This file is indexed.

/usr/lib/python3/dist-packages/kivy/multistroke.py is in python3-kivy 1.9.0-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
'''
Multistroke gesture recognizer
==============================

.. versionadded::
    1.9.0

.. warning::

    This is experimental and subject to change as long as this warning notice
    is present.

See :file:`kivy/examples/demo/multistroke/main.py` for a complete application
example.

Conceptual Overview
-------------------

This module implements the Protractor gesture recognition algorithm.

:class:`Recognizer` is the search/database API similar to
:class:`~kivy.gesture.GestureDatabase`. It maintains a list of
:class:`MultistrokeGesture` objects and allows you to search for a
user-input gestures among them.

:class:`ProgressTracker` tracks the progress of a :meth:`Recognizer.recognize`
call. It can be used to interact with the running recognizer task, for example
forcing it to stop half-way, or analyzing results as they arrive.

:class:`MultistrokeGesture` represents a gesture in the gesture database
(:attr:`Recognizer.db`). It is a container for :class:`UnistrokeTemplate`
objects, and implements the heap permute algorithm to automatically generate
all possible stroke orders (if desired).

:class:`UnistrokeTemplate` represents a single stroke path. It's typically
instantiated automatically by :class:`MultistrokeGesture`, but sometimes you
may need to create them manually.

:class:`Candidate` represents a user-input gesture that is used to search
the gesture database for matches. It is normally instantiated automatically
by calling :meth:`Recognizer.recognize`.

Usage examples
--------------

See :file:`kivy/examples/demo/multistroke/main.py` for a complete application
example.

You can bind to events on :class:`Recognizer` to track the state of all
calls to :meth:`Recognizer.recognize`. The callback function will receive an
instance of :class:`ProgressTracker` that can be used to analyze and control
various aspects of the recognition process ::

    from kivy.vector import Vector
    from kivy.multistroke import Recognizer

    gdb = Recognizer()

    def search_start(gdb, pt):
        print("A search is starting with %d tasks" % (pt.tasks))

    def search_stop(gdb, pt):
        # This will call max() on the result dictonary, so it's best to store
        # it instead of calling it 3 times consecutively
        best = pt.best
        print("Search ended (%s). Best is %s (score %f, distance %f)" % (
            pt.status, best['name'], best['score'], best['dist'] ))

    # Bind your callbacks to track all matching operations
    gdb.bind(on_search_start=search_start)
    gdb.bind(on_search_complete=search_stop)

    # The format below is referred to as `strokes`, a list of stroke paths.
    # Note that each path shown here consists of two points, ie a straight
    # line; if you plot them it looks like a T, hence the name.
    gdb.add_gesture('T', [
        [Vector(30, 7), Vector(103, 7)],
        [Vector(66, 7), Vector(66, 87)]])

    # Now you can search for the 'T' gesture using similar data (user input).
    # This will trigger both of the callbacks bound above.
    gdb.recognize([
        [Vector(45, 8), Vector(110, 12)],
        [Vector(88, 9), Vector(85, 95)]])

On the next :class:`~kivy.clock.Clock` tick, the matching process starts
(and, in this case, completes).

To track individual calls to :meth:`Recognizer.recognize`, use the return
value (also a :class:`ProgressTracker` instance) ::

    # Same as above, but keep track of progress using returned value
    progress = gdb.recognize([
        [Vector(45, 8), Vector(110, 12)],
        [Vector(88, 9), Vector(85, 95)]])

    progress.bind(on_progress=my_other_callback)
    print(progress.progress) # = 0

    # [ assuming a kivy.clock.Clock.tick() here ]

    print(result.progress) # = 1

Algorithm details
-----------------

For more information about the matching algorithm, see:

"Protractor: A fast and accurate gesture recognizer" by Yang Li
  http://yangl.org/pdf/protractor-chi2010.pdf

"$N-Protractor" by Lisa Anthony and Jacob O. Wobbrock
  http://depts.washington.edu/aimgroup/proj/dollar/ndollar-protractor.pdf

Some of the code is derived from the JavaScript implementation here:
  http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html
'''

__all__ = ('Recognizer', 'ProgressTracker', 'MultistrokeGesture',
           'UnistrokeTemplate', 'Candidate')

import pickle
import base64
import zlib
from re import match as re_match
from collections import deque
from math import sqrt, pi, radians, acos, atan, atan2, pow, floor
from math import sin as math_sin, cos as math_cos
from kivy.vector import Vector
from kivy.clock import Clock
from kivy.event import EventDispatcher
from kivy.properties import ListProperty
from kivy.compat import PY2
from io import BytesIO

if not PY2:
    xrange = range

# Default number of gesture matches per frame
# FIXME: relevant number
DEFAULT_GPF = 10

# Algorithm data
SQUARESIZE = 250.0
ONEDTHRESHOLD = 0.25
ORIGIN = Vector(0, 0)


class MultistrokeError(Exception):
    pass


# -----------------------------------------------------------------------------
# Recognizer
# -----------------------------------------------------------------------------

class Recognizer(EventDispatcher):
    ''':class:`Recognizer` provides a gesture database with matching
    facilities.

    :Events:
        `on_search_start`
            Fired when a new search is started using this Recognizer.

        `on_search_complete`
            Fired when a running search ends, for whatever reason.
            (use :data:`ProgressTracker.status` to find out)

    :Properties:
        `db`
            A :class:`ListProperty` that contains the available
            :class:`MultistrokeGesture` objects.

            :attr:`db` is a
            :class:`~kivy.properties.ListProperty` and defaults to []
    '''

    db = ListProperty([])

    def __init__(self, **kwargs):
        super(Recognizer, self).__init__(**kwargs)
        self.register_event_type('on_search_start')
        self.register_event_type('on_search_complete')

    def filter(self, **kwargs):
        ''':meth:`filter` returns a subset of objects in :attr:`self.db`,
        according to given criteria. This is used by many other methods of
        the :class:`Recognizer`; the arguments below can for example be
        used when calling :meth:`Recognizer.recognize` or
        :meth:`Recognizer.export_gesture`. You normally don't need to call
        this directly.

