xmax, ymin, ymax

        try:
            v[0]
        except IndexError:
            xmin = kwargs.get('xmin', None)
            xmax = kwargs.get('xmax', None)
            auto = False  # turn off autoscaling, unless...
            if xmin is None and xmax is None:
                auto = None  # leave autoscaling state alone
            xmin, xmax = self.set_xlim(xmin, xmax, emit=emit, auto=auto)

            ymin = kwargs.get('ymin', None)
            ymax = kwargs.get('ymax', None)
            auto = False  # turn off autoscaling, unless...
            if ymin is None and ymax is None:
                auto = None  # leave autoscaling state alone
            ymin, ymax = self.set_ylim(ymin, ymax, emit=emit, auto=auto)
            return xmin, xmax, ymin, ymax

        v = v[0]
        if len(v) != 4:
            raise ValueError('v must contain [xmin xmax ymin ymax]')

        self.set_xlim([v[0], v[1]], emit=emit, auto=False)
        self.set_ylim([v[2], v[3]], emit=emit, auto=False)

        return v

    def get_legend(self):
        """
        Return the legend.Legend instance, or None if no legend is defined
        """
        return self.legend_

    def get_images(self):
        """return a list of Axes images contained by the Axes"""
        return cbook.silent_list('AxesImage', self.images)

    def get_lines(self):
        """Return a list of lines contained by the Axes"""
        return cbook.silent_list('Line2D', self.lines)

    def get_xaxis(self):
        """Return the XAxis instance"""
        return self.xaxis

    def get_xgridlines(self):
        """Get the x grid lines as a list of Line2D instances"""
        return cbook.silent_list('Line2D xgridline',
                                 self.xaxis.get_gridlines())

    def get_xticklines(self):
        """Get the xtick lines as a list of Line2D instances"""
        return cbook.silent_list('Text xtickline',
                                 self.xaxis.get_ticklines())

    def get_yaxis(self):
        """Return the YAxis instance"""
        return self.yaxis

    def get_ygridlines(self):
        """Get the y grid lines as a list of Line2D instances"""
        return cbook.silent_list('Line2D ygridline',
                                 self.yaxis.get_gridlines())

    def get_yticklines(self):
        """Get the ytick lines as a list of Line2D instances"""
        return cbook.silent_list('Line2D ytickline',
                                 self.yaxis.get_ticklines())

    # Adding and tracking artists

    def _sci(self, im):
        """
        helper for :func:`~matplotlib.pyplot.sci`;
        do not use elsewhere.
        """
        if isinstance(im, matplotlib.contour.ContourSet):
            if im.collections[0] not in self.collections:
                raise ValueError(
                    "ContourSet must be in current Axes")
        elif im not in self.images and im not in self.collections:
            raise ValueError(
                "Argument must be an image, collection, or ContourSet in "
                "this Axes")
        self._current_image = im

    def _gci(self):
        """
        Helper for :func:`~matplotlib.pyplot.gci`;
        do not use elsewhere.
        """
        return self._current_image

    def has_data(self):
        """
        Return *True* if any artists have been added to axes.

        This should not be used to determine whether the *dataLim*
        need to be updated, and may not actually be useful for
        anything.
        """
        return (
            len(self.collections) +
            len(self.images) +
            len(self.lines) +
            len(self.patches)) > 0

    def add_artist(self, a):
        """Add any :class:`~matplotlib.artist.Artist` to the axes.

        Use `add_artist` only for artists for which there is no dedicated
        "add" method; and if necessary, use a method such as
        `update_datalim` or `update_datalim_numerix` to manually update the
        dataLim if the artist is to be included in autoscaling.

        Returns the artist.
        """
        a.axes = self
        self.artists.append(a)
        self._set_artist_props(a)
        a.set_clip_path(self.patch)
        a._remove_method = lambda h: self.artists.remove(h)
        self.stale = True
        return a

    def add_collection(self, collection, autolim=True):
        """
        Add a :class:`~matplotlib.collections.Collection` instance
        to the axes.

        Returns the collection.
        """
        label = collection.get_label()
        if not label:
            collection.set_label('_collection%d' % len(self.collections))
        self.collections.append(collection)
        self._set_artist_props(collection)

        if collection.get_clip_path() is None:
            collection.set_clip_path(self.patch)

        if autolim:
            self.update_datalim(collection.get_datalim(self.transData))

        collection._remove_method = lambda h: self.collections.remove(h)
        self.stale = True
        return collection

    def add_image(self, image):
        """
        Add a :class:`~matplotlib.image.AxesImage` to the axes.

        Returns the image.
        """
        self._set_artist_props(image)
        self.images.append(image)
        image._remove_method = lambda h: self.images.remove(h)
        self.stale = True
        return image

    def add_line(self, line):
        """
        Add a :class:`~matplotlib.lines.Line2D` to the list of plot
        lines

        Returns the line.
        """
        self._set_artist_props(line)
        if line.get_clip_path() is None:
            line.set_clip_path(self.patch)

        self._update_line_limits(line)
        if not line.get_label():
            line.set_label('_line%d' % len(self.lines))
        self.lines.append(line)
        line._remove_method = lambda h: self.lines.remove(h)
        self.stale = True
        return line

    def _add_text(self, txt):
        """

        """
        self._set_artist_props(txt)
        self.texts.append(txt)
        txt._remove_method = lambda h: self.texts.remove(h)
        self.stale = True
        return txt

    def _update_line_limits(self, line):
        """
        Figures out the data limit of the given line, updating self.dataLim.
        """
        path = line.get_path()
        if path.vertices.size == 0:
            return

        line_trans = line.get_transform()

        if line_trans == self.transData:
            data_path = path

        elif any(line_trans.contains_branch_seperately(self.transData)):
            # identify the transform to go from line's coordinates
            # to data coordinates
            trans_to_data = line_trans - self.transData

            # if transData is affine we can use the cached non-affine component
            # of line's path. (since the non-affine part of line_trans is
            # entirely encapsulated in trans_to_data).
            if self.transData.is_affine:
                line_trans_path = line._get_transformed_path()
                na_path, _ = line_trans_path.get_transformed_path_and_affine()
                data_path = trans_to_data.transform_path_affine(na_path)
            else:
                data_path = trans_to_data.transform_path(path)
        else:
            # for backwards compatibility we update the dataLim with the
            # coordinate range of the given path, even though the coordinate
            # systems are completely different. This may occur in situations
            # such as when ax.transAxes is passed through for absolute
            # positioning.
            data_path = path

        if data_path.vertices.size > 0:
            updatex, updatey = line_trans.contains_branch_seperately(
                self.transData)
            self.dataLim.update_from_path(data_path,
                                          self.ignore_existing_data_limits,
                                          updatex=updatex,
                                          updatey=updatey)
            self.ignore_existing_data_limits = False

    def add_patch(self, p):
        """
        Add a :class:`~matplotlib.patches.Patch` *p* to the list of
        axes patches; the clipbox will be set to the Axes clipping
        box.  If the transform is not set, it will be set to
        :attr:`transData`.

        Returns the patch.
        """

        self._set_artist_props(p)
        if p.get_clip_path() is None:
            p.set_clip_path(self.patch)
        self._update_patch_limits(p)
        self.patches.append(p)
        p._remove_method = lambda h: self.patches.remove(h)
        return p

    def _update_patch_limits(self, patch):
        """update the data limits for patch *p*"""
        # hist can add zero height Rectangles, which is useful to keep
        # the bins, counts and patches lined up, but it throws off log
        # scaling.  We'll ignore rects with zero height or width in
        # the auto-scaling

        # cannot check for '==0' since unitized data may not compare to zero
        # issue #2150 - we update the limits if patch has non zero width
        # or height.
        if (isinstance(patch, mpatches.Rectangle) and
                ((not patch.get_width()) and (not patch.get_height()))):
            return
        vertices = patch.get_path().vertices
        if vertices.size > 0:
            xys = patch.get_patch_transform().transform(vertices)
            if patch.get_data_transform() != self.transData:
                patch_to_data = (patch.get_data_transform() -
                                 self.transData)
                xys = patch_to_data.transform(xys)

            updatex, updatey = patch.get_transform().\
                contains_branch_seperately(self.transData)
            self.update_datalim(xys, updatex=updatex,
                                updatey=updatey)

    def add_table(self, tab):
        """
        Add a :class:`~matplotlib.tables.Table` instance to the
        list of axes tables

        Returns the table.
        """
        self._set_artist_props(tab)
        self.tables.append(tab)
        tab.set_clip_path(self.patch)
        tab._remove_method = lambda h: self.tables.remove(h)
        return tab

    def add_container(self, container):
        """
        Add a :class:`~matplotlib.container.Container` instance
        to the axes.

