This file is indexed.

/usr/lib/python3/dist-packages/astLib/astCalc.py is in python3-astlib 0.8.0-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
"""module for performing common calculations

(c) 2007-2011 Matt Hilton

(c) 2013-2014 Matt Hilton & Steven Boada

U{http://astlib.sourceforge.net}

The focus in this module is at present on calculations of distances in a given
cosmology. The parameters for the cosmological model are set using the
variables OMEGA_M0, OMEGA_L0, OMEGA_R0, H0 in the module namespace (see below for details).

@var OMEGA_M0: The matter density parameter at z=0.
@type OMEGA_M0: float

@var OMEGA_L0: The dark energy density (in the form of a cosmological
    constant) at z=0.
@type OMEGA_L0: float

@var OMEGA_R0: The radiation density at z=0 (note this is only used currently
    in calculation of L{Ez}).
@type OMEGA_R0: float

@var H0: The Hubble parameter (in km/s/Mpc) at z=0.
@type H0: float

@var C_LIGHT: The speed of light in km/s.
@type C_LIGHT: float

"""

OMEGA_M0 = 0.3
OMEGA_L0 = 0.7
OMEGA_R0 = 8.24E-5
H0 = 70.0

C_LIGHT = 3.0e5

import math
try:
    from scipy import integrate
except ImportError:
    print("WARNING: astCalc failed to import scipy modules - some functions will not work")

#------------------------------------------------------------------------------
def dl(z):
    """Calculates the luminosity distance in Mpc at redshift z.

    @type z: float
    @param z: redshift
    @rtype: float
    @return: luminosity distance in Mpc

    """

    DM = dm(z)
    DL = (1.0+z)*DM

    return DL

#------------------------------------------------------------------------------
def da(z):
    """Calculates the angular diameter distance in Mpc at redshift z.

    @type z: float
    @param z: redshift
    @rtype: float
    @return: angular diameter distance in Mpc

    """
    DM = dm(z)
    DA = DM/(1.0+z)

    return DA

#------------------------------------------------------------------------------
def dm(z):
    """Calculates the transverse comoving distance (proper motion distance) in
    Mpc at redshift z.

    @type z: float
    @param z: redshift
    @rtype: float
    @return: transverse comoving distance (proper motion distance) in Mpc

    """

    OMEGA_K = 1.0 - OMEGA_M0 - OMEGA_L0

    # Integration limits
    xMax = 1.0
    xMin = 1.0 / (1.0 + z)

    # Function to be integrated
    yn = lambda x: (1.0/math.sqrt(OMEGA_M0*x + OMEGA_L0*math.pow(x, 4) +
            OMEGA_K*math.pow(x, 2)))

    integralValue, integralError = integrate.quad(yn, xMin, xMax)

    if OMEGA_K > 0.0:
        DM = (C_LIGHT/H0 * math.pow(abs(OMEGA_K), -0.5) *
            math.sinh(math.sqrt(abs(OMEGA_K)) * integralValue))
    elif OMEGA_K == 0.0:
        DM = C_LIGHT/H0 * integralValue
    elif OMEGA_K < 0.0:
        DM = (C_LIGHT/H0 * math.pow(abs(OMEGA_K), -0.5) *
            math.sin(math.sqrt(abs(OMEGA_K)) * integralValue))

    return DM

#------------------------------------------------------------------------------
def dc(z):
    """Calculates the line of sight comoving distance in Mpc at redshift z.

    @type z: float
    @param z: redshift
    @rtype: float
    @return: transverse comoving distance (proper motion distance) in Mpc

    """

    OMEGA_K = 1.0 - OMEGA_M0 - OMEGA_L0

    # Integration limits
    xMax = 1.0
    xMin = 1.0 / (1.0 + z)

    # Function to be integrated
    yn = lambda x: (1.0/math.sqrt(OMEGA_M0*x + OMEGA_L0*math.pow(x, 4) +
            OMEGA_K*math.pow(x, 2)))

    integralValue, integralError = integrate.quad(yn, xMin, xMax)

    DC= C_LIGHT/H0*integralValue

    return DC

#------------------------------------------------------------------------------
def dVcdz(z):
    """Calculates the line of sight comoving volume element per steradian dV/dz
    at redshift z.