        :Arguments:

            `name`
                Limits the returned list to gestures where
                :attr:`MultistrokeGesture.name` matches given regular
                expression(s). If re.match(name, MultistrokeGesture.name)
                tests true, the gesture is included in the returned list.
                Can be a string or an array of strings ::

                    gdb = Recognizer()

                    # Will match all names that start with a captial N
                    # (ie Next, New, N, Nebraska etc, but not "n" or "next")
                    gdb.filter(name='N')

                    # exactly 'N'
                    gdb.filter(name='N$')

                    # Nebraska, teletubbies, France, fraggle, N, n, etc
                    gdb.filter(name=['[Nn]', '(?i)T', '(?i)F'])

            `priority`
                Limits the returned list to gestures with certain
                :attr:`MultistrokeGesture.priority` values. If specified as an
                integer, only gestures with a lower priority are returned. If
                specified as a list (min/max) ::

                    # Max priority 50
                    gdb.filter(priority=50)

                    # Max priority 50 (same result as above)
                    gdb.filter(priority=[0, 50])

                    # Min priority 50, max 100
                    gdb.filter(priority=[50, 100])

                When this option is used, :attr:`Recognizer.db` is automatically
                sorted according to priority, incurring extra cost. You can use
                `force_priority_sort` to override this behavior if your gestures
                are already sorted according to priority.

            `orientation_sensitive`
                Limits the returned list to gestures that are
                orientation sensitive (True), gestures that are not orientation
                sensitive (False) or None (ignore template sensitivity, this is
                the default).

            `numstrokes`
                Limits the returned list to gestures that have the specified
                number of strokes (in :attr:`MultistrokeGesture.strokes`).
                Can be a single integer or a list of integers.

            `numpoints`
                Limits the returned list to gestures that have specific
                :attr:`MultistrokeGesture.numpoints` values. This is provided
                for flexibility, do not use it unless you understand what it
                does. Can be a single integer or a list of integers.

            `force_priority_sort`
                Can be used to override the default sort behavior. Normally
                :class:`MultistrokeGesture` objects are returned in priority
                order if the `priority` option is used. Setting this to True
                will return gestures sorted in priority order, False will
                return in the order gestures were added. None means decide
                automatically (the default).

                .. Note ::
                    For improved performance, you can load your gesture
                    database in priority order and set this to False when
                    calling :meth:`Recognizer.recognize`

            `db`
                Can be set if you want to filter a different list of objects
                than :attr:`Recognizer.db`. You probably don't want to do this;
                it is used internally by :meth:`import_gesture`.
        '''
        have_filters = False

        kwargs_get = kwargs.get

        name = kwargs_get('name', None)
        if name is not None:
            have_filters = True
            if not isinstance(name, list):
                name = [name]

        priority = kwargs_get('priority', None)
        min_p, max_p = None, None
        if priority is not None:
            have_filters = True
            if isinstance(priority, list):
                min_p, max_p = priority
            elif isinstance(priority, int):
                min_p, max_p = None, priority

        numstrokes = kwargs_get('numstrokes', None)
        if numstrokes is not None:
            have_filters = True
            if not isinstance(numstrokes, list):
                numstrokes = [numstrokes]

        numpoints = kwargs_get('numpoints', None)
        if numpoints is not None:
            have_filters = True
            if not isinstance(numpoints, list):
                numpoints = [numpoints]

        orientation_sens = kwargs_get('orientation_sensitive', None)
        if orientation_sens is not None:
            have_filters = True

        # Prepare a correctly sorted tasklist
        force_priority_sort = kwargs.get('force_priority_sort', None)
        force_sort_on = force_priority_sort and True
        force_sort_off = (force_priority_sort is False) and True

        db = kwargs.get('db', None) or self.db
        if (force_sort_on or priority) and not force_sort_off:
            tasklist = sorted(db, key=lambda n: n.priority)
        else:
            tasklist = db

        # Now test each gesture in the database against filter criteria
        out = deque()
        if not have_filters:
            out.extend(tasklist)
            return out

        out_append = out.append
        for gesture in tasklist:

            if (orientation_sens is not None and
                    orientation_sens != gesture.orientation_sens):
                continue

            if numpoints and gesture.numpoints not in numpoints:
                continue

            if numstrokes and len(gesture.strokes) not in numstrokes:
                continue

            if min_p is not None and gesture.priority < min_p:
                continue

            if max_p is not None and gesture.priority > max_p:
                return out

            if name:
                for f in name:
                    if re_match(f, gesture.name):
                        out_append(gesture)
                        break
            else:
                out_append(gesture)

        return out

    def add_gesture(self, name, strokes, **kwargs):
        '''Add a new gesture to the database. This will instantiate a new
        :class:`MultistrokeGesture` with `strokes` and append it to self.db.

        .. Note ::
            If you already have instantiated a :class:`MultistrokeGesture`
            object and wish to add it, append it to :attr:`Recognizer.db`
            manually.
        '''
        if not strokes:
            return False
        self.db.append(MultistrokeGesture(name=name, strokes=strokes, **kwargs))
        return True

    def parse_gesture(self, data):
        '''Parse data formatted by export_gesture(). Returns a list of
        :class:`MultistrokeGesture` objects. This is used internally by
        :meth:`import_gesture`, you normally don't need to call this
        directly.'''
        io = BytesIO(zlib.decompress(base64.b64decode(data)))

        p = pickle.Unpickler(io)
        multistrokes = []
        ms_append = multistrokes.append
        for multistroke in p.load():
            strokes = multistroke['strokes']
            multistroke['strokes'] = [[Vector(
                x, y) for x, y in line] for line in strokes]
            ms_append(MultistrokeGesture(**multistroke))
        return multistrokes

    # FIXME: use a try block, maybe shelve or something
    def export_gesture(self, filename=None, **kwargs):
        '''Export a list of :class:`MultistrokeGesture` objects. Outputs a
        base64-encoded string that can be decoded to a Python list with
        the :meth:`parse_gesture` function or imported directly to
        :attr:`self.db` using :meth:`Recognizer.import_gesture`. If
        `filename` is specified, the output is written to disk, otherwise
        returned.