        Returns the collection.
        """
        label = container.get_label()
        if not label:
            container.set_label('_container%d' % len(self.containers))
        self.containers.append(container)
        container.set_remove_method(lambda h: self.containers.remove(h))
        return container

    def relim(self, visible_only=False):
        """
        Recompute the data limits based on current artists. If you want to
        exclude invisible artists from the calculation, set
        ``visible_only=True``

        At present, :class:`~matplotlib.collections.Collection`
        instances are not supported.
        """
        # Collections are deliberately not supported (yet); see
        # the TODO note in artists.py.
        self.dataLim.ignore(True)
        self.dataLim.set_points(mtransforms.Bbox.null().get_points())
        self.ignore_existing_data_limits = True

        for line in self.lines:
            if not visible_only or line.get_visible():
                self._update_line_limits(line)

        for p in self.patches:
            if not visible_only or p.get_visible():
                self._update_patch_limits(p)

    def update_datalim(self, xys, updatex=True, updatey=True):
        """
        Update the data lim bbox with seq of xy tups or equiv. 2-D array
        """
        # if no data is set currently, the bbox will ignore its
        # limits and set the bound to be the bounds of the xydata.
        # Otherwise, it will compute the bounds of it's current data
        # and the data in xydata

        if iterable(xys) and not len(xys):
            return
        if not ma.isMaskedArray(xys):
            xys = np.asarray(xys)
        self.dataLim.update_from_data_xy(xys, self.ignore_existing_data_limits,
                                         updatex=updatex, updatey=updatey)
        self.ignore_existing_data_limits = False

    def update_datalim_numerix(self, x, y):
        """
        Update the data lim bbox with seq of xy tups
        """
        # if no data is set currently, the bbox will ignore it's
        # limits and set the bound to be the bounds of the xydata.
        # Otherwise, it will compute the bounds of it's current data
        # and the data in xydata
        if iterable(x) and not len(x):
            return
        self.dataLim.update_from_data(x, y, self.ignore_existing_data_limits)
        self.ignore_existing_data_limits = False

    def update_datalim_bounds(self, bounds):
        """
        Update the datalim to include the given
        :class:`~matplotlib.transforms.Bbox` *bounds*
        """
        self.dataLim.set(mtransforms.Bbox.union([self.dataLim, bounds]))

    def _process_unit_info(self, xdata=None, ydata=None, kwargs=None):
        """Look for unit *kwargs* and update the axis instances as necessary"""

        if self.xaxis is None or self.yaxis is None:
            return

        if xdata is not None:
            # we only need to update if there is nothing set yet.
            if not self.xaxis.have_units():
                self.xaxis.update_units(xdata)

        if ydata is not None:
            # we only need to update if there is nothing set yet.
            if not self.yaxis.have_units():
                self.yaxis.update_units(ydata)

        # process kwargs 2nd since these will override default units
        if kwargs is not None:
            xunits = kwargs.pop('xunits', self.xaxis.units)
            if self.name == 'polar':
                xunits = kwargs.pop('thetaunits', xunits)
            if xunits != self.xaxis.units:
                self.xaxis.set_units(xunits)
                # If the units being set imply a different converter,
                # we need to update.
                if xdata is not None:
                    self.xaxis.update_units(xdata)

            yunits = kwargs.pop('yunits', self.yaxis.units)
            if self.name == 'polar':
                yunits = kwargs.pop('runits', yunits)
            if yunits != self.yaxis.units:
                self.yaxis.set_units(yunits)
                # If the units being set imply a different converter,
                # we need to update.
                if ydata is not None:
                    self.yaxis.update_units(ydata)

    def in_axes(self, mouseevent):
        """
        Return *True* if the given *mouseevent* (in display coords)
        is in the Axes
        """
        return self.patch.contains(mouseevent)[0]

    def get_autoscale_on(self):
        """
        Get whether autoscaling is applied for both axes on plot commands
        """
        return self._autoscaleXon and self._autoscaleYon

    def get_autoscalex_on(self):
        """
        Get whether autoscaling for the x-axis is applied on plot commands
        """
        return self._autoscaleXon

    def get_autoscaley_on(self):
        """
        Get whether autoscaling for the y-axis is applied on plot commands
        """
        return self._autoscaleYon

    def set_autoscale_on(self, b):
        """
        Set whether autoscaling is applied on plot commands

        accepts: [ *True* | *False* ]
        """
        self._autoscaleXon = b
        self._autoscaleYon = b

    def set_autoscalex_on(self, b):
        """
        Set whether autoscaling for the x-axis is applied on plot commands

        accepts: [ *True* | *False* ]
        """
        self._autoscaleXon = b

    def set_autoscaley_on(self, b):
        """
        Set whether autoscaling for the y-axis is applied on plot commands

        accepts: [ *True* | *False* ]
        """
        self._autoscaleYon = b

    def set_xmargin(self, m):
        """
        Set padding of X data limits prior to autoscaling.

        *m* times the data interval will be added to each
        end of that interval before it is used in autoscaling.

        accepts: float in range 0 to 1
        """
        if m < 0 or m > 1:
            raise ValueError("margin must be in range 0 to 1")
        self._xmargin = m
        self.stale = True

    def set_ymargin(self, m):
        """
        Set padding of Y data limits prior to autoscaling.

        *m* times the data interval will be added to each
        end of that interval before it is used in autoscaling.

        accepts: float in range 0 to 1
        """
        if m < 0 or m > 1:
            raise ValueError("margin must be in range 0 to 1")
        self._ymargin = m
        self.stale = True

    def margins(self, *args, **kw):
        """
        Set or retrieve autoscaling margins.

        signatures::

            margins()

        returns xmargin, ymargin

        ::

            margins(margin)

            margins(xmargin, ymargin)

            margins(x=xmargin, y=ymargin)

            margins(..., tight=False)

        All three forms above set the xmargin and ymargin parameters.
        All keyword parameters are optional.  A single argument
        specifies both xmargin and ymargin.  The *tight* parameter
        is passed to :meth:`autoscale_view`, which is executed after
        a margin is changed; the default here is *True*, on the
        assumption that when margins are specified, no additional
        padding to match tick marks is usually desired.  Setting
        *tight* to *None* will preserve the previous setting.

        Specifying any margin changes only the autoscaling; for example,
        if *xmargin* is not None, then *xmargin* times the X data
        interval will be added to each end of that interval before
        it is used in autoscaling.

        """
        if not args and not kw:
            return self._xmargin, self._ymargin

        tight = kw.pop('tight', True)
        mx = kw.pop('x', None)
        my = kw.pop('y', None)
        if len(args) == 1:
            mx = my = args[0]
        elif len(args) == 2:
            mx, my = args
        elif len(args) > 2:
            raise ValueError("more than two arguments were supplied")
        if mx is not None:
            self.set_xmargin(mx)
        if my is not None:
            self.set_ymargin(my)

        scalex = (mx is not None)
        scaley = (my is not None)

        self.autoscale_view(tight=tight, scalex=scalex, scaley=scaley)

    def set_rasterization_zorder(self, z):
        """
        Set zorder value below which artists will be rasterized.  Set
        to `None` to disable rasterizing of artists below a particular
        zorder.
        """
        self._rasterization_zorder = z
        self.stale = True

    def get_rasterization_zorder(self):
        """
        Get zorder value below which artists will be rasterized
        """
        return self._rasterization_zorder

    def autoscale(self, enable=True, axis='both', tight=None):
        """
        Autoscale the axis view to the data (toggle).