    @type z: float
    @param z: redshift
    @rtype: float
    @return: comoving volume element per steradian

    """

    dH = C_LIGHT/H0
    dVcdz=(dH*(math.pow(da(z),2))*(math.pow(1+z,2))/Ez(z))

    return dVcdz

#------------------------------------------------------------------------------
def dl2z(distanceMpc):
    """Calculates the redshift z corresponding to the luminosity distance given
    in Mpc.

    @type distanceMpc: float
    @param distanceMpc: distance in Mpc
    @rtype: float
    @return: redshift

    """

    dTarget = distanceMpc

    toleranceMpc = 0.1

    zMin = 0.0
    zMax = 10.0

    diff = dl(zMax) - dTarget
    while diff < 0:
        zMax = zMax + 5.0
        diff = dl(zMax) - dTarget

    zTrial = zMin + (zMax-zMin)/2.0

    dTrial = dl(zTrial)
    diff = dTrial - dTarget
    while abs(diff) > toleranceMpc:

        if diff > 0:
            zMax = zMax - (zMax-zMin)/2.0
        else:
            zMin = zMin + (zMax-zMin)/2.0

        zTrial = zMin + (zMax-zMin)/2.0
        dTrial = dl(zTrial)
        diff = dTrial - dTarget

    return zTrial

#------------------------------------------------------------------------------
def dc2z(distanceMpc):
    """Calculates the redshift z corresponding to the comoving distance given
    in Mpc.

    @type distanceMpc: float
    @param distanceMpc: distance in Mpc
    @rtype: float
    @return: redshift

    """

    dTarget = distanceMpc

    toleranceMpc = 0.1

    zMin = 0.0
    zMax = 10.0

    diff = dc(zMax) - dTarget
    while diff < 0:
        zMax = zMax + 5.0
        diff = dc(zMax) - dTarget

    zTrial = zMin + (zMax-zMin)/2.0

    dTrial = dc(zTrial)
    diff = dTrial - dTarget
    while abs(diff) > toleranceMpc:

        if diff > 0:
            zMax = zMax - (zMax-zMin)/2.0
        else:
            zMin = zMin + (zMax-zMin)/2.0

        zTrial = zMin + (zMax-zMin)/2.0
        dTrial = dc(zTrial)
        diff = dTrial - dTarget

    return zTrial

#------------------------------------------------------------------------------
def t0():
    """Calculates the age of the universe in Gyr at z=0 for the current set of
    cosmological parameters.

    @rtype: float
    @return: age of the universe in Gyr at z=0

    """

    OMEGA_K = 1.0 - OMEGA_M0 - OMEGA_L0

    # Integration limits
    xMax = 1.0
    xMin = 0

    # Function to be integrated
    yn = lambda x: (x/math.sqrt(OMEGA_M0*x + OMEGA_L0*math.pow(x, 4) +
            OMEGA_K*math.pow(x, 2)))

    integralValue, integralError = integrate.quad(yn, xMin, xMax)

    T0 = (1.0/H0*integralValue*3.08e19)/3.16e7/1e9

    return T0

#------------------------------------------------------------------------------
def tl(z):
    """ Calculates the lookback time in Gyr to redshift z for the current set
    of cosmological parameters.

    @type z: float
    @param z: redshift
    @rtype: float
    @return: lookback time in Gyr to redshift z

    """
    OMEGA_K = 1.0 - OMEGA_M0 - OMEGA_L0

    # Integration limits
    xMax = 1.0
    xMin = 1./(1.+z)

    # Function to be integrated
    yn = lambda x: (x/math.sqrt(OMEGA_M0*x + OMEGA_L0*math.pow(x, 4) +
            OMEGA_K*math.pow(x, 2)))

    integralValue, integralError = integrate.quad(yn, xMin, xMax)

    T0 = (1.0/H0*integralValue*3.08e19)/3.16e7/1e9

    return T0

#------------------------------------------------------------------------------
def tz(z):
    """Calculates the age of the universe at redshift z for the current set of
    cosmological parameters.