        This method accepts optional :meth:`Recognizer.filter` arguments.
        '''
        io = BytesIO()
        p = pickle.Pickler(io, protocol=0)
        multistrokes = []
        defaults = {'priority': 100, 'numpoints': 16, 'stroke_sens': True,
                    'orientation_sens': False, 'angle_similarity': 30.0}
        dkeys = defaults.keys()

        for multistroke in self.filter(**kwargs):
            m = dict(defaults)
            m = {'name': multistroke.name}
            for attr in dkeys:
                m[attr] = getattr(multistroke, attr)
            m['strokes'] = tuple([(p.x, p.y) for p in line]
                                 for line in multistroke.strokes)
            multistrokes.append(m)
        p.dump(multistrokes)

        if filename:
            f = open(filename, 'wb')
            f.write(base64.b64encode(zlib.compress(io.getvalue(), 9)))
            f.close()
        else:
            return base64.b64encode(zlib.compress(io.getvalue(), 9))

    # FIXME: match them all with protractor, and don't load exacts? or
    # just compare the data or something; seems better to do this on import
    # than on every subsequent call to recognize(). And fix it in general,
    # too.
    def import_gesture(self, data=None, filename=None, **kwargs):
        '''Import a list of gestures as formatted by :meth:`export_gesture`.
        One of `data` or `filename` must be specified.

        This method accepts optional :meth:`Recognizer.filter` arguments,
        if none are specified then all gestures in specified data are
        imported.'''
        if filename is not None:
            with open(filename, "rb") as infile:
                data = infile.read()
        elif data is None:
            raise MultistrokeError('import_gesture needs data= or filename=')

        new = self.filter(db=self.parse_gesture(data), **kwargs)
        if new:
            self.db.extend(new)

    def transfer_gesture(self, tgt, **kwargs):
        '''Transfers :class:`MultistrokeGesture` objects from
        :attr:`Recognizer.db` to another :class:`Recognizer` instance `tgt`.

        This method accepts optional :meth:`Recognizer.filter` arguments.
        '''
        if hasattr(tgt, 'db') and isinstance(tgt.db, list):
            send = self.filter(**kwargs)
            if send:
                tgt.db.append(None)
                tgt.db[-1:] = send
                return True

    def prepare_templates(self, **kwargs):
        '''This method is used to prepare :class:`UnistrokeTemplate` objects
        within the gestures in self.db. This is useful if you want to minimize
        punishment of lazy resampling by preparing all vectors in advance. If
        you do this before a call to :meth:`Recognizer.export_gesture`, you
        will have the vectors computed when you load the data later.

        This method accepts optional :meth:`Recognizer.filter` arguments.

        `force_numpoints`, if specified, will prepare all templates to the
        given number of points (instead of each template's preferred n; ie
        :data:`UnistrokeTemplate.numpoints`). You normally don't want to
        do this.'''
        for gesture in self.filter(**kwargs):
            for tpl in gesture:
                n = kwargs.get('force_numpoints', tpl.numpoints)
                tpl.prepare(n)

    def recognize(self, strokes, goodscore=None, timeout=0, delay=0, **kwargs):
        '''Search for gestures matching `strokes`. Returns a
        :class:`ProgressTracker` instance.

        This method accepts optional :meth:`Recognizer.filter` arguments.

        :Arguments:

            `strokes`
                A list of stroke paths (list of lists of
                :class:`~kivy.vector.Vector` objects) that will be matched
                against gestures in the database. Can also be a
                :class:`Candidate` instance.

                .. Warning ::

                    If you manually supply a :class:`Candidate` that has a
                    skip-flag, make sure that the correct filter arguments
                    are set. Otherwise the system will attempt to load vectors
                    that have not been computed. For example, if you set
                    `skip_bounded` and do not set `orientation_sensitive` to
                    False, it will raise an exception if an
                    orientation_sensitive :class:`UnistrokeTemplate`
                    is encountered.

            `goodscore`
                If this is set (between 0.0 - 1.0) and a gesture score is
                equal to or higher than the specified value, the search is
                immediately halted and the on_search_complete event is
                fired (+ the on_complete event of the associated
                :class:`ProgressTracker` instance). Default is None (disabled).

            `timeout`
                Specifies a timeout (in seconds) for when the search is
                aborted and the results returned. This option applies only
                when `max_gpf` is not 0. Default value is 0, meaning all
                gestures in the database will be tested, no matter how long
                it takes.

            `max_gpf`
                Specifies the maximum number of :class:`MultistrokeGesture`
                objects that can be processed per frame. When exceeded, will
                cause the search to halt and resume work in the next frame.
                Setting to 0 will complete the search immediately (and block
                the UI).

                .. Warning ::

                    This does not limit the number of
                    :class:`UnistrokeTemplate` objects matched! If a single
                    gesture has a million templates, they will all be
                    processed in a single frame with max_gpf=1!

            `delay`
                Sets an optional delay between each run of the recognizer
                loop. Normally, a run is scheduled for the next frame until
                the tasklist is exhausted. If you set this, there will be an
                additional delay between each run (specified in seconds).
                Default is 0, resume in the next frame.