        Convenience method for simple axis view autoscaling.
        It turns autoscaling on or off, and then,
        if autoscaling for either axis is on, it performs
        the autoscaling on the specified axis or axes.

        *enable*: [True | False | None]
            True (default) turns autoscaling on, False turns it off.
            None leaves the autoscaling state unchanged.

        *axis*: ['x' | 'y' | 'both']
            which axis to operate on; default is 'both'

        *tight*: [True | False | None]
            If True, set view limits to data limits;
            if False, let the locator and margins expand the view limits;
            if None, use tight scaling if the only artist is an image,
            otherwise treat *tight* as False.
            The *tight* setting is retained for future autoscaling
            until it is explicitly changed.


        Returns None.
        """
        if enable is None:
            scalex = True
            scaley = True
        else:
            scalex = False
            scaley = False
            if axis in ['x', 'both']:
                self._autoscaleXon = bool(enable)
                scalex = self._autoscaleXon
            if axis in ['y', 'both']:
                self._autoscaleYon = bool(enable)
                scaley = self._autoscaleYon
        self.autoscale_view(tight=tight, scalex=scalex, scaley=scaley)

    def autoscale_view(self, tight=None, scalex=True, scaley=True):
        """
        Autoscale the view limits using the data limits. You can
        selectively autoscale only a single axis, e.g., the xaxis by
        setting *scaley* to *False*.  The autoscaling preserves any
        axis direction reversal that has already been done.

        The data limits are not updated automatically when artist data are
        changed after the artist has been added to an Axes instance.  In that
        case, use :meth:`matplotlib.axes.Axes.relim` prior to calling
        autoscale_view.
        """
        if tight is None:
            # if image data only just use the datalim
            _tight = self._tight or (len(self.images) > 0 and
                                     len(self.lines) == 0 and
                                     len(self.patches) == 0)
        else:
            _tight = self._tight = bool(tight)

        if scalex and self._autoscaleXon:
            xshared = self._shared_x_axes.get_siblings(self)
            dl = [ax.dataLim for ax in xshared]
            # ignore non-finite data limits if good limits exist
            finite_dl = [d for d in dl if np.isfinite(d).all()]
            if len(finite_dl):
                dl = finite_dl

            bb = mtransforms.BboxBase.union(dl)
            x0, x1 = bb.intervalx
            xlocator = self.xaxis.get_major_locator()
            try:
                # e.g., DateLocator has its own nonsingular()
                x0, x1 = xlocator.nonsingular(x0, x1)
            except AttributeError:
                # Default nonsingular for, e.g., MaxNLocator
                x0, x1 = mtransforms.nonsingular(x0, x1, increasing=False,
                                                 expander=0.05)
            if self._xmargin > 0:
                delta = (x1 - x0) * self._xmargin
                x0 -= delta
                x1 += delta
            if not _tight:
                x0, x1 = xlocator.view_limits(x0, x1)
            self.set_xbound(x0, x1)

        if scaley and self._autoscaleYon:
            yshared = self._shared_y_axes.get_siblings(self)
            dl = [ax.dataLim for ax in yshared]
            # ignore non-finite data limits if good limits exist
            finite_dl = [d for d in dl if np.isfinite(d).all()]
            if len(finite_dl):
                dl = finite_dl

            bb = mtransforms.BboxBase.union(dl)
            y0, y1 = bb.intervaly
            ylocator = self.yaxis.get_major_locator()
            try:
                y0, y1 = ylocator.nonsingular(y0, y1)
            except AttributeError:
                y0, y1 = mtransforms.nonsingular(y0, y1, increasing=False,
                                                 expander=0.05)
            if self._ymargin > 0:
                delta = (y1 - y0) * self._ymargin
                y0 -= delta
                y1 += delta
            if not _tight:
                y0, y1 = ylocator.view_limits(y0, y1)
            self.set_ybound(y0, y1)

    def _get_axis_list(self):
        return (self.xaxis, self.yaxis)

    # Drawing

    @allow_rasterization
    def draw(self, renderer=None, inframe=False):
        """Draw everything (plot lines, axes, labels)"""
        if renderer is None:
            renderer = self._cachedRenderer

        if renderer is None:
            raise RuntimeError('No renderer defined')
        if not self.get_visible():
            return
        renderer.open_group('axes')
        # prevent triggering call backs during the draw process
        self._stale = True
        locator = self.get_axes_locator()
        if locator:
            pos = locator(self, renderer)
            self.apply_aspect(pos)
        else:
            self.apply_aspect()

        artists = self.get_children()
        artists.remove(self.patch)

        # the frame draws the edges around the axes patch -- we
        # decouple these so the patch can be in the background and the
        # frame in the foreground. Do this before drawing the axis
        # objects so that the spine has the opportunity to update them.
        if not (self.axison and self._frameon):
            for spine in six.itervalues(self.spines):
                artists.remove(spine)

        if self.axison and not inframe:
            if self._axisbelow:
                self.xaxis.set_zorder(0.5)
                self.yaxis.set_zorder(0.5)
            else:
                self.xaxis.set_zorder(2.5)
                self.yaxis.set_zorder(2.5)
        else:
            for _axis in self._get_axis_list():
                artists.remove(_axis)

        if inframe:
            artists.remove(self.title)
            artists.remove(self._left_title)
            artists.remove(self._right_title)

        # add images to dsu if the backend supports compositing.
        # otherwise, does the manual compositing  without adding images to dsu.
        if len(self.images) <= 1 or renderer.option_image_nocomposite():
            _do_composite = False
        else:
            _do_composite = True
            for im in self.images:
                artists.remove(im)

        if self.figure.canvas.is_saving():
            dsu = [(a.zorder, a) for a in artists]
        else:
            dsu = [(a.zorder, a) for a in artists
                   if (not a.get_animated() or a in self.images)]

        dsu.sort(key=itemgetter(0))

        # rasterize artists with negative zorder
        # if the minimum zorder is negative, start rasterization
        rasterization_zorder = self._rasterization_zorder
        if (rasterization_zorder is not None and
                len(dsu) > 0 and dsu[0][0] < rasterization_zorder):
            renderer.start_rasterizing()
            dsu_rasterized = [l for l in dsu if l[0] < rasterization_zorder]
            dsu = [l for l in dsu if l[0] >= rasterization_zorder]
        else:
            dsu_rasterized = []

        # the patch draws the background rectangle -- the frame below
        # will draw the edges
        if self.axison and self._frameon:
            self.patch.draw(renderer)

        if _do_composite:
            # make a composite image, blending alpha
            # list of (mimage.Image, ox, oy)

            zorder_images = [(im.zorder, im) for im in self.images
                             if im.get_visible()]
            zorder_images.sort(key=lambda x: x[0])

            mag = renderer.get_image_magnification()
            ims = [(im.make_image(mag), 0, 0, im.get_alpha())
                   for z, im in zorder_images]

            l, b, r, t = self.bbox.extents
            width = int(mag * ((round(r) + 0.5) - (round(l) - 0.5)))
            height = int(mag * ((round(t) + 0.5) - (round(b) - 0.5)))
            im = mimage.from_images(height,
                                    width,
                                    ims)

            im.is_grayscale = False
            l, b, w, h = self.bbox.bounds
            # composite images need special args so they will not
            # respect z-order for now

            gc = renderer.new_gc()
            gc.set_clip_rectangle(self.bbox)
            gc.set_clip_path(mtransforms.TransformedPath(
                self.patch.get_path(),
                self.patch.get_transform()))

            renderer.draw_image(gc, round(l), round(b), im)
            gc.restore()

        if dsu_rasterized:
            for zorder, a in dsu_rasterized:
                a.draw(renderer)
            renderer.stop_rasterizing()

        for zorder, a in dsu:
            a.draw(renderer)

        renderer.close_group('axes')
        self._cachedRenderer = renderer
        self.stale = False

    def draw_artist(self, a):
        """
        This method can only be used after an initial draw which
        caches the renderer.  It is used to efficiently update Axes
        data (axis ticks, labels, etc are not updated)
        """
        if self._cachedRenderer is None:
            msg = ('draw_artist can only be used after an initial draw which'
                   ' caches the render')
            raise AttributeError(msg)
        a.draw(self._cachedRenderer)

    def redraw_in_frame(self):
        """
        This method can only be used after an initial draw which
        caches the renderer.  It is used to efficiently update Axes
        data (axis ticks, labels, etc are not updated)
        """
        if self._cachedRenderer is None:
            msg = ('redraw_in_frame can only be used after an initial draw'
                   ' which caches the render')
            raise AttributeError(msg)
        self.draw(self._cachedRenderer, inframe=True)

    def get_renderer_cache(self):
        return self._cachedRenderer

    # Axes rectangle characteristics

    def get_frame_on(self):
        """
        Get whether the axes rectangle patch is drawn
        """
        return self._frameon

    def set_frame_on(self, b):
        """
        Set whether the axes rectangle patch is drawn

