/usr/lib/python3/dist-packages/healpy/fitsfunc.py is in python3-healpy 1.8.1-1.1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 | #
# This file is part of Healpy.
#
# Healpy is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# Healpy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Healpy; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#
# For more information about Healpy, see http://code.google.com/p/healpy
#
"""Provides input and output functions for Healpix maps, alm, and cl.
"""
import pyfits as pf
import numpy as np
from . import pixelfunc
from .sphtfunc import Alm
import warnings
from .pixelfunc import UNSEEN
standard_column_names = {
1 : "I_STOKES",
3 : ["%s_STOKES" % comp for comp in "IQU"],
6 : ["II", "IQ", "IU", "QQ", "QU", "UU"]
}
class HealpixFitsWarning(Warning):
pass
def read_cl(filename, dtype=np.float64, h=False):
"""Reads Cl from an healpix file, as IDL fits2cl.
Parameters
----------
filename : str
the fits file name
dtype : data type, optional
the data type of the returned array
Returns
-------
cl : array
the cl array
"""
hdulist=pf.open(filename)
cl = [hdulist[1].data.field(n) for n in range(len(hdulist[1].data.columns))]
hdulist.close()
if len(cl) == 1:
return cl[0]
else:
return cl
def write_cl(filename, cl, dtype=np.float64):
"""Writes Cl into an healpix file, as IDL cl2fits.
Parameters
----------
filename : str
the fits file name
cl : array
the cl array to write to file, currently TT only
"""
# check the dtype and convert it
fitsformat = getformat(dtype)
column_names = ['TEMPERATURE','GRADIENT','CURL','G-T','C-T','C-G']
if isinstance(cl, list):
cols = [pf.Column(name=column_name,
format='%s'%fitsformat,
array=column_cl) for column_name, column_cl in zip(column_names[:len(cl)], cl)]
else: # we write only one TT
cols = [pf.Column(name='TEMPERATURE',
format='%s'%fitsformat,
array=cl)]
tbhdu = pf.new_table(cols)
# add needed keywords
tbhdu.header.update('CREATOR','healpy')
tbhdu.writeto(filename,clobber=True)
def write_map(filename,m,nest=False,dtype=np.float32,fits_IDL=True,coord=None,column_names=None):
"""Writes an healpix map into an healpix file.
Parameters
----------
filename : str
the fits file name
m : array or sequence of 3 arrays
the map to write. Possibly a sequence of 3 maps of same size.
They will be considered as I, Q, U maps.
Supports masked maps, see the `ma` function.
nest : bool, optional
If True, ordering scheme is assumed to be NESTED, otherwise, RING. Default: RING.
The map ordering is not modified by this function, the input map array
should already be in the desired ordering (run `ud_grade` beforehand).
fits_IDL : bool, optional
If True, reshapes columns in rows of 1024, otherwise all the data will
go in one column. Default: True
coord : str
The coordinate system, typically 'E' for Ecliptic, 'G' for Galactic or 'C' for
Celestial (equatorial)
column_names : str or list
Column name or list of column names, if None we use:
I_STOKES for 1 component,
I/Q/U_STOKES for 3 components,
II, IQ, IU, QQ, QU, UU for 6 components,
COLUMN_0, COLUMN_1... otherwise
"""
if not hasattr(m, '__len__'):
raise TypeError('The map must be a sequence')
# check the dtype and convert it
fitsformat = getformat(dtype)
m = pixelfunc.ma_to_array(m)
if pixelfunc.maptype(m) == 0: # a single map is converted to a list
m = [m]
if column_names is None:
column_names = standard_column_names.get(len(m), ["COLUMN_%d" % n for n in range(len(m))])
else:
assert len(column_names) == len(m), "Length column_names != number of maps"
# maps must have same length
assert len(set(map(len, m))) == 1, "Maps must have same length"
nside = pixelfunc.npix2nside(len(m[0]))
if nside < 0:
raise ValueError('Invalid healpix map : wrong number of pixel')
cols=[]
for cn, mm in zip(column_names, m):
if len(mm) > 1024 and fits_IDL:
# I need an ndarray, for reshape:
mm2 = np.asarray(mm)
cols.append(pf.Column(name=cn,
format='1024%s' % fitsformat,
array=mm2.reshape(mm2.size/1024,1024)))
else:
cols.append(pf.Column(name=cn,
format='%s' % fitsformat,
array=mm))
tbhdu = pf.new_table(cols)
# add needed keywords
tbhdu.header.update('PIXTYPE','HEALPIX','HEALPIX pixelisation')
if nest: ordering = 'NESTED'
else: ordering = 'RING'
tbhdu.header.update('ORDERING',ordering,
'Pixel ordering scheme, either RING or NESTED')
if coord:
tbhdu.header.update('COORDSYS',coord,
'Ecliptic, Galactic or Celestial (equatorial)')
tbhdu.header.update('EXTNAME','xtension',
'name of this binary table extension')
tbhdu.header.update('NSIDE',nside,'Resolution parameter of HEALPIX')
tbhdu.header.update('FIRSTPIX', 0, 'First pixel # (0 based)')
tbhdu.header.update('LASTPIX',pixelfunc.nside2npix(nside)-1,
'Last pixel # (0 based)')
tbhdu.header.update('INDXSCHM','IMPLICIT',
'Indexing: IMPLICIT or EXPLICIT')
tbhdu.writeto(filename,clobber=True)
def read_map(filename,field=0,dtype=np.float64,nest=False,hdu=1,h=False,
verbose=True,memmap=False):
"""Read an healpix map from a fits file.