            `force_numpoints`
                forces all templates (and candidate) to be prepared to a
                certain number of points. This can be useful for example if
                you are evaluating templates for optimal n (do not use this
                unless you understand what it does).
        '''
        GPF = kwargs.get('max_gpf', DEFAULT_GPF)

        # Obtain a list of MultistrokeGesture objects matching filter arguments
        tasklist = self.filter(**kwargs)

        # Initialize the candidate and result objects
        cand = self._candidate(strokes)
        result = ProgressTracker(cand, len(tasklist))

        # This is done to inform caller if they bind to on_complete and there
        # is nothing to do; perhaps should just return None?
        if not tasklist:
            result.status = 'complete'
            self.dispatch('on_search_complete', result)

            def result_hack(dt):
                result.dispatch('on_complete')
            Clock.schedule_once(result_hack)
            return result

        # This callback is scheduled once per frame until completed
        def _recognize_tick(dt):
            start_gc = result._completed
            stop_now = False

            while not stop_now and (tasklist and not result._break_flag) and \
                    (not GPF or (result._completed - start_gc < GPF)):

                if (timeout and
                        Clock.get_time() - result._start_time >= timeout):
                    result.status = 'timeout'
                    stop_now = True
                    break

                # Get the best distance and number of matching operations done
                gesture = tasklist.popleft()
                tpl, d, res, mos = gesture.match_candidate(
                    cand, **kwargs)

                if tpl is not None:
                    score = result._add_result(gesture, d, tpl, res)
                    if goodscore is not None and score >= goodscore:
                        result.status = 'goodscore'
                        stop_now = True

                result._match_ops += mos
                result._completed += 1
                result.dispatch('on_progress')

            # The loop has ended. Prepare to dispatch 'complete'
            def _dispatch():
                result.dispatch('on_complete')
                self.dispatch('on_search_complete', result)
                return False

            # Dispatch or reschedule another run
            if not tasklist:
                result.status = 'complete'
                return _dispatch()
            elif result._break_flag:
                result.status = 'stop'
                return _dispatch()
            elif stop_now:
                return _dispatch()
            else:
                Clock.schedule_once(_recognize_tick, delay)
                return True
        # End _recognize_tick()

        self.dispatch('on_search_start', result)
        if not GPF:
            _recognize_tick(0)
        else:
            Clock.schedule_once(_recognize_tick, 0)

        return result

    def _candidate(self, strokes, **kwargs):
        # recognize() helper function, do not use directly. Set up a
        # Candidate object from arguments. Either use a specified object
        # or make a new one from strokes and apply safe skip_* settings to
        # use less resources.
        if isinstance(strokes, Candidate):
            return strokes

        if (not isinstance(strokes, list) or not len(strokes) or not
                isinstance(strokes[0], list)):
            raise MultistrokeError('recognize() needs strokes= '
                                   'list or Candidate')

        cand = Candidate(strokes)
        o_filter = kwargs.get('orientation_sensitive', None)
        if o_filter is False:
            cand.skip_bounded = True
        elif o_filter is True:
            cand.skip_invariant = True

        return cand

    # Default event handlers
    def on_search_start(self, result):
        pass

    def on_search_complete(self, result):
        pass


# -----------------------------------------------------------------------------
# ProgressTracker
# -----------------------------------------------------------------------------

class ProgressTracker(EventDispatcher):
    '''Represents an ongoing (or completed) search operation. Instantiated and
    returned by the :meth:`Recognizer.recognize` method when it is called. The
    `results` attribute is a dictionary that is  updated as the recognition
    operation progresses.

    .. Note ::
        You do not need to instantiate this class.

    :Arguments:
        `candidate`
            :class:`Candidate` object to be evaluated
        `tasks`
            Total number of gestures in tasklist (to test against)

    :Events:
        `on_progress`
            Fired for every gesture that is processed
        `on_result`
            Fired when a new result is added, and it is the first match
            for the `name` so far, or a consecutive match with better score.
        `on_complete`
            Fired when the search is completed, for whatever reason.
            (use `ProgressTracker.status` to find out)

    :Attributes:
        `results`
            A dictionary of all results (so far). The key is the name of the
            gesture (ie :attr:`UnistrokeTemplate.name` usually inherited from
            :class:`MultistrokeGesture`). Each item in the dictionary is a
            dict with the following entries:

                `name`
                    Name of the matched template (redundant)
                `score`
                    Computed score from 1.0 (perfect match) to 0.0
                `dist`
                    Cosine distance from candidate to template (low=closer)
                `gesture`
                    The :class:`MultistrokeGesture` object that was matched
                `best_template`
                    Index of the best matching template (in
                    :attr:`MultistrokeGesture.templates`)
                `template_results`
                    List of distances for all templates. The list index
                    corresponds to a :class:`UnistrokeTemplate` index in
                    gesture.templates.

        `status`
            `search`
                Currently working
            `stop`
                Was stopped by the user (:meth:`stop` called)
            `timeout`
                A timeout occured (specified as `timeout=` to recognize())
            `goodscore`
                The search was stopped early because a gesture with a high
                enough score was found (specified as `goodscore=` to
                recognize())
            `complete`
                The search is complete (all gestures matching filters were
                tested)
    '''
    def __init__(self, candidate, tasks, **kwargs):
        self.status = 'search'
        self.candidate = candidate
        self.results = {}
        self.tasks = tasks
        self._start_time = Clock.get_time()
        self._match_ops = 0
        self._completed = 0
        self._break_flag = False

        # fired by recognize()
        self.register_event_type('on_complete')
        self.register_event_type('on_progress')

        # fired locally
        self.register_event_type('on_result')
        super(ProgressTracker, self).__init__(**kwargs)

    @property
    def progress(self):
        '''Returns the progress as a float, 0 is 0% done, 1 is 100%. This
        is a Python property.'''
        if not self.tasks:
            return 1
        return self._completed / float(self.tasks)