        ACCEPTS: [ *True* | *False* ]
        """
        self._frameon = b
        self.stale = True

    def get_axisbelow(self):
        """
        Get whether axis below is true or not
        """
        return self._axisbelow

    def set_axisbelow(self, b):
        """
        Set whether the axis ticks and gridlines are above or below most
        artists

        ACCEPTS: [ *True* | *False* ]
        """
        self._axisbelow = b
        self.stale = True

    @docstring.dedent_interpd
    def grid(self, b=None, which='major', axis='both', **kwargs):
        """
        Turn the axes grids on or off.

        Call signature::

           grid(self, b=None, which='major', axis='both', **kwargs)

        Set the axes grids on or off; *b* is a boolean.  (For MATLAB
        compatibility, *b* may also be a string, 'on' or 'off'.)

        If *b* is *None* and ``len(kwargs)==0``, toggle the grid state.  If
        *kwargs* are supplied, it is assumed that you want a grid and *b*
        is thus set to *True*.

        *which* can be 'major' (default), 'minor', or 'both' to control
        whether major tick grids, minor tick grids, or both are affected.

        *axis* can be 'both' (default), 'x', or 'y' to control which
        set of gridlines are drawn.

        *kwargs* are used to set the grid line properties, e.g.,::

           ax.grid(color='r', linestyle='-', linewidth=2)

        Valid :class:`~matplotlib.lines.Line2D` kwargs are

        %(Line2D)s

        """
        if len(kwargs):
            b = True
        b = _string_to_bool(b)

        if axis == 'x' or axis == 'both':
            self.xaxis.grid(b, which=which, **kwargs)
        if axis == 'y' or axis == 'both':
            self.yaxis.grid(b, which=which, **kwargs)

    def ticklabel_format(self, **kwargs):
        """
        Change the `~matplotlib.ticker.ScalarFormatter` used by
        default for linear axes.

        Optional keyword arguments:

          ============   =========================================
          Keyword        Description
          ============   =========================================
          *style*        [ 'sci' (or 'scientific') | 'plain' ]
                         plain turns off scientific notation
          *scilimits*    (m, n), pair of integers; if *style*
                         is 'sci', scientific notation will
                         be used for numbers outside the range
                         10`m`:sup: to 10`n`:sup:.
                         Use (0,0) to include all numbers.
          *useOffset*    [True | False | offset]; if True,
                         the offset will be calculated as needed;
                         if False, no offset will be used; if a
                         numeric offset is specified, it will be
                         used.
          *axis*         [ 'x' | 'y' | 'both' ]
          *useLocale*    If True, format the number according to
                         the current locale.  This affects things
                         such as the character used for the
                         decimal separator.  If False, use
                         C-style (English) formatting.  The
                         default setting is controlled by the
                         axes.formatter.use_locale rcparam.
          ============   =========================================

        Only the major ticks are affected.
        If the method is called when the
        :class:`~matplotlib.ticker.ScalarFormatter` is not the
        :class:`~matplotlib.ticker.Formatter` being used, an
        :exc:`AttributeError` will be raised.

        """
        style = kwargs.pop('style', '').lower()
        scilimits = kwargs.pop('scilimits', None)
        useOffset = kwargs.pop('useOffset', None)
        useLocale = kwargs.pop('useLocale', None)
        axis = kwargs.pop('axis', 'both').lower()
        if scilimits is not None:
            try:
                m, n = scilimits
                m + n + 1  # check that both are numbers
            except (ValueError, TypeError):
                raise ValueError("scilimits must be a sequence of 2 integers")
        if style[:3] == 'sci':
            sb = True
        elif style in ['plain', 'comma']:
            sb = False
            if style == 'plain':
                cb = False
            else:
                cb = True
                raise NotImplementedError("comma style remains to be added")
        elif style == '':
            sb = None
        else:
            raise ValueError("%s is not a valid style value")
        try:
            if sb is not None:
                if axis == 'both' or axis == 'x':
                    self.xaxis.major.formatter.set_scientific(sb)
                if axis == 'both' or axis == 'y':
                    self.yaxis.major.formatter.set_scientific(sb)
            if scilimits is not None:
                if axis == 'both' or axis == 'x':
                    self.xaxis.major.formatter.set_powerlimits(scilimits)
                if axis == 'both' or axis == 'y':
                    self.yaxis.major.formatter.set_powerlimits(scilimits)
            if useOffset is not None:
                if axis == 'both' or axis == 'x':
                    self.xaxis.major.formatter.set_useOffset(useOffset)
                if axis == 'both' or axis == 'y':
                    self.yaxis.major.formatter.set_useOffset(useOffset)
            if useLocale is not None:
                if axis == 'both' or axis == 'x':
                    self.xaxis.major.formatter.set_useLocale(useLocale)
                if axis == 'both' or axis == 'y':
                    self.yaxis.major.formatter.set_useLocale(useLocale)
        except AttributeError:
            raise AttributeError(
                "This method only works with the ScalarFormatter.")

    def locator_params(self, axis='both', tight=None, **kwargs):
        """
        Control behavior of tick locators.

        Keyword arguments:

        *axis*
            ['x' | 'y' | 'both']  Axis on which to operate;
            default is 'both'.

        *tight*
            [True | False | None] Parameter passed to :meth:`autoscale_view`.
            Default is None, for no change.

        Remaining keyword arguments are passed to directly to the
        :meth:`~matplotlib.ticker.MaxNLocator.set_params` method.

        Typically one might want to reduce the maximum number
        of ticks and use tight bounds when plotting small
        subplots, for example::

            ax.locator_params(tight=True, nbins=4)

        Because the locator is involved in autoscaling,
        :meth:`autoscale_view` is called automatically after
        the parameters are changed.

        This presently works only for the
        :class:`~matplotlib.ticker.MaxNLocator` used
        by default on linear axes, but it may be generalized.
        """
        _x = axis in ['x', 'both']
        _y = axis in ['y', 'both']
        if _x:
            self.xaxis.get_major_locator().set_params(**kwargs)
        if _y:
            self.yaxis.get_major_locator().set_params(**kwargs)
        self.autoscale_view(tight=tight, scalex=_x, scaley=_y)

    def tick_params(self, axis='both', **kwargs):
        """
        Change the appearance of ticks and tick labels.

        Keyword arguments:

        *axis* : ['x' | 'y' | 'both']
            Axis on which to operate; default is 'both'.

        *reset* : [True | False]
            If *True*, set all parameters to defaults
            before processing other keyword arguments.  Default is
            *False*.

        *which* : ['major' | 'minor' | 'both']
            Default is 'major'; apply arguments to *which* ticks.

        *direction* : ['in' | 'out' | 'inout']
            Puts ticks inside the axes, outside the axes, or both.

        *length*
            Tick length in points.

        *width*
            Tick width in points.

        *color*
            Tick color; accepts any mpl color spec.

        *pad*
            Distance in points between tick and label.

        *labelsize*
            Tick label font size in points or as a string (e.g., 'large').

