/usr/lib/python3/dist-packages/astLib/astCalc.py is in python3-astlib 0.8.0-3build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 | """module for performing common calculations
(c) 2007-2011 Matt Hilton
(c) 2013-2014 Matt Hilton & Steven Boada
U{http://astlib.sourceforge.net}
The focus in this module is at present on calculations of distances in a given
cosmology. The parameters for the cosmological model are set using the
variables OMEGA_M0, OMEGA_L0, OMEGA_R0, H0 in the module namespace (see below for details).
@var OMEGA_M0: The matter density parameter at z=0.
@type OMEGA_M0: float
@var OMEGA_L0: The dark energy density (in the form of a cosmological
constant) at z=0.
@type OMEGA_L0: float
@var OMEGA_R0: The radiation density at z=0 (note this is only used currently
in calculation of L{Ez}).
@type OMEGA_R0: float
@var H0: The Hubble parameter (in km/s/Mpc) at z=0.
@type H0: float
@var C_LIGHT: The speed of light in km/s.
@type C_LIGHT: float
"""
OMEGA_M0 = 0.3
OMEGA_L0 = 0.7
OMEGA_R0 = 8.24E-5
H0 = 70.0
C_LIGHT = 3.0e5
import math
try:
from scipy import integrate
except ImportError:
print("WARNING: astCalc failed to import scipy modules - some functions will not work")
#------------------------------------------------------------------------------
def dl(z):
"""Calculates the luminosity distance in Mpc at redshift z.
@type z: float
@param z: redshift
@rtype: float
@return: luminosity distance in Mpc
"""
DM = dm(z)
DL = (1.0+z)*DM
return DL
#------------------------------------------------------------------------------
def da(z):
"""Calculates the angular diameter distance in Mpc at redshift z.
@type z: float
@param z: redshift
@rtype: float
@return: angular diameter distance in Mpc
"""
DM = dm(z)
DA = DM/(1.0+z)
return DA
#------------------------------------------------------------------------------
def dm(z):
"""Calculates the transverse comoving distance (proper motion distance) in
Mpc at redshift z.
@type z: float
@param z: redshift
@rtype: float
@return: transverse comoving distance (proper motion distance) in Mpc
"""
OMEGA_K = 1.0 - OMEGA_M0 - OMEGA_L0
# Integration limits
xMax = 1.0
xMin = 1.0 / (1.0 + z)
# Function to be integrated
yn = lambda x: (1.0/math.sqrt(OMEGA_M0*x + OMEGA_L0*math.pow(x, 4) +
OMEGA_K*math.pow(x, 2)))
integralValue, integralError = integrate.quad(yn, xMin, xMax)
if OMEGA_K > 0.0:
DM = (C_LIGHT/H0 * math.pow(abs(OMEGA_K), -0.5) *
math.sinh(math.sqrt(abs(OMEGA_K)) * integralValue))
elif OMEGA_K == 0.0:
DM = C_LIGHT/H0 * integralValue
elif OMEGA_K < 0.0:
DM = (C_LIGHT/H0 * math.pow(abs(OMEGA_K), -0.5) *
math.sin(math.sqrt(abs(OMEGA_K)) * integralValue))
return DM
#------------------------------------------------------------------------------
def dc(z):
"""Calculates the line of sight comoving distance in Mpc at redshift z.
@type z: float
@param z: redshift
@rtype: float
@return: transverse comoving distance (proper motion distance) in Mpc
"""
OMEGA_K = 1.0 - OMEGA_M0 - OMEGA_L0
# Integration limits
xMax = 1.0
xMin = 1.0 / (1.0 + z)
# Function to be integrated
yn = lambda x: (1.0/math.sqrt(OMEGA_M0*x + OMEGA_L0*math.pow(x, 4) +
OMEGA_K*math.pow(x, 2)))
integralValue, integralError = integrate.quad(yn, xMin, xMax)
DC= C_LIGHT/H0*integralValue
return DC
#------------------------------------------------------------------------------
def dVcdz(z):
"""Calculates the line of sight comoving volume element per steradian dV/dz
at redshift z.
@type z: float
@param z: redshift
@rtype: float
@return: comoving volume element per steradian
"""
dH = C_LIGHT/H0
dVcdz=(dH*(math.pow(da(z),2))*(math.pow(1+z,2))/Ez(z))
return dVcdz
#------------------------------------------------------------------------------
def dl2z(distanceMpc):
"""Calculates the redshift z corresponding to the luminosity distance given
in Mpc.
@type distanceMpc: float
@param distanceMpc: distance in Mpc
@rtype: float
@return: redshift
"""
dTarget = distanceMpc
toleranceMpc = 0.1
zMin = 0.0
zMax = 10.0
diff = dl(zMax) - dTarget
while diff < 0:
zMax = zMax + 5.0
diff = dl(zMax) - dTarget
zTrial = zMin + (zMax-zMin)/2.0
dTrial = dl(zTrial)
diff = dTrial - dTarget
while abs(diff) > toleranceMpc:
if diff > 0:
zMax = zMax - (zMax-zMin)/2.0
else:
zMin = zMin + (zMax-zMin)/2.0
zTrial = zMin + (zMax-zMin)/2.0
dTrial = dl(zTrial)
diff = dTrial - dTarget
return zTrial
#------------------------------------------------------------------------------
def dc2z(distanceMpc):
"""Calculates the redshift z corresponding to the comoving distance given
in Mpc.