    @type z: float
    @param z: redshift
    @rtype: float
    @return: age of the universe in Gyr at redshift z

    """

    TZ = t0() - tl(z)

    return TZ

#------------------------------------------------------------------------------
def tl2z(tlGyr):
    """Calculates the redshift z corresponding to lookback time tlGyr given in
    Gyr.

    @type tlGyr: float
    @param tlGyr: lookback time in Gyr
    @rtype: float
    @return: redshift
    
    @note: Raises ValueError if tlGyr is not positive.
    
    """
    if tlGyr < 0.:
        raise ValueError('Lookback time must be positive')

    tTarget = tlGyr

    toleranceGyr = 0.001

    zMin = 0.0
    zMax = 10.0

    diff = tl(zMax) - tTarget
    while diff < 0:
        zMax = zMax + 5.0
        diff = tl(zMax) - tTarget

    zTrial = zMin + (zMax-zMin)/2.0

    tTrial = tl(zTrial)
    diff = tTrial - tTarget
    while abs(diff) > toleranceGyr:

        if diff > 0:
            zMax = zMax - (zMax-zMin)/2.0
        else:
            zMin = zMin + (zMax-zMin)/2.0

        zTrial = zMin + (zMax-zMin)/2.0
        tTrial = tl(zTrial)
        diff = tTrial - tTarget

    return zTrial

#------------------------------------------------------------------------------
def tz2z(tzGyr):
    """Calculates the redshift z corresponding to age of the universe tzGyr
    given in Gyr.

    @type tzGyr: float
    @param tzGyr: age of the universe in Gyr
    @rtype: float
    @return: redshift
    
    @note: Raises ValueError if Universe age not positive

    """
    if tzGyr <= 0:
        raise ValueError('Universe age must be positive.')
    tl = t0() - tzGyr
    z = tl2z(tl)

    return z

#------------------------------------------------------------------------------
def absMag(appMag, distMpc):
    """Calculates the absolute magnitude of an object at given luminosity
    distance in Mpc.

    @type appMag: float
    @param appMag: apparent magnitude of object
    @type distMpc: float
    @param distMpc: distance to object in Mpc
    @rtype: float
    @return: absolute magnitude of object

    """
    absMag = appMag - (5.0*math.log10(distMpc*1.0e5))

    return absMag

#------------------------------------------------------------------------------
def Ez(z):
    """Calculates the value of E(z), which describes evolution of the Hubble
    parameter with redshift, at redshift z for the current set of cosmological
    parameters. See, e.g., Bryan & Norman 1998 (ApJ, 495, 80).

    @type z: float
    @param z: redshift
    @rtype: float
    @return: value of E(z) at redshift z

    """

    Ez = math.sqrt(Ez2(z))

    return Ez

#------------------------------------------------------------------------------
def Ez2(z):
    """Calculates the value of E(z)^2, which describes evolution of the Hubble
    parameter with redshift, at redshift z for the current set of cosmological
    parameters. See, e.g., Bryan & Norman 1998 (ApJ, 495, 80).

    @type z: float
    @param z: redshift
    @rtype: float
    @return: value of E(z)^2 at redshift z

    """
    # This form of E(z) is more reliable at high redshift. It is basically the
    # same for all redshifts below 10. But above that, the radiation term
    # begins to dominate. From Peebles 1993.

    Ez2 = (OMEGA_R0 * math.pow(1.0+z, 4) +
        OMEGA_M0* math.pow(1.0+z, 3) +
        (1.0- OMEGA_M0- OMEGA_L0) *
        math.pow(1.0+z, 2) + OMEGA_L0)

    return Ez2

#------------------------------------------------------------------------------
def OmegaMz(z):
    """Calculates the matter density of the universe at redshift z. See, e.g.,
    Bryan & Norman 1998 (ApJ, 495, 80).