        *labelcolor*
            Tick label color; mpl color spec.

        *colors*
            Changes the tick color and the label color to the same value:
            mpl color spec.

        *zorder*
            Tick and label zorder.

        *bottom*, *top*, *left*, *right* : [bool | 'on' | 'off']
            controls whether to draw the respective ticks.

        *labelbottom*, *labeltop*, *labelleft*, *labelright*
            Boolean or ['on' | 'off'], controls whether to draw the
            respective tick labels.

        Example::

            ax.tick_params(direction='out', length=6, width=2, colors='r')

        This will make all major ticks be red, pointing out of the box,
        and with dimensions 6 points by 2 points.  Tick labels will
        also be red.

        """
        if axis in ['x', 'both']:
            xkw = dict(kwargs)
            xkw.pop('left', None)
            xkw.pop('right', None)
            xkw.pop('labelleft', None)
            xkw.pop('labelright', None)
            self.xaxis.set_tick_params(**xkw)
        if axis in ['y', 'both']:
            ykw = dict(kwargs)
            ykw.pop('top', None)
            ykw.pop('bottom', None)
            ykw.pop('labeltop', None)
            ykw.pop('labelbottom', None)
            self.yaxis.set_tick_params(**ykw)

    def set_axis_off(self):
        """turn off the axis"""
        self.axison = False
        self.stale = True

    def set_axis_on(self):
        """turn on the axis"""
        self.axison = True
        self.stale = True

    def get_axis_bgcolor(self):
        """Return the axis background color"""
        return self._axisbg

    def set_axis_bgcolor(self, color):
        """
        set the axes background color

        ACCEPTS: any matplotlib color - see
        :func:`~matplotlib.pyplot.colors`
        """

        self._axisbg = color
        self.patch.set_facecolor(color)
        self.stale = True
    # data limits, ticks, tick labels, and formatting

    def invert_xaxis(self):
        "Invert the x-axis."
        left, right = self.get_xlim()
        self.set_xlim(right, left, auto=None)

    def xaxis_inverted(self):
        """Returns *True* if the x-axis is inverted."""
        left, right = self.get_xlim()
        return right < left

    def get_xbound(self):
        """
        Returns the x-axis numerical bounds where::

          lowerBound < upperBound

        """
        left, right = self.get_xlim()
        if left < right:
            return left, right
        else:
            return right, left

    def set_xbound(self, lower=None, upper=None):
        """
        Set the lower and upper numerical bounds of the x-axis.
        This method will honor axes inversion regardless of parameter order.
        It will not change the _autoscaleXon attribute.
        """
        if upper is None and iterable(lower):
            lower, upper = lower

        old_lower, old_upper = self.get_xbound()

        if lower is None:
            lower = old_lower
        if upper is None:
            upper = old_upper

        if self.xaxis_inverted():
            if lower < upper:
                self.set_xlim(upper, lower, auto=None)
            else:
                self.set_xlim(lower, upper, auto=None)
        else:
            if lower < upper:
                self.set_xlim(lower, upper, auto=None)
            else:
                self.set_xlim(upper, lower, auto=None)

    def get_xlim(self):
        """
        Get the x-axis range [*left*, *right*]
        """
        return tuple(self.viewLim.intervalx)

    def set_xlim(self, left=None, right=None, emit=True, auto=False, **kw):
        """
        Call signature::

          set_xlim(self, *args, **kwargs):

        Set the data limits for the xaxis

        Examples::

          set_xlim((left, right))
          set_xlim(left, right)
          set_xlim(left=1) # right unchanged
          set_xlim(right=1) # left unchanged

        Keyword arguments:

          *left*: scalar
            The left xlim; *xmin*, the previous name, may still be used

          *right*: scalar
            The right xlim; *xmax*, the previous name, may still be used

          *emit*: [ *True* | *False* ]
            Notify observers of limit change

          *auto*: [ *True* | *False* | *None* ]
            Turn *x* autoscaling on (*True*), off (*False*; default),
            or leave unchanged (*None*)

        Note, the *left* (formerly *xmin*) value may be greater than
        the *right* (formerly *xmax*).
        For example, suppose *x* is years before present.
        Then one might use::

          set_ylim(5000, 0)

        so 5000 years ago is on the left of the plot and the
        present is on the right.

        Returns the current xlimits as a length 2 tuple

        ACCEPTS: length 2 sequence of floats
        """
        if 'xmin' in kw:
            left = kw.pop('xmin')
        if 'xmax' in kw:
            right = kw.pop('xmax')
        if kw:
            raise ValueError("unrecognized kwargs: %s" %
                             list(six.iterkeys(kw)))

        if right is None and iterable(left):
            left, right = left

        self._process_unit_info(xdata=(left, right))
        if left is not None:
            left = self.convert_xunits(left)
        if right is not None:
            right = self.convert_xunits(right)

        old_left, old_right = self.get_xlim()
        if left is None:
            left = old_left
        if right is None:
            right = old_right

        if left == right:
            warnings.warn(
                ('Attempting to set identical left==right results\n'
                 'in singular transformations; automatically expanding.\n'
                 'left=%s, right=%s') % (left, right))
        left, right = mtransforms.nonsingular(left, right, increasing=False)
        left, right = self.xaxis.limit_range_for_scale(left, right)

        self.viewLim.intervalx = (left, right)
        if auto is not None:
            self._autoscaleXon = bool(auto)

        if emit:
            self.callbacks.process('xlim_changed', self)
            # Call all of the other x-axes that are shared with this one
            for other in self._shared_x_axes.get_siblings(self):
                if other is not self:
                    other.set_xlim(self.viewLim.intervalx,
                                   emit=False, auto=auto)
                    if (other.figure != self.figure and
                            other.figure.canvas is not None):
                        other.figure.canvas.draw_idle()
        self.stale = True
        return left, right

    def get_xscale(self):
        return self.xaxis.get_scale()
    get_xscale.__doc__ = "Return the xaxis scale string: %s""" % (
        ", ".join(mscale.get_scale_names()))

    @docstring.dedent_interpd
    def set_xscale(self, value, **kwargs):
        """
        Call signature::

          set_xscale(value)

        Set the scaling of the x-axis: %(scale)s

        ACCEPTS: [%(scale)s]

        Different kwargs are accepted, depending on the scale:
        %(scale_docs)s
        """
        # If the scale is being set to log, clip nonposx to prevent headaches
        # around zero
        if value.lower() == 'log' and 'nonposx' not in kwargs.keys():
            kwargs['nonposx'] = 'clip'

        g = self.get_shared_x_axes()
        for ax in g.get_siblings(self):
            ax.xaxis._set_scale(value, **kwargs)
            ax._update_transScale()
            ax.stale = True

        self.autoscale_view(scaley=False)

    def get_xticks(self, minor=False):
        """Return the x ticks as a list of locations"""
        return self.xaxis.get_ticklocs(minor=minor)

    def set_xticks(self, ticks, minor=False):
        """
        Set the x ticks with list of *ticks*

        ACCEPTS: sequence of floats
        """
        ret = self.xaxis.set_ticks(ticks, minor=minor)
        self.stale = True
        return ret

    def get_xmajorticklabels(self):
        """
        Get the xtick labels as a list of :class:`~matplotlib.text.Text`
        instances.
        """
        return cbook.silent_list('Text xticklabel',
                                 self.xaxis.get_majorticklabels())

    def get_xminorticklabels(self):
        """
        Get the x minor tick labels as a list of
        :class:`matplotlib.text.Text` instances.
        """
        return cbook.silent_list('Text xticklabel',
                                 self.xaxis.get_minorticklabels())

    def get_xticklabels(self, minor=False, which=None):
        """
        Get the x tick labels as a list of :class:`~matplotlib.text.Text`
        instances.

        Parameters
        ----------
        minor : bool
           If True return the minor ticklabels,
           else return the major ticklabels

        which : None, ('minor', 'major', 'both')
           Overrides `minor`.