Parameters
----------
filename : str
the fits file name
field : int or tuple of int, optional
The column to read. Default: 0.
By convention 0 is temperature, 1 is Q, 2 is U.
Field can be a tuple to read multiple columns (0,1,2)
dtype : data type, optional
Force the conversion to some type. Default: np.float64
nest : bool, optional
If True return the map in NEST ordering, otherwise in RING ordering;
use fits keyword ORDERING to decide whether conversion is needed or not
If None, no conversion is performed.
hdu : int, optional
the header number to look at (start at 0)
h : bool, optional
If True, return also the header. Default: False.
verbose : bool, optional
If True, print a number of diagnostic messages
memmap : bool, optional
Argument passed to pyfits.open, if True, the map is not read into memory,
but only the required pixels are read when needed. Default: False.
Returns
-------
m | (m0, m1, ...) [, header] : array or a tuple of arrays, optionally with header appended
The map(s) read from the file, and the header if *h* is True.
"""
hdulist=pf.open(filename, memmap=memmap)
#print hdulist[1].header
nside = hdulist[hdu].header.get('NSIDE')
if nside is None:
warnings.warn("No NSIDE in the header file : will use length of array", HealpixFitsWarning)
else:
nside = int(nside)
if verbose: print('NSIDE = {0:d}'.format(nside))
if not pixelfunc.isnsideok(nside):
raise ValueError('Wrong nside parameter.')
ordering = hdulist[hdu].header.get('ORDERING','UNDEF').strip()
if ordering == 'UNDEF':
ordering = (nest and 'NESTED' or 'RING')
warnings.warn("No ORDERING keyword in header file : "
"assume %s"%ordering)
if verbose: print('ORDERING = {0:s} in fits file'.format(ordering))
sz=pixelfunc.nside2npix(nside)
if not (hasattr(field, '__len__') or isinstance(field, str)):
field = (field,)
ret = []
for ff in field:
try:
m=hdulist[hdu].data.field(ff).astype(dtype).ravel()
except pf.VerifyError as e:
print(e)
print("Trying to fix a badly formatted header")
m=hdulist[hdu].verify("fix")
m=hdulist[hdu].data.field(ff).astype(dtype).ravel()
if (not pixelfunc.isnpixok(m.size) or (sz>0 and sz != m.size)) and verbose:
print('nside={0:d}, sz={1:d}, m.size={2:d}'.format(nside,sz,m.size))
raise ValueError('Wrong nside parameter.')
if not nest is None: # no conversion with None
if nest and ordering == 'RING':
idx = pixelfunc.nest2ring(nside,np.arange(m.size,dtype=np.int32))
m = m[idx]
if verbose: print('Ordering converted to NEST')
elif (not nest) and ordering == 'NESTED':
idx = pixelfunc.ring2nest(nside,np.arange(m.size,dtype=np.int32))
m = m[idx]
if verbose: print('Ordering converted to RING')
try:
m[pixelfunc.mask_bad(m)] = UNSEEN
except OverflowError:
pass
ret.append(m)
if len(ret) == 1:
if h:
return ret[0],hdulist[hdu].header.items()
else:
return ret[0]
else:
if h:
ret.append(hdulist[hdu].header.items())
return tuple(ret)
else:
return tuple(ret)
def write_alm(filename,alms,out_dtype=None,lmax=-1,mmax=-1,mmax_in=-1):
"""Write alms to a fits file.
In the fits file the alms are written
with explicit index scheme, index = l*l + l + m +1, possibly out of order.
By default write_alm makes a table with the same precision as the alms.
If specified, the lmax and mmax parameters truncate the input data to
include only alms for which l <= lmax and m <= mmax.