    @type z: float
    @param z: redshift
    @rtype: float
    @return: matter density of universe at redshift z

    """
    ez2 = Ez2(z)

    Omega_Mz = (OMEGA_M0*math.pow(1.0+z, 3))/ez2

    return Omega_Mz

#------------------------------------------------------------------------------
def OmegaLz(z):
    """ Calculates the dark energy density of the universe at redshift z.

    @type z: float
    @param z: redshift
    @rtype: float
    @return: dark energy density of universe at redshift z

    """
    ez2 = Ez2(z)

    return OMEGA_L0/ez2

#------------------------------------------------------------------------------
def OmegaRz(z):
    """ Calculates the radiation density of the universe at redshift z.

    @type z: float
    @param z: redshift
    @rtype: float
    @return: radiation density of universe at redshift z

    """
    ez2 = Ez2(z)

    return OMEGA_R0*math.pow(1+z, 4)/ez2

#------------------------------------------------------------------------------
def DeltaVz(z):
    """Calculates the density contrast of a virialised region S{Delta}V(z),
    assuming a S{Lambda}CDM-type flat cosmology. See, e.g., Bryan & Norman
    1998 (ApJ, 495, 80).

    @type z: float
    @param z: redshift
    @rtype: float
    @return: density contrast of a virialised region at redshift z

    @note: If OMEGA_M0+OMEGA_L0 is not equal to 1, this routine exits and
    prints an error
    message to the console.

    """

    OMEGA_K = 1.0 - OMEGA_M0 - OMEGA_L0

    if OMEGA_K == 0.0:
        Omega_Mz = OmegaMz(z)
        deltaVz = (18.0*math.pow(math.pi, 2)+82.0*(Omega_Mz-1.0)-39.0 *
                math.pow(Omega_Mz-1, 2))
        return deltaVz
    else:
        raise Exception("cosmology is NOT flat.")

#------------------------------------------------------------------------------
def RVirialXRayCluster(kT, z, betaT):
    """Calculates the virial radius (in Mpc) of a galaxy cluster at redshift z
    with X-ray temperature kT, assuming self-similar evolution and a flat
    cosmology. See Arnaud et al. 2002 (A&A, 389, 1) and Bryan & Norman 1998
    (ApJ, 495, 80). A flat S{Lambda}CDM-type flat cosmology is assumed.

    @type kT: float
    @param kT: cluster X-ray temperature in keV
    @type z: float
    @param z: redshift
    @type betaT: float
    @param betaT: the normalisation of the virial relation, for which Evrard et
    al. 1996 (ApJ,469, 494) find a value of 1.05
    @rtype: float
    @return: virial radius of cluster in Mpc

    @note: If OMEGA_M0+OMEGA_L0 is not equal to 1, this routine exits and
    prints an error message to the console.

    """

    OMEGA_K = 1.0 - OMEGA_M0 - OMEGA_L0

    if OMEGA_K == 0.0:
        Omega_Mz = OmegaMz(z)
        deltaVz = (18.0 * math.pow(math.pi, 2) + 82.0 * (Omega_Mz-1.0)- 39.0 *
                math.pow(Omega_Mz-1, 2))
        deltaz = (deltaVz*OMEGA_M0)/(18.0*math.pow(math.pi, 2)*Omega_Mz)

        # The equation quoted in Arnaud, Aghanim & Neumann is for h50, so need
        # to scale it
        h50 = H0/50.0
        Rv = (3.80*math.sqrt(betaT)*math.pow(deltaz, -0.5) *
            math.pow(1.0+z, (-3.0/2.0)) * math.sqrt(kT/10.0)*(1.0/h50))

        return Rv

    else:
        raise Exception("cosmology is NOT flat.")

#------------------------------------------------------------------------------