           Selects which ticklabels to return

        Returns
        -------
        ret : list
           List of :class:`~matplotlib.text.Text` instances.
        """
        return cbook.silent_list('Text xticklabel',
                                 self.xaxis.get_ticklabels(minor=minor,
                                                           which=which))

    @docstring.dedent_interpd
    def set_xticklabels(self, labels, fontdict=None, minor=False, **kwargs):
        """
        Call signature::

          set_xticklabels(labels, fontdict=None, minor=False, **kwargs)

        Set the xtick labels with list of strings *labels*. Return a
        list of axis text instances.

        *kwargs* set the :class:`~matplotlib.text.Text` properties.
        Valid properties are
        %(Text)s

        ACCEPTS: sequence of strings
        """
        if fontdict is not None:
            kwargs.update(fontdict)
        ret = self.xaxis.set_ticklabels(labels,
                                        minor=minor, **kwargs)
        self.stale = True
        return ret

    def invert_yaxis(self):
        """
        Invert the y-axis.
        """
        bottom, top = self.get_ylim()
        self.set_ylim(top, bottom, auto=None)

    def yaxis_inverted(self):
        """Returns *True* if the y-axis is inverted."""
        bottom, top = self.get_ylim()
        return top < bottom

    def get_ybound(self):
        """
        Return y-axis numerical bounds in the form of
        ``lowerBound < upperBound``
        """
        bottom, top = self.get_ylim()
        if bottom < top:
            return bottom, top
        else:
            return top, bottom

    def set_ybound(self, lower=None, upper=None):
        """
        Set the lower and upper numerical bounds of the y-axis.
        This method will honor axes inversion regardless of parameter order.
        It will not change the _autoscaleYon attribute.
        """
        if upper is None and iterable(lower):
            lower, upper = lower

        old_lower, old_upper = self.get_ybound()

        if lower is None:
            lower = old_lower
        if upper is None:
            upper = old_upper

        if self.yaxis_inverted():
            if lower < upper:
                self.set_ylim(upper, lower, auto=None)
            else:
                self.set_ylim(lower, upper, auto=None)
        else:
            if lower < upper:
                self.set_ylim(lower, upper, auto=None)
            else:
                self.set_ylim(upper, lower, auto=None)

    def get_ylim(self):
        """
        Get the y-axis range [*bottom*, *top*]
        """
        return tuple(self.viewLim.intervaly)

    def set_ylim(self, bottom=None, top=None, emit=True, auto=False, **kw):
        """
        Call signature::

          set_ylim(self, *args, **kwargs):

        Set the data limits for the yaxis

        Examples::

          set_ylim((bottom, top))
          set_ylim(bottom, top)
          set_ylim(bottom=1) # top unchanged
          set_ylim(top=1) # bottom unchanged

        Keyword arguments:

          *bottom*: scalar
            The bottom ylim; the previous name, *ymin*, may still be used

          *top*: scalar
            The top ylim; the previous name, *ymax*, may still be used

          *emit*: [ *True* | *False* ]
            Notify observers of limit change

          *auto*: [ *True* | *False* | *None* ]
            Turn *y* autoscaling on (*True*), off (*False*; default),
            or leave unchanged (*None*)

        Note, the *bottom* (formerly *ymin*) value may be greater than
        the *top* (formerly *ymax*).
        For example, suppose *y* is depth in the ocean.
        Then one might use::

          set_ylim(5000, 0)

        so 5000 m depth is at the bottom of the plot and the
        surface, 0 m, is at the top.

        Returns the current ylimits as a length 2 tuple

        ACCEPTS: length 2 sequence of floats
        """
        if 'ymin' in kw:
            bottom = kw.pop('ymin')
        if 'ymax' in kw:
            top = kw.pop('ymax')
        if kw:
            raise ValueError("unrecognized kwargs: %s" %
                             list(six.iterkeys(kw)))

        if top is None and iterable(bottom):
            bottom, top = bottom

        if bottom is not None:
            bottom = self.convert_yunits(bottom)
        if top is not None:
            top = self.convert_yunits(top)

        old_bottom, old_top = self.get_ylim()

        if bottom is None:
            bottom = old_bottom
        if top is None:
            top = old_top

        if bottom == top:
            warnings.warn(
                ('Attempting to set identical bottom==top results\n'
                 'in singular transformations; automatically expanding.\n'
                 'bottom=%s, top=%s') % (bottom, top))

        bottom, top = mtransforms.nonsingular(bottom, top, increasing=False)
        bottom, top = self.yaxis.limit_range_for_scale(bottom, top)

        self.viewLim.intervaly = (bottom, top)
        if auto is not None:
            self._autoscaleYon = bool(auto)

        if emit:
            self.callbacks.process('ylim_changed', self)
            # Call all of the other y-axes that are shared with this one
            for other in self._shared_y_axes.get_siblings(self):
                if other is not self:
                    other.set_ylim(self.viewLim.intervaly,
                                   emit=False, auto=auto)
                    if (other.figure != self.figure and
                            other.figure.canvas is not None):
                        other.figure.canvas.draw_idle()
        self.stale = True
        return bottom, top

    def get_yscale(self):
        return self.yaxis.get_scale()
    get_yscale.__doc__ = "Return the yaxis scale string: %s""" % (
        ", ".join(mscale.get_scale_names()))

    @docstring.dedent_interpd
    def set_yscale(self, value, **kwargs):
        """
        Call signature::

          set_yscale(value)

        Set the scaling of the y-axis: %(scale)s

        ACCEPTS: [%(scale)s]

        Different kwargs are accepted, depending on the scale:
        %(scale_docs)s
        """
        # If the scale is being set to log, clip nonposy to prevent headaches
        # around zero
        if value.lower() == 'log' and 'nonposy' not in kwargs.keys():
            kwargs['nonposy'] = 'clip'

        g = self.get_shared_y_axes()
        for ax in g.get_siblings(self):
            ax.yaxis._set_scale(value, **kwargs)
            ax._update_transScale()
            ax.stale = True
        self.autoscale_view(scalex=False)

    def get_yticks(self, minor=False):
        """Return the y ticks as a list of locations"""
        return self.yaxis.get_ticklocs(minor=minor)

    def set_yticks(self, ticks, minor=False):
        """
        Set the y ticks with list of *ticks*

        ACCEPTS: sequence of floats

        Keyword arguments:

          *minor*: [ *False* | *True* ]
            Sets the minor ticks if *True*
        """
        ret = self.yaxis.set_ticks(ticks, minor=minor)
        return ret

    def get_ymajorticklabels(self):
        """
        Get the major y tick labels as a list of
        :class:`~matplotlib.text.Text` instances.
        """
        return cbook.silent_list('Text yticklabel',
                                 self.yaxis.get_majorticklabels())

    def get_yminorticklabels(self):
        """
        Get the minor y tick labels as a list of
        :class:`~matplotlib.text.Text` instances.
        """
        return cbook.silent_list('Text yticklabel',
                                 self.yaxis.get_minorticklabels())

    def get_yticklabels(self, minor=False, which=None):
        """
        Get the x tick labels as a list of :class:`~matplotlib.text.Text`
        instances.

        Parameters
        ----------
        minor : bool
           If True return the minor ticklabels,
           else return the major ticklabels

        which : None, ('minor', 'major', 'both')
           Overrides `minor`.

           Selects which ticklabels to return

        Returns
        -------
        ret : list
           List of :class:`~matplotlib.text.Text` instances.
        """
        return cbook.silent_list('Text yticklabel',
                                 self.yaxis.get_ticklabels(minor=minor,
                                                           which=which))

    @docstring.dedent_interpd
    def set_yticklabels(self, labels, fontdict=None, minor=False, **kwargs):
        """
        Call signature::

          set_yticklabels(labels, fontdict=None, minor=False, **kwargs)

        Set the y tick labels with list of strings *labels*.  Return a list of
        :class:`~matplotlib.text.Text` instances.

        *kwargs* set :class:`~matplotlib.text.Text` properties for the labels.
        Valid properties are
        %(Text)s

        ACCEPTS: sequence of strings
        """
        if fontdict is not None:
            kwargs.update(fontdict)
        return self.yaxis.set_ticklabels(labels,
                                         minor=minor, **kwargs)

    def xaxis_date(self, tz=None):
        """
        Sets up x-axis ticks and labels that treat the x data as dates.