    @property
    def best(self):
        '''Return the best match found by recognize() so far. It returns a
        dictionary with three keys, 'name', 'dist' and 'score' representing
        the template's name, distance (from candidate path) and the
        computed score value. This is a Python property.'''
        results = self.results  # to avoid too many self. lookups
        if not results:
            return {'name': None, 'dist': None, 'score': 0}
        b = max(results, key=lambda r: results[r]['score'])
        return {
            'name': results[b]['name'],
            'dist': results[b]['dist'],
            'score': results[b]['score']
        }

    def stop(self):
        '''Raises a stop flag that is checked by the search process. It will
        be stopped on the next clock tick (if it is still running).'''
        self._break_flag = True

    def _add_result(self, gesture, dist, tpl, res):
        # Add a result; used internally by the recognize() function
        if tpl <= len(res):
            n = gesture.templates[tpl].name
        else:
            return 0.

        if n not in self.results or dist < self.results[n]['dist']:
            self.results[n] = {
                'name': n,
                'dist': dist,
                'gesture': gesture,
                'best_template': tpl,
                'template_results': res
            }

            if not dist:
                self.results[n]['score'] = 1.0
            else:
                self.results[n]['score'] = 1.0 - (dist / pi)

            self.dispatch('on_result', self.results[n])
            return self.results[n]['score']
        else:
            return 0.

    def on_complete(self):
        pass

    def on_progress(self):
        pass

    def on_result(self, result):
        pass


# -----------------------------------------------------------------------------
# MultistrokeGesture
# -----------------------------------------------------------------------------

class MultistrokeGesture(object):
    ''':class:`MultistrokeGesture` represents a gesture. It maintains a set of
    `strokes` and generates unistroke (ie :class:`UnistrokeTemplate`)
    permutations that are used for evaluating candidates against this gesture
    later.

    :Arguments:
        `name`
            Identifies the name of the gesture - it is returned to you in the
            results of a :meth:`Recognizer.recognize` search. You can have any
            number of MultistrokeGesture objects with the same name; many
            definitions of one gesture. The same name is given to all the
            generated unistroke permutations. Required, no default.
        `strokes`
            A list of paths that represents the gesture. A path is a list of
            Vector objects::

                gesture = MultistrokeGesture('my_gesture', strokes=[
                  [Vector(x1, y1), Vector(x2, y2), ...... ], # stroke 1
                  [Vector(), Vector(), Vector(), Vector() ]  # stroke 2
                  #, [stroke 3], [stroke 4], ...
                ])

            For template matching purposes, all the strokes are combined to a
            single list (unistroke). You should still specify the strokes
            individually, and set `stroke_sensitive` True (whenever possible).

            Once you do this, unistroke permutations are immediately generated
            and stored in `self.templates` for later, unless you set the
            `permute` flag to False.
        `priority`
            Determines when :func:`Recognizer.recognize` will attempt to match
            this template, lower priorities are evaluated first (only if
            a priority `filter` is used). You should use lower priority on
            gestures that are more likely to match. For example, set user
            templates at lower number than generic templates. Default is 100.
        `numpoints`
            Determines the number of points this gesture should be resampled to
            (for matching purposes). The default is 16.
        `stroke_sensitive`
            Determines if the number of strokes (paths) in this gesture is
            required to be the same in the candidate (user input) gesture
            during matching. If this is False, candidates will always be
            evaluated, disregarding the number of strokes. Default is True.
        `orientation_sensitive`
            Determines if this gesture is orientation sensitive. If True,
            aligns the indicative orientation with the one of eight base
            orientations that requires least rotation. Default is True.
        `angle_similarity`
            This is used by the :func:`Recognizer.recognize` function when a
            candidate is evaluated against this gesture. If the angles between
            them are too far off, the template is considered a non-match.
            Default is 30.0 (degrees)
        `permute`
            If False, do not use Heap Permute algorithm to generate different
            stroke orders when instantiated. If you set this to False, a
            single UnistrokeTemplate built from `strokes` is used.
    '''
    def __init__(self, name, strokes=None, **kwargs):
        self.name = name
        self.priority = kwargs.get('priority', 100)
        self.numpoints = kwargs.get('numpoints', 16)
        self.stroke_sens = kwargs.get('stroke_sensitive', True)
        self.orientation_sens = kwargs.get('orientation_sensitive', True)
        self.angle_similarity = kwargs.get('angle_similarity', 30.0)
        self.strokes = []

        if strokes is not None:
            self.strokes = strokes
            if kwargs.get('permute', True):
                self.permute()
            else:
                self.templates = [UnistrokeTemplate(name,
                                  points=[i for sub in strokes for i in sub],
                                  numpoints=self.numpoints,
                                  orientation_sensitive=self.orientation_sens)]

    def angle_similarity_threshold(self):
        return radians(self.angle_similarity)

    def add_stroke(self, stroke, permute=False):
        '''Add a stroke to the self.strokes list. If `permute` is True, the
        :meth:`permute` method is called to generate new unistroke templates'''
        self.strokes.append(stroke)
        if permute:
            self.permute()

    def get_distance(self, cand, tpl, numpoints=None):
        '''Compute the distance from this Candiate to a UnistrokeTemplate.
        Returns the Cosine distance between the stroke paths.

        `numpoints` will prepare both the UnistrokeTemplate and Candidate path
        to n points (when neccessary), you probably don't want to do this.
        '''
        n = numpoints
        if n is None or n < 2:
            n = self.numpoints

        # optimal_cosine_distance() inlined here for performance
        v1 = tpl.get_vector(n)
        v2 = cand.get_protractor_vector(n, tpl.orientation_sens)

        a = 0.0
        b = 0.0

        for i in xrange(0, len(v1), 2):
            a += (v1[i] * v2[i]) + (v1[i + 1] * v2[i + 1])
            b += (v1[i] * v2[i + 1]) - (v1[i + 1] * v2[i])

        angle = atan(b / a)

        # If you put the below directly into math.acos(), you will get a domain
        # error when a=1.0 and angle=0.0 (ie math_cos(angle)=1.0). It seems to
        # be because float representation of 1.0*1.0 is >1.0 (ie 1.00000...001)
        # and this is problematic for math.acos(). If you try math.acos(1.0*1.0)
        # in interpreter it does not happen, only with exact match at runtime
        result = a * math_cos(angle) + b * math_sin(angle)