@type distanceMpc: float
@param distanceMpc: distance in Mpc
@rtype: float
@return: redshift
"""
dTarget = distanceMpc
toleranceMpc = 0.1
zMin = 0.0
zMax = 10.0
diff = dc(zMax) - dTarget
while diff < 0:
zMax = zMax + 5.0
diff = dc(zMax) - dTarget
zTrial = zMin + (zMax-zMin)/2.0
dTrial = dc(zTrial)
diff = dTrial - dTarget
while abs(diff) > toleranceMpc:
if diff > 0:
zMax = zMax - (zMax-zMin)/2.0
else:
zMin = zMin + (zMax-zMin)/2.0
zTrial = zMin + (zMax-zMin)/2.0
dTrial = dc(zTrial)
diff = dTrial - dTarget
return zTrial
#------------------------------------------------------------------------------
def t0():
"""Calculates the age of the universe in Gyr at z=0 for the current set of
cosmological parameters.
@rtype: float
@return: age of the universe in Gyr at z=0
"""
OMEGA_K = 1.0 - OMEGA_M0 - OMEGA_L0
# Integration limits
xMax = 1.0
xMin = 0
# Function to be integrated
yn = lambda x: (x/math.sqrt(OMEGA_M0*x + OMEGA_L0*math.pow(x, 4) +
OMEGA_K*math.pow(x, 2)))
integralValue, integralError = integrate.quad(yn, xMin, xMax)
T0 = (1.0/H0*integralValue*3.08e19)/3.16e7/1e9
return T0
#------------------------------------------------------------------------------
def tl(z):
""" Calculates the lookback time in Gyr to redshift z for the current set
of cosmological parameters.
@type z: float
@param z: redshift
@rtype: float
@return: lookback time in Gyr to redshift z
"""
OMEGA_K = 1.0 - OMEGA_M0 - OMEGA_L0
# Integration limits
xMax = 1.0
xMin = 1./(1.+z)
# Function to be integrated
yn = lambda x: (x/math.sqrt(OMEGA_M0*x + OMEGA_L0*math.pow(x, 4) +
OMEGA_K*math.pow(x, 2)))
integralValue, integralError = integrate.quad(yn, xMin, xMax)
T0 = (1.0/H0*integralValue*3.08e19)/3.16e7/1e9
return T0
#------------------------------------------------------------------------------
def tz(z):
"""Calculates the age of the universe at redshift z for the current set of
cosmological parameters.
@type z: float
@param z: redshift
@rtype: float
@return: age of the universe in Gyr at redshift z
"""
TZ = t0() - tl(z)
return TZ
#------------------------------------------------------------------------------
def tl2z(tlGyr):
"""Calculates the redshift z corresponding to lookback time tlGyr given in
Gyr.
@type tlGyr: float
@param tlGyr: lookback time in Gyr
@rtype: float
@return: redshift
@note: Raises ValueError if tlGyr is not positive.
"""
if tlGyr < 0.:
raise ValueError('Lookback time must be positive')
tTarget = tlGyr
toleranceGyr = 0.001
zMin = 0.0
zMax = 10.0
diff = tl(zMax) - tTarget
while diff < 0:
zMax = zMax + 5.0
diff = tl(zMax) - tTarget
zTrial = zMin + (zMax-zMin)/2.0
tTrial = tl(zTrial)
diff = tTrial - tTarget
while abs(diff) > toleranceGyr:
if diff > 0:
zMax = zMax - (zMax-zMin)/2.0
else:
zMin = zMin + (zMax-zMin)/2.0
zTrial = zMin + (zMax-zMin)/2.0
tTrial = tl(zTrial)
diff = tTrial - tTarget
return zTrial
#------------------------------------------------------------------------------
def tz2z(tzGyr):
"""Calculates the redshift z corresponding to age of the universe tzGyr
given in Gyr.
@type tzGyr: float
@param tzGyr: age of the universe in Gyr
@rtype: float
@return: redshift
@note: Raises ValueError if Universe age not positive
"""
if tzGyr <= 0:
raise ValueError('Universe age must be positive.')
tl = t0() - tzGyr
z = tl2z(tl)
return z
#------------------------------------------------------------------------------
def absMag(appMag, distMpc):
"""Calculates the absolute magnitude of an object at given luminosity
distance in Mpc.
@type appMag: float
@param appMag: apparent magnitude of object
@type distMpc: float
@param distMpc: distance to object in Mpc
@rtype: float
@return: absolute magnitude of object
"""
absMag = appMag - (5.0*math.log10(distMpc*1.0e5))
return absMag
#------------------------------------------------------------------------------
def Ez(z):
"""Calculates the value of E(z), which describes evolution of the Hubble
parameter with redshift, at redshift z for the current set of cosmological
parameters. See, e.g., Bryan & Norman 1998 (ApJ, 495, 80).