        *tz* is a timezone string or :class:`tzinfo` instance.
        Defaults to rc value.
        """
        # should be enough to inform the unit conversion interface
        # dates are coming in
        self.xaxis.axis_date(tz)

    def yaxis_date(self, tz=None):
        """
        Sets up y-axis ticks and labels that treat the y data as dates.

        *tz* is a timezone string or :class:`tzinfo` instance.
        Defaults to rc value.
        """
        self.yaxis.axis_date(tz)

    def format_xdata(self, x):
        """
        Return *x* string formatted.  This function will use the attribute
        self.fmt_xdata if it is callable, else will fall back on the xaxis
        major formatter
        """
        try:
            return self.fmt_xdata(x)
        except TypeError:
            func = self.xaxis.get_major_formatter().format_data_short
            val = func(x)
            return val

    def format_ydata(self, y):
        """
        Return y string formatted.  This function will use the
        :attr:`fmt_ydata` attribute if it is callable, else will fall
        back on the yaxis major formatter
        """
        try:
            return self.fmt_ydata(y)
        except TypeError:
            func = self.yaxis.get_major_formatter().format_data_short
            val = func(y)
            return val

    def format_coord(self, x, y):
        """Return a format string formatting the *x*, *y* coord"""
        if x is None:
            xs = '???'
        else:
            xs = self.format_xdata(x)
        if y is None:
            ys = '???'
        else:
            ys = self.format_ydata(y)
        return 'x=%s y=%s' % (xs, ys)

    def minorticks_on(self):
        'Add autoscaling minor ticks to the axes.'
        for ax in (self.xaxis, self.yaxis):
            scale = ax.get_scale()
            if scale == 'log':
                s = ax._scale
                ax.set_minor_locator(mticker.LogLocator(s.base, s.subs))
            elif scale == 'symlog':
                s = ax._scale
                ax.set_minor_locator(
                    mticker.SymmetricalLogLocator(s.base, s.subs))
            else:
                ax.set_minor_locator(mticker.AutoMinorLocator())

    def minorticks_off(self):
        """Remove minor ticks from the axes."""
        self.xaxis.set_minor_locator(mticker.NullLocator())
        self.yaxis.set_minor_locator(mticker.NullLocator())

    # Interactive manipulation

    def can_zoom(self):
        """
        Return *True* if this axes supports the zoom box button functionality.
        """
        return True

    def can_pan(self):
        """
        Return *True* if this axes supports any pan/zoom button functionality.
        """
        return True

    def get_navigate(self):
        """
        Get whether the axes responds to navigation commands
        """
        return self._navigate

    def set_navigate(self, b):
        """
        Set whether the axes responds to navigation toolbar commands

        ACCEPTS: [ *True* | *False* ]
        """
        self._navigate = b

    def get_navigate_mode(self):
        """
        Get the navigation toolbar button status: 'PAN', 'ZOOM', or None
        """
        return self._navigate_mode

    def set_navigate_mode(self, b):
        """
        Set the navigation toolbar button status;

        .. warning::
            this is not a user-API function.

        """
        self._navigate_mode = b

    def _get_view(self):
        """
        Save information required to reproduce the current view.

        Called before a view is changed, such as during a pan or zoom
        initiated by the user. You may return any information you deem
        necessary to describe the view.

        .. note::

            Intended to be overridden by new projection types, but if not, the
            default implementation saves the view limits. You *must* implement
            :meth:`_set_view` if you implement this method.
        """
        xmin, xmax = self.get_xlim()
        ymin, ymax = self.get_ylim()
        return (xmin, xmax, ymin, ymax)

    def _set_view(self, view):
        """
        Apply a previously saved view.

        Called when restoring a view, such as with the navigation buttons.

        .. note::

            Intended to be overridden by new projection types, but if not, the
            default implementation restores the view limits. You *must*
            implement :meth:`_get_view` if you implement this method.
        """
        xmin, xmax, ymin, ymax = view
        self.set_xlim((xmin, xmax))
        self.set_ylim((ymin, ymax))

    def _set_view_from_bbox(self, bbox, direction='in',
                            mode=None, twinx=False, twiny=False):
        """
        Update view from a selection bbox.

        .. note::

            Intended to be overridden by new projection types, but if not, the
            default implementation sets the view limits to the bbox directly.

        Parameters
        ----------

        bbox : tuple
            The selected bounding box limits, in *display* coordinates.

        direction : str
            The direction to apply the bounding box.
                * `'in'` - The bounding box describes the view directly, i.e.,
                           it zooms in.
                * `'out'` - The bounding box describes the size to make the
                            existing view, i.e., it zooms out.

        mode : str or None
            The selection mode, whether to apply the bounding box in only the
            `'x'` direction, `'y'` direction or both (`None`).

        twinx : bool
            Whether this axis is twinned in the *x*-direction.

        twiny : bool
            Whether this axis is twinned in the *y*-direction.
        """

        lastx, lasty, x, y = bbox

        # zoom to rect
        inverse = self.transData.inverted()
        lastx, lasty = inverse.transform_point((lastx, lasty))
        x, y = inverse.transform_point((x, y))
        Xmin, Xmax = self.get_xlim()
        Ymin, Ymax = self.get_ylim()

        if twinx:
            x0, x1 = Xmin, Xmax
        else:
            if Xmin < Xmax:
                if x < lastx:
                    x0, x1 = x, lastx
                else:
                    x0, x1 = lastx, x
                if x0 < Xmin:
                    x0 = Xmin
                if x1 > Xmax:
                    x1 = Xmax
            else:
                if x > lastx:
                    x0, x1 = x, lastx
                else:
                    x0, x1 = lastx, x
                if x0 > Xmin:
                    x0 = Xmin
                if x1 < Xmax:
                    x1 = Xmax

        if twiny:
            y0, y1 = Ymin, Ymax
        else:
            if Ymin < Ymax:
                if y < lasty:
                    y0, y1 = y, lasty
                else:
                    y0, y1 = lasty, y
                if y0 < Ymin:
                    y0 = Ymin
                if y1 > Ymax:
                    y1 = Ymax
            else:
                if y > lasty:
                    y0, y1 = y, lasty
                else:
                    y0, y1 = lasty, y
                if y0 > Ymin:
                    y0 = Ymin
                if y1 < Ymax:
                    y1 = Ymax

        if direction == 'in':
            if mode == 'x':
                self.set_xlim((x0, x1))
            elif mode == 'y':
                self.set_ylim((y0, y1))
            else:
                self.set_xlim((x0, x1))
                self.set_ylim((y0, y1))
        elif direction == 'out':
            if self.get_xscale() == 'log':
                alpha = np.log(Xmax / Xmin) / np.log(x1 / x0)
                rx1 = pow(Xmin / x0, alpha) * Xmin
                rx2 = pow(Xmax / x0, alpha) * Xmin
            else:
                alpha = (Xmax - Xmin) / (x1 - x0)
                rx1 = alpha * (Xmin - x0) + Xmin
                rx2 = alpha * (Xmax - x0) + Xmin
            if self.get_yscale() == 'log':
                alpha = np.log(Ymax / Ymin) / np.log(y1 / y0)
                ry1 = pow(Ymin / y0, alpha) * Ymin
                ry2 = pow(Ymax / y0, alpha) * Ymin
            else:
                alpha = (Ymax - Ymin) / (y1 - y0)
                ry1 = alpha * (Ymin - y0) + Ymin
                ry2 = alpha * (Ymax - y0) + Ymin

            if mode == 'x':
                self.set_xlim((rx1, rx2))
            elif mode == 'y':
                self.set_ylim((ry1, ry2))
            else:
                self.set_xlim((rx1, rx2))
                self.set_ylim((ry1, ry2))

    def start_pan(self, x, y, button):
        """
        Called when a pan operation has started.