        # FIXME: I'm sure there is a better way to do it but..
        if result >= 1:
            result = 1
        elif result <= -1:  # has not happened to me, but I leave it here.
            result = -1
        return acos(result)

    def match_candidate(self, cand, **kwargs):
        '''Match a given candidate against this MultistrokeGesture object. Will
        test against all templates and report results as a list of four
        items:

            `index 0`
                Best matching template's index (in self.templates)
            `index 1`
                Computed distance from the template to the candidate path
            `index 2`
                List of distances for all templates. The list index
                corresponds to a :class:`UnistrokeTemplate` index in
                self.templates.
            `index 3`
                Counter for the number of performed matching operations, ie
                templates matched against the candidate
        '''
        best_d = float('infinity')
        best_tpl = None
        mos = 0
        out = []

        if (self.stroke_sens and len(self.strokes) != len(cand.strokes)):
            return (best_tpl, best_d, out, mos)

        skip_bounded = cand.skip_bounded
        skip_invariant = cand.skip_invariant
        get_distance = self.get_distance
        ang_sim_threshold = self.angle_similarity_threshold()

        for idx, tpl in enumerate(self.templates):
            # Handle a theoretical case where a MultistrokeGesture is composed
            # manually and the orientation_sensitive flag is True, and contains
            # a UnistrokeTemplate that has orientation_sensitive=False (or vice
            # versa). This would cause KeyError - requesing nonexistant vector.
            if tpl.orientation_sens:
                if skip_bounded:
                    continue
            elif skip_invariant:
                continue

            # Count as a match operation now, since the call to get_
            # angle_similarity below will force vector calculation,
            # even if it doesn't make it to get_distance
            mos += 1

            # Note: With this implementation, we always resample the candidate
            # to *any* encountered UnistrokeTemplate numpoints here, the filter
            # is only applied to MultistrokeGesture. See theoretical case
            # above; should not matter normally.
            n = kwargs.get('force_numpoints', tpl.numpoints)

            # Skip if candidate/gesture angles are too far off
            ang_sim = cand.get_angle_similarity(tpl, numpoints=n)
            if ang_sim > ang_sim_threshold:
                continue

            # Get the distance between cand/tpl paths
            d = get_distance(cand, tpl, numpoints=n)
            out.append(d)

            if d < best_d:
                best_d = d
                best_tpl = idx

        return (best_tpl, best_d, out, mos)

    def permute(self):
        '''Generate all possible unistroke permutations from self.strokes and
        save the resulting list of UnistrokeTemplate objects in self.templates.

        Quote from http://faculty.washington.edu/wobbrock/pubs/gi-10.2.pdf ::

            We use Heap Permute [16] (p. 179) to generate all stroke orders
            in a multistroke gesture. Then, to generate stroke directions for
            each order, we treat each component stroke as a dichotomous
            [0,1] variable. There are 2^N combinations for N strokes, so we
            convert the decimal values 0 to 2^N-1, inclusive, to binary
            representations and regard each bit as indicating forward (0) or
            reverse (1). This algorithm is often used to generate truth tables
            in propositional logic.

        See section 4.1: "$N Algorithm" of the linked paper for details.

        .. Warning ::

            Using heap permute for gestures with more than 3 strokes
            can result in very large number of templates (a 9-stroke
            gesture = 38 million templates). If you are dealing with
            these types of gestures, you should manually compose
            all the desired stroke orders.
        '''
        # Seed with index of each stroke
        self._order = [i for i in xrange(0, len(self.strokes))]

        # Prepare ._orders
        self._orders = []
        self._heap_permute(len(self.strokes))
        del self._order

        # Generate unistroke permutations
        self.templates = [UnistrokeTemplate(
            self.name,
            points=permutation,
            numpoints=self.numpoints,
            orientation_sensitive=self.orientation_sens
        ) for permutation in self._make_unistrokes()]
        del self._orders

    def _heap_permute(self, n):
        # Heap Permute algorithm
        self_order = self._order
        if n == 1:
            self._orders.append(self_order[:])
        else:
            i = 0
            for i in xrange(0, n):
                self._heap_permute(n - 1)
                if n % 2 == 1:
                    tmp = self_order[0]
                    self_order[0] = self_order[n - 1]
                    self_order[n - 1] = tmp
                else:
                    tmp = self_order[i]
                    self_order[i] = self_order[n - 1]
                    self_order[n - 1] = tmp

    def _make_unistrokes(self):
        # Create unistroke permutations from self.strokes
        unistrokes = []
        unistrokes_append = unistrokes.append
        self_strokes = self.strokes
        for r in self._orders:
            b = 0
            while b < pow(2, len(r)):  # use b's bits for directions
                unistroke = []
                unistroke_append = unistroke.append
                for i in xrange(0, len(r)):
                    pts = self_strokes[r[i]][:]
                    if (b >> i) & 1 == 1:  # is b's bit at index i 1?
                        pts.reverse()
                    unistroke_append(None)
                    unistroke[-1:] = pts

                unistrokes_append(unistroke)
                b += 1
        return unistrokes


# -----------------------------------------------------------------------------
# UnistrokeTemplate
# -----------------------------------------------------------------------------

class UnistrokeTemplate(object):
    '''Represents a (uni)stroke path as a list of Vectors. Normally, this class
    is instantiated by MultistrokeGesture and not by the programmer directly.
    However, it is possible to manually compose UnistrokeTemplate objects.

    :Arguments:
        `name`
            Identifies the name of the gesture. This is normally inherited from
            the parent MultistrokeGesture object when a template is generated.
        `points`
            A list of points that represents a unistroke path. This is normally
            one of the possible stroke order permutations from a
            MultistrokeGesture.
        `numpoints`
            The number of points this template should (ideally) be resampled to
            before the matching process. The default is 16, but you can use a
            template-specific settings if that improves results.
        `orientation_sensitive`
            Determines if this template is orientation sensitive (True) or
            fully rotation invariant (False). The default is True.