@type z: float
@param z: redshift
@rtype: float
@return: value of E(z) at redshift z
"""
Ez = math.sqrt(Ez2(z))
return Ez
#------------------------------------------------------------------------------
def Ez2(z):
"""Calculates the value of E(z)^2, which describes evolution of the Hubble
parameter with redshift, at redshift z for the current set of cosmological
parameters. See, e.g., Bryan & Norman 1998 (ApJ, 495, 80).
@type z: float
@param z: redshift
@rtype: float
@return: value of E(z)^2 at redshift z
"""
# This form of E(z) is more reliable at high redshift. It is basically the
# same for all redshifts below 10. But above that, the radiation term
# begins to dominate. From Peebles 1993.
Ez2 = (OMEGA_R0 * math.pow(1.0+z, 4) +
OMEGA_M0* math.pow(1.0+z, 3) +
(1.0- OMEGA_M0- OMEGA_L0) *
math.pow(1.0+z, 2) + OMEGA_L0)
return Ez2
#------------------------------------------------------------------------------
def OmegaMz(z):
"""Calculates the matter density of the universe at redshift z. See, e.g.,
Bryan & Norman 1998 (ApJ, 495, 80).
@type z: float
@param z: redshift
@rtype: float
@return: matter density of universe at redshift z
"""
ez2 = Ez2(z)
Omega_Mz = (OMEGA_M0*math.pow(1.0+z, 3))/ez2
return Omega_Mz
#------------------------------------------------------------------------------
def OmegaLz(z):
""" Calculates the dark energy density of the universe at redshift z.
@type z: float
@param z: redshift
@rtype: float
@return: dark energy density of universe at redshift z
"""
ez2 = Ez2(z)
return OMEGA_L0/ez2
#------------------------------------------------------------------------------
def OmegaRz(z):
""" Calculates the radiation density of the universe at redshift z.
@type z: float
@param z: redshift
@rtype: float
@return: radiation density of universe at redshift z
"""
ez2 = Ez2(z)
return OMEGA_R0*math.pow(1+z, 4)/ez2
#------------------------------------------------------------------------------
def DeltaVz(z):
"""Calculates the density contrast of a virialised region S{Delta}V(z),
assuming a S{Lambda}CDM-type flat cosmology. See, e.g., Bryan & Norman
1998 (ApJ, 495, 80).
@type z: float
@param z: redshift
@rtype: float
@return: density contrast of a virialised region at redshift z
@note: If OMEGA_M0+OMEGA_L0 is not equal to 1, this routine exits and
prints an error
message to the console.
"""
OMEGA_K = 1.0 - OMEGA_M0 - OMEGA_L0
if OMEGA_K == 0.0:
Omega_Mz = OmegaMz(z)
deltaVz = (18.0*math.pow(math.pi, 2)+82.0*(Omega_Mz-1.0)-39.0 *
math.pow(Omega_Mz-1, 2))
return deltaVz
else:
raise Exception("cosmology is NOT flat.")
#------------------------------------------------------------------------------
def RVirialXRayCluster(kT, z, betaT):
"""Calculates the virial radius (in Mpc) of a galaxy cluster at redshift z
with X-ray temperature kT, assuming self-similar evolution and a flat
cosmology. See Arnaud et al. 2002 (A&A, 389, 1) and Bryan & Norman 1998
(ApJ, 495, 80). A flat S{Lambda}CDM-type flat cosmology is assumed.
@type kT: float
@param kT: cluster X-ray temperature in keV
@type z: float
@param z: redshift
@type betaT: float
@param betaT: the normalisation of the virial relation, for which Evrard et
al. 1996 (ApJ,469, 494) find a value of 1.05
@rtype: float
@return: virial radius of cluster in Mpc
@note: If OMEGA_M0+OMEGA_L0 is not equal to 1, this routine exits and
prints an error message to the console.
"""
OMEGA_K = 1.0 - OMEGA_M0 - OMEGA_L0
if OMEGA_K == 0.0:
Omega_Mz = OmegaMz(z)
deltaVz = (18.0 * math.pow(math.pi, 2) + 82.0 * (Omega_Mz-1.0)- 39.0 *
math.pow(Omega_Mz-1, 2))
deltaz = (deltaVz*OMEGA_M0)/(18.0*math.pow(math.pi, 2)*Omega_Mz)
# The equation quoted in Arnaud, Aghanim & Neumann is for h50, so need
# to scale it
h50 = H0/50.0
Rv = (3.80*math.sqrt(betaT)*math.pow(deltaz, -0.5) *
math.pow(1.0+z, (-3.0/2.0)) * math.sqrt(kT/10.0)*(1.0/h50))
return Rv
else:
raise Exception("cosmology is NOT flat.")
#------------------------------------------------------------------------------
|