        *x*, *y* are the mouse coordinates in display coords.
        button is the mouse button number:

        * 1: LEFT
        * 2: MIDDLE
        * 3: RIGHT

        .. note::

            Intended to be overridden by new projection types.

        """
        self._pan_start = cbook.Bunch(
            lim=self.viewLim.frozen(),
            trans=self.transData.frozen(),
            trans_inverse=self.transData.inverted().frozen(),
            bbox=self.bbox.frozen(),
            x=x,
            y=y)

    def end_pan(self):
        """
        Called when a pan operation completes (when the mouse button
        is up.)

        .. note::

            Intended to be overridden by new projection types.

        """
        del self._pan_start

    def drag_pan(self, button, key, x, y):
        """
        Called when the mouse moves during a pan operation.

        *button* is the mouse button number:

        * 1: LEFT
        * 2: MIDDLE
        * 3: RIGHT

        *key* is a "shift" key

        *x*, *y* are the mouse coordinates in display coords.

        .. note::

            Intended to be overridden by new projection types.

        """
        def format_deltas(key, dx, dy):
            if key == 'control':
                if abs(dx) > abs(dy):
                    dy = dx
                else:
                    dx = dy
            elif key == 'x':
                dy = 0
            elif key == 'y':
                dx = 0
            elif key == 'shift':
                if 2 * abs(dx) < abs(dy):
                    dx = 0
                elif 2 * abs(dy) < abs(dx):
                    dy = 0
                elif abs(dx) > abs(dy):
                    dy = dy / abs(dy) * abs(dx)
                else:
                    dx = dx / abs(dx) * abs(dy)
            return (dx, dy)

        p = self._pan_start
        dx = x - p.x
        dy = y - p.y
        if dx == 0 and dy == 0:
            return
        if button == 1:
            dx, dy = format_deltas(key, dx, dy)
            result = p.bbox.translated(-dx, -dy) \
                .transformed(p.trans_inverse)
        elif button == 3:
            try:
                dx = -dx / float(self.bbox.width)
                dy = -dy / float(self.bbox.height)
                dx, dy = format_deltas(key, dx, dy)
                if self.get_aspect() != 'auto':
                    dx = 0.5 * (dx + dy)
                    dy = dx

                alpha = np.power(10.0, (dx, dy))
                start = np.array([p.x, p.y])
                oldpoints = p.lim.transformed(p.trans)
                newpoints = start + alpha * (oldpoints - start)
                result = mtransforms.Bbox(newpoints) \
                    .transformed(p.trans_inverse)
            except OverflowError:
                warnings.warn('Overflow while panning')
                return

        self.set_xlim(*result.intervalx)
        self.set_ylim(*result.intervaly)

    def get_cursor_props(self):
        """
        Return the cursor propertiess as a (*linewidth*, *color*)
        tuple, where *linewidth* is a float and *color* is an RGBA
        tuple
        """
        return self._cursorProps

    def set_cursor_props(self, *args):
        """
        Set the cursor property as::

          ax.set_cursor_props(linewidth, color)

        or::

          ax.set_cursor_props((linewidth, color))

        ACCEPTS: a (*float*, *color*) tuple
        """
        if len(args) == 1:
            lw, c = args[0]
        elif len(args) == 2:
            lw, c = args
        else:
            raise ValueError('args must be a (linewidth, color) tuple')
        c = mcolors.colorConverter.to_rgba(c)
        self._cursorProps = lw, c

    def get_children(self):
        """return a list of child artists"""
        children = []
        children.extend(self.collections)
        children.extend(self.patches)
        children.extend(self.lines)
        children.extend(self.texts)
        children.extend(self.artists)
        children.extend(six.itervalues(self.spines))
        children.append(self.xaxis)
        children.append(self.yaxis)
        children.append(self.title)
        children.append(self._left_title)
        children.append(self._right_title)
        children.extend(self.tables)
        children.extend(self.images)
        if self.legend_ is not None:
            children.append(self.legend_)
        children.append(self.patch)
        return children

    def contains(self, mouseevent):
        """
        Test whether the mouse event occured in the axes.

        Returns *True* / *False*, {}
        """
        if six.callable(self._contains):
            return self._contains(self, mouseevent)

        return self.patch.contains(mouseevent)

    def contains_point(self, point):
        """
        Returns *True* if the point (tuple of x,y) is inside the axes
        (the area defined by the its patch). A pixel coordinate is
        required.

        """
        return self.patch.contains_point(point, radius=1.0)

    def pick(self, *args):
        """
        Call signature::

            pick(mouseevent)

        each child artist will fire a pick event if mouseevent is over
        the artist and the artist has picker set
        """
        martist.Artist.pick(self, args[0])

    def get_default_bbox_extra_artists(self):
        return [artist for artist in self.get_children()
                if artist.get_visible()]

    def get_tightbbox(self, renderer, call_axes_locator=True):
        """
        Return the tight bounding box of the axes.
        The dimension of the Bbox in canvas coordinate.

        If *call_axes_locator* is *False*, it does not call the
        _axes_locator attribute, which is necessary to get the correct
        bounding box. ``call_axes_locator==False`` can be used if the
        caller is only intereted in the relative size of the tightbbox
        compared to the axes bbox.
        """

        bb = []

        if not self.get_visible():
            return None

        locator = self.get_axes_locator()
        if locator and call_axes_locator:
            pos = locator(self, renderer)
            self.apply_aspect(pos)
        else:
            self.apply_aspect()

        bb.append(self.get_window_extent(renderer))

        if self.title.get_visible():
            bb.append(self.title.get_window_extent(renderer))
        if self._left_title.get_visible():
            bb.append(self._left_title.get_window_extent(renderer))
        if self._right_title.get_visible():
            bb.append(self._right_title.get_window_extent(renderer))

        bb_xaxis = self.xaxis.get_tightbbox(renderer)
        if bb_xaxis:
            bb.append(bb_xaxis)

        bb_yaxis = self.yaxis.get_tightbbox(renderer)
        if bb_yaxis:
            bb.append(bb_yaxis)

        for child in self.get_children():
            if isinstance(child, OffsetBox) and child.get_visible():
                bb.append(child.get_window_extent(renderer))

        _bbox = mtransforms.Bbox.union(
            [b for b in bb if b.width != 0 or b.height != 0])

        return _bbox

    def _make_twin_axes(self, *kl, **kwargs):
        """
        make a twinx axes of self. This is used for twinx and twiny.
        """
        ax2 = self.figure.add_axes(self.get_position(True), *kl, **kwargs)
        return ax2

    def twinx(self):
        """
        Call signature::

          ax = twinx()

        create a twin of Axes for generating a plot with a sharex
        x-axis but independent y axis.  The y-axis of self will have
        ticks on left and the returned axes will have ticks on the
        right.

        .. note::
            For those who are 'picking' artists while using twinx, pick
            events are only called for the artists in the top-most axes.
        """
        ax2 = self._make_twin_axes(sharex=self)
        ax2.yaxis.tick_right()
        ax2.yaxis.set_label_position('right')
        ax2.yaxis.set_offset_position('right')
        self.yaxis.tick_left()
        ax2.xaxis.set_visible(False)
        ax2.patch.set_visible(False)
        return ax2

    def twiny(self):
        """
        Call signature::

          ax = twiny()

        create a twin of Axes for generating a plot with a shared
        y-axis but independent x axis.  The x-axis of self will have
        ticks on bottom and the returned axes will have ticks on the
        top.

        .. note::
            For those who are 'picking' artists while using twiny, pick
            events are only called for the artists in the top-most axes.
        """

        ax2 = self._make_twin_axes(sharey=self)
        ax2.xaxis.tick_top()
        ax2.xaxis.set_label_position('top')
        self.xaxis.tick_bottom()
        ax2.yaxis.set_visible(False)
        ax2.patch.set_visible(False)
        return ax2

    def get_shared_x_axes(self):
        'Return a copy of the shared axes Grouper object for x axes'
        return self._shared_x_axes

    def get_shared_y_axes(self):
        'Return a copy of the shared axes Grouper object for y axes'
        return self._shared_y_axes