    .. Note::
        You will get an exception if you set a skip-flag and then attempt to
        retrieve those vectorsa.
    '''
    def __init__(self, name, points=None, **kwargs):
        self.name = name
        self.numpoints = kwargs.get('numpoints', 16)
        self.orientation_sens = kwargs.get('orientation_sensitive', True)

        self.db = {}
        self.points = []

        if points is not None:
            self.points = points

    def add_point(self, p):
        '''Add a point to the unistroke/path. This invalidates all previously
        computed vectors.'''
        self.points.append(p)
        # All previously computed data is now void.
        self.db = {}

    # Used to lazily prepare the template
    def _get_db_key(self, key, numpoints=None):
        n = numpoints and numpoints or self.numpoints
        if n not in self.db:
            self.prepare(n)
        return self.db[n][key]

    def get_start_unit_vector(self, numpoints=None):
        return self._get_db_key('startvector', numpoints)

    def get_vector(self, numpoints=None):
        return self._get_db_key('vector', numpoints)

    def get_points(self, numpoints=None):
        return self._get_db_key('points', numpoints)

    def prepare(self, numpoints=None):
        '''This function prepares the UnistrokeTemplate for matching given a
        target number of points (for resample). 16 is optimal.'''

        if not self.points:
            raise MultistrokeError('prepare() called without self.points')

        # How many points are we resampling to?
        n = numpoints or self.numpoints
        if not n or n < 2:
            raise MultistrokeError('prepare() called with invalid numpoints')

        p = resample(self.points, n)
        radians = indicative_angle(p)
        p = rotate_by(p, -radians)
        p = scale_dim(p, SQUARESIZE, ONEDTHRESHOLD)

        if self.orientation_sens:
            p = rotate_by(p, +radians)  # restore

        p = translate_to(p, ORIGIN)

        # Now store it using the number of points in the resampled path as the
        # dict key. On the next call to get_*, it will be returned instead of
        # recomputed. Implicitly, you must reset self.db or call prepare() for
        # all the keys once you manipulate self.points.
        self.db[n] = {
            # Compute STARTANGLEINDEX as n/8:
            'startvector': start_unit_vector(p, (n / 8)),
            'vector': vectorize(p, self.orientation_sens)
        }


# -----------------------------------------------------------------------------
# Candidate
# -----------------------------------------------------------------------------

class Candidate(object):
    '''Represents a set of unistroke paths of user input, ie data to be matched
    against a :class:`UnistrokeTemplate` object using the Protractor algorithm.
    By default, data is precomputed to match both rotation bounded and fully
    invariant :class:`UnistrokeTemplate` objects.

    :Arguments:
        `strokes`
            See :data:`MultistrokeGesture.strokes` for format example. The
            Candidate strokes are simply combined to a unistroke in the order
            given. The idea is that this will match one of the unistroke
            permutations in `MultistrokeGesture.templates`.
        `numpoints`
            The Candidate's default N; this is only for a fallback, it is not
            normally used since n is driven by the UnistrokeTemplate we are
            being compared to.
        `skip_bounded`
            If True, do not generate/store rotation bounded vectors
        `skip_invariant`
            If True, do not generate/store rotation invariant vectors

    Note that you WILL get errors if you set a skip-flag and then attempt to
    retrieve the data.'''
    def __init__(self, strokes=None, numpoints=16, **kwargs):
        self.skip_invariant = kwargs.get('skip_invariant', False)
        self.skip_bounded = kwargs.get('skip_bounded', False)

        self.numpoints = numpoints
        self.db = {}
        self.strokes = []

        if not strokes is None:
            self.strokes = strokes

    def add_stroke(self, stroke):
        '''Add a stroke to the candidate; this will invalidate all
        previously computed vectors'''
        self.points.append(stroke)
        self.db = {}

    # Used to lazily prepare the candidate
    def _get_db_key(self, key, numpoints, orientation_sens):
        n = numpoints and numpoints or self.numpoints
        if n not in self.db:
            self.prepare(n)

        prefix = orientation_sens and 'bound_' or 'inv_'
        return self.db[n][prefix + key]

    def get_start_unit_vector(self, numpoints, orientation_sens):
        '''(Internal use only) Get the start vector for this Candidate,
        with the path resampled to `numpoints` points. This is the first
        step in the matching process. It is compared to a
        UnistrokeTemplate object's start vector to determine angle
        similarity.'''
        return self._get_db_key('startvector', numpoints, orientation_sens)

    def get_protractor_vector(self, numpoints, orientation_sens):
        '''(Internal use only) Return vector for comparing to a
        UnistrokeTemplate with Protractor'''
        return self._get_db_key('vector', numpoints, orientation_sens)

    def get_angle_similarity(self, tpl, **kwargs):
        '''(Internal use only) Compute the angle similarity between this
        Candidate and a UnistrokeTemplate object. Returns a number that
        represents the angle similarity (lower is more similar).'''
        n = kwargs.get('numpoints', self.numpoints)

        # angle_between_unit_vectors() inlined here for performance
        v1x, v1y = self.get_start_unit_vector(n, tpl.orientation_sens)
        v2x, v2y = tpl.get_start_unit_vector(n)

        n = (v1x * v2x + v1y * v2y)
        # FIXME: Domain error on float representation of 1.0 (exact match)
        # (see comments in MultistrokeGesture.get_distance())
        if n >= 1:
            return 0.0
        if n <= -1:
            return pi
        return acos(n)

    def prepare(self, numpoints=None):
        '''Prepare the Candidate vectors. self.strokes is combined to a single
        unistroke (connected end-to-end), resampled to :attr:`numpoints` points,
        and then the vectors are calculated and stored in self.db (for use by
        `get_distance` and `get_angle_similarity`)'''
        n = numpoints and numpoints or self.numpoints