Parameters
----------
filename : str
The filename of the output fits file
alms : array, complex
A complex ndarray holding the alms, index = m*(2*lmax+1-m)/2+l, see Alm.getidx
lmax : int, optional
The maximum l in the output file
mmax : int, optional
The maximum m in the output file
out_dtype : data type, optional
data type in the output file (must be a numpy dtype). Default: *alms*.real.dtype
mmax_in : int, optional
maximum m in the input array
"""
l2max = Alm.getlmax(len(alms),mmax=mmax_in)
if (lmax != -1 and lmax > l2max):
raise ValueError("Too big lmax in parameter")
elif lmax == -1:
lmax = l2max
if mmax_in == -1:
mmax_in = l2max
if mmax == -1:
mmax = lmax
if mmax > mmax_in:
mmax = mmax_in
if (out_dtype == None):
out_dtype = alms.real.dtype
l,m = Alm.getlm(lmax)
idx = np.where((l <= lmax)*(m <= mmax))
l = l[idx]
m = m[idx]
idx_in_original = Alm.getidx(l2max, l=l, m=m)
index = l**2 + l + m + 1
out_data = np.empty(len(index),
dtype=[('index','i'),
('real',out_dtype),
('imag',out_dtype)])
out_data['index'] = index
out_data['real'] = alms.real[idx_in_original]
out_data['imag'] = alms.imag[idx_in_original]
cindex = pf.Column(name="index", format=getformat(np.int32), unit="l*l+l+m+1", array=out_data['index'])
creal = pf.Column(name="real", format=getformat(out_dtype), unit="unknown", array=out_data['real'])
cimag = pf.Column(name="imag", format=getformat(out_dtype), unit="unknown", array=out_data['imag'])
tbhdu = pf.new_table([cindex,creal,cimag])
tbhdu.writeto(filename,clobber=True)
def read_alm(filename,hdu=1,return_mmax=False):
"""Read alm from a fits file.
In the fits file, the alm are written
with explicit index scheme, index = l**2+l+m+1, while healpix cxx
uses index = m*(2*lmax+1-m)/2+l. The conversion is done in this
function.
Parameters
----------
filename : str
The name of the fits file to read
hdu : int, optional
The header to read. Start at 0. Default: hdu=1
return_mmax : bool, optional
If true, both the alms and mmax is returned in a tuple. Default: return_mmax=False
Returns
-------
alms[, mmax] : complex array or tuple of a complex array and an int
The alms read from the file and optionally mmax read from the file
"""
idx, almr, almi = mrdfits(filename,hdu=hdu)
l = np.floor(np.sqrt(idx-1)).astype(np.long)
m = idx - l**2 - l - 1
if (m<0).any():
raise ValueError('Negative m value encountered !')
lmax = l.max()
mmax = m.max()
alm = almr*(0+0j)
i = Alm.getidx(lmax,l,m)
alm.real[i] = almr
alm.imag[i] = almi
if return_mmax:
return alm, mmax
else:
return alm
## Generic functions to read and write column of data in fits file
def mrdfits(filename,hdu=1):
"""Read a table in a fits file.
Parameters
----------
filename : str
The name of the fits file to read
hdu : int, optional
The header to read. Start at 0. Default: hdu=1
Returns
-------
cols : a list of arrays
A list of column data in the given header
"""
hdulist=pf.open(filename)
if hdu>=len(hdulist):
raise ValueError('Available hdu in [0-%d]'%len(hdulist))
hdu=hdulist[hdu]
val=[]
for i in range(len(hdu.columns)):
val.append(hdu.data.field(i))
hdulist.close()
del hdulist
return val
def mwrfits(filename,data,hdu=1,colnames=None,keys=None):
"""Write columns to a fits file in a table extension.
Parameters
----------
filename : str
The fits file name
data : list of 1D arrays
A list of 1D arrays to write in the table
hdu : int, optional
The header where to write the data. Default: 1
colnames : list of str
The column names
keys : dict-like
A dictionary with keywords to write in the header
"""
# Check the inputs
if colnames is not None:
if len(colnames) != len(data):
raise ValueError("colnames and data must the same length")
else:
colnames = ['']*len(data)
cols=[]
for line in xrange(len(data)):
cols.append(pf.Column(name=colnames[line],
format=getformat(data[line]),
array=data[line]))
tbhdu = pf.new_table(cols)
if type(keys) is dict:
for k,v in keys.items():
tbhdu.header.update(k,v)
# write the file
tbhdu.writeto(filename,clobber=True)
def getformat(t):
"""Get the FITS convention format string of data type t.
Parameters
----------
t : data type
The data type for which the FITS type is requested
Returns
-------
fits_type : str or None
The FITS string code describing the data type, or None if unknown type.
"""
conv = {
np.dtype(np.bool): 'L',
np.dtype(np.uint8): 'B',
np.dtype(np.int16): 'I',
np.dtype(np.int32): 'J',
np.dtype(np.int64): 'K',
np.dtype(np.float32): 'E',
np.dtype(np.float64): 'D',
np.dtype(np.complex64): 'C',
np.dtype(np.complex128): 'M'
}
try:
if t in conv:
return conv[t]
except:
pass
try:
if np.dtype(t) in conv:
return conv[np.dtype(t)]
except:
pass
try:
if np.dtype(type(t)) in conv:
return conv[np.dtype(type(t))]
except:
pass
try:
if np.dtype(type(t[0])) in conv:
return conv[np.dtype(type(t[0]))]
except:
pass
try:
if t is str:
return 'A'
except:
pass
try:
if type(t) is str:
return 'A%d'%(len(t))
except:
pass
try:
if type(t[0]) is str:
l=max(len(s) for s in t)
return 'A%d'%(l)
except:
pass
|