        # Inlined combine_strokes() for performance
        points = [i for sub in self.strokes for i in sub]
        points = resample(points, n)
        radians = indicative_angle(points)
        points = rotate_by(points, -radians)
        points = scale_dim(points, SQUARESIZE, ONEDTHRESHOLD)

        # Compute STARTANGLEINDEX as n / 8
        angidx = n / 8
        cand = {}

        # full rotation invariance
        if not self.skip_invariant:
            inv_points = translate_to(points, ORIGIN)
            cand['inv_startvector'] = start_unit_vector(inv_points, angidx)
            cand['inv_vector'] = vectorize(inv_points, False)

        # rotation bounded invariance
        if not self.skip_bounded:
            bound_points = rotate_by(points, +radians)  # restore
            bound_points = translate_to(bound_points, ORIGIN)
            cand['bound_startvector'] = start_unit_vector(bound_points, angidx)
            cand['bound_vector'] = vectorize(bound_points, True)

        self.db[n] = cand


# -----------------------------------------------------------------------------
# Helper functions from this point on. This is all directly related to the
# recognition algorithm, and is almost 100% transcription from the JavaScript
# -----------------------------------------------------------------------------
def resample(points, n):
    # Resample a path to `n` points
    if not len(points) or not n or n < 2:
        raise MultistrokeError('resample() called with invalid arguments')

    interval = path_length(points) / (n - 1)
    D = 0.0
    i = 1
    newpoints = [points[0]]
    workpoints = points[:]
    newpoints_len = 1
    workpoints_len = len(points)

    new_append = newpoints.append
    work_insert = workpoints.insert
    while i < len(workpoints):
        p1 = workpoints[i - 1]
        p2 = workpoints[i]
        d = distance(p1, p2)

        if D + d >= interval:
            qx = p1[0] + ((interval - D) / d) * (p2[0] - p1[0])
            qy = p1[1] + ((interval - D) / d) * (p2[1] - p1[1])
            q = Vector(qx, qy)
            new_append(q)
            work_insert(i, q)  # q is the next i
            newpoints_len += 1
            workpoints_len += 1
            D = 0.0
        else:
            D += d

        i += 1

    # rounding error; insert the last point
    if newpoints_len < n:
        new_append(points[-1])

    return newpoints


def indicative_angle(points):
    cx, cy = centroid(points)
    return atan2(cy - points[0][1], cx - points[0][0])


def rotate_by(points, radians):
    # Rotate points around centroid
    cx, cy = centroid(points)
    cos = math_cos(radians)
    sin = math_sin(radians)
    newpoints = []
    newpoints_append = newpoints.append

    for i in xrange(0, len(points)):
        qx = (points[i][0] - cx) * cos - (points[i][1] - cy) * sin + cx
        qy = (points[i][0] - cx) * sin + (points[i][1] - cy) * cos + cy
        newpoints_append(Vector(qx, qy))

    return newpoints


def scale_dim(points, size, oneDratio):
    bbox_x, bbox_y, bbox_w, bbox_h = bounding_box(points)

    if bbox_h == 0 or bbox_w == 0:
        raise MultistrokeError('scale_dim() called with invalid points')

    # 1D or 2D gesture test
    uniformly = min(bbox_w / bbox_h, bbox_h / bbox_w) <= oneDratio

    if uniformly:
        qx_size = size / max(bbox_w, bbox_h)
        qy_size = size / max(bbox_w, bbox_h)
    else:
        qx_size = size / bbox_w
        qy_size = size / bbox_h

    newpoints = []
    newpoints_append = newpoints.append

    for p in points:
        qx = p[0] * qx_size
        qy = p[1] * qy_size
        newpoints_append(Vector(qx, qy))

    return newpoints


def translate_to(points, pt):
    # Translate points around centroid
    cx, cy = centroid(points)
    ptx, pty = pt
    newpoints = []
    for p in points:
        qx = p[0] + ptx - cx
        qy = p[1] + pty - cy
        newpoints.append(Vector(qx, qy))
    return newpoints


def vectorize(points, use_bounded_rotation_invariance):
    # Helper function for the Protractor algorithm
    cos = 1.0
    sin = 0.0

    if use_bounded_rotation_invariance:
        ang = atan2(points[0][1], points[0][0])
        bo = (pi / 4.) * floor((ang + pi / 8.) / (pi / 4.))
        cos = math_cos(bo - ang)
        sin = math_sin(bo - ang)

    sum = 0.0
    vector = []
    vector_len = 0
    vector_append = vector.append

    for px, py in points:
        newx = px * cos - py * sin
        newy = py * cos + px * sin
        vector_append(newx)
        vector_append(newy)
        vector_len += 2
        sum += newx ** 2 + newy ** 2

    magnitude = sqrt(sum)
    for i in xrange(0, vector_len):
        vector[i] /= magnitude

    return vector


def centroid(points):
    x = 0.0
    y = 0.0
    points_len = len(points)

    for i in xrange(0, points_len):
        x += points[i][0]
        y += points[i][1]

    x /= points_len
    y /= points_len

    return Vector(x, y)


def bounding_box(points):
    minx = float('infinity')
    miny = float('infinity')
    maxx = float('-infinity')
    maxy = float('-infinity')

    for px, py in points:
        if px < minx:
            minx = px
        if px > maxx:
            maxx = px
        if py < miny:
            miny = py
        if py > maxy:
            maxy = py

    return (minx, miny, maxx - minx, maxy - miny)


def path_length(points):
    d = 0.0
    for i in xrange(1, len(points)):
        d += distance(points[i - 1], points[i])
    return d


def distance(p1, p2):
    dx = p2[0] - p1[0]
    dy = p2[1] - p1[1]
    return sqrt(dx ** 2 + dy ** 2)


def start_unit_vector(points, index):
    i = int(index)
    vx, vy = points[i][0] - points[0][0], points[i][1] - points[0][1]
    length = sqrt(vx ** 2 + vy ** 2)
    return Vector(vx / length, vy / length)