This file is indexed.

/usr/lib/python2.7/dist-packages/uniconvertor/app/Graphics/ellipse.py is in python-uniconvertor 1.1.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# Sketch - A Python-based interactive drawing program
# Copyright (C) 1997, 1998, 1999, 2000, 2001 by Bernhard Herzog
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	See the GNU
# Library General Public License for more details.
#
# You should have received a copy of the GNU Library General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307	USA

from math import sin, cos, atan2, hypot, pi, fmod, floor

from app.conf.const import ArcArc, ArcChord, ArcPieSlice, ConstraintMask, \
		AlternateMask

from app import _, Point, Polar, Trafo, SingularMatrix, Rect, UnionRects, \
		CreateMultiUndo, NullUndo, RegisterCommands

#import graphics

#from app.UI.command import AddCmd

import handle
from base import Primitive, RectangularPrimitive, RectangularCreator, Creator,\
		Editor
from bezier import PolyBezier
from blend import Blend
from properties import DefaultGraphicsProperties

from app import _sketch



#
#	Ellipse
#

# helper function for snapping (might be useful elsewhere too):
def snap_to_line(start, end, p):
	if start != end:
		result = [(abs(start - p), start), (abs(end - p), end)]
		v = end - start
		length = abs(v)
		r = (v * (p - start)) / (length ** 2)
		if 0 <= r <= 1.0:
			p2 = start + r * v
			result.append((abs(p2 - p), p2))
		return min(result)
	else:
		return (abs(start - p), start)



class Ellipse(RectangularPrimitive):

	is_Ellipse = 1
	is_curve = 1
	is_clip = 1
	has_edit_mode = 1

	commands = RectangularPrimitive.commands[:]

	def __init__(self, trafo = None, start_angle = 0.0, end_angle = 0.0,
					arc_type = ArcPieSlice, properties = None, duplicate = None):
		if trafo is not None and trafo.m11==trafo.m21==trafo.m12==trafo.m22==0:
			trafo=Trafo(1,0,0,-1,trafo.v1,trafo.v2)
		if duplicate is not None:
			self.start_angle = duplicate.start_angle
			self.end_angle = duplicate.end_angle
			self.arc_type = duplicate.arc_type
		else:
			self.start_angle = start_angle
			self.end_angle = end_angle
			self.arc_type = arc_type
		RectangularPrimitive.__init__(self, trafo, properties = properties,
										duplicate = duplicate)
		self.normalize()

	def DrawShape(self, device, rect = None, clip = 0):
		Primitive.DrawShape(self, device)
		device.SimpleEllipse(self.trafo, self.start_angle, self.end_angle,
								self.arc_type, rect, clip)

	def SetAngles(self, start_angle, end_angle):
		undo = (self.SetAngles, self.start_angle, self.end_angle)
		self.start_angle = start_angle
		self.end_angle = end_angle
		self.normalize()
		self._changed()
		return undo

	def Angles(self):
		return self.start_angle, self.end_angle

	def SetArcType(self, arc_type):
		if arc_type == self.arc_type:
			return NullUndo
		undo = (self.SetArcType, self.arc_type)
		self.arc_type = arc_type
		self._changed()
		return undo

	def ArcType(self):
		return self.arc_type

	#AddCmd(commands, 'EllipseArc', _("Arc"), SetArcType, args = ArcArc)
	#AddCmd(commands, 'EllipseChord', _("Chord"), SetArcType, args = ArcChord)
	#AddCmd(commands, 'EllipsePieSlice', _("Pie Slice"), SetArcType, args = ArcPieSlice)

	def normalize(self):
		pi2 = 2 * pi
		self.start_angle = fmod(self.start_angle, pi2)
		if self.start_angle < 0:
			self.start_angle = self.start_angle + pi2
		self.end_angle = fmod(self.end_angle, pi2)
		if self.end_angle < 0:
			self.end_angle = self.end_angle + pi2

	def Paths(self):
		path = _sketch.approx_arc(self.start_angle, self.end_angle,
									self.arc_type)
		path.Transform(self.trafo)
		return (path,)

	def AsBezier(self):
		return PolyBezier(paths = self.Paths(),
							properties = self.properties.Duplicate())

	def Hit(self, p, rect, device, clip = 0):
		return device.SimpleEllipseHit(p, self.trafo, self.start_angle,
										self.end_angle, self.arc_type,
										self.properties, self.Filled() or clip,
										ignore_outline_mode = clip)

	def Blend(self, other, p, q):
		blended = RectangularPrimitive.Blend(self, other, p, q)
		if self.start_angle != self.end_angle \
			or other.start_angle != other.end_angle:
			blended.start_angle = p * self.start_angle + q * other.start_angle
			blended.end_angle = p * self.end_angle + q * other.end_angle
			if self.start_angle == self.end_angle:
				blended.arc_type = other.arc_type
			elif other.start_angle == other.end_angle:
				blended.arc_type = self.arc_type
			else:
				if self.arc_type == other.arc_type:
					blended.arc_type = self.arc_type
				# The rest of the arc type blends is quite arbitrary
				# XXX: are these rules acceptable? Maybe we should blend
				# the ellipses as bezier curves if the arc types differ
				elif self.arc_type == ArcArc or other.arc_type == ArcArc:
					blended.arc_type = ArcArc
				elif self.arc_type == ArcChord or other.arc_type == ArcChord:
					blended.arc_type = ArcChord
				else:
					blended.arc_type = ArcPieSlice
		return blended

	def GetSnapPoints(self):
		t = self.trafo
		start_angle = self.start_angle; end_angle = self.end_angle
		if self.start_angle == self.end_angle:
			a = Point(t.m11, t.m21)
			b = Point(t.m12, t.m22)
			c = t.offset()
			return [c, c + a, c - a, c + b, c - b]
		else:
			points = [t(Polar(start_angle)), t(Polar(end_angle)), t.offset()]
			if end_angle < start_angle:
				end_angle = end_angle + 2 * pi
			pi2 = pi / 2
			angle = pi2 * (floor(start_angle / pi2) + 1)
			while angle < end_angle:
				points.append(t(Polar(1, angle)))
				angle = angle + pi2
			return points

	def Snap(self, p):
		try:
			r, phi = self.trafo.inverse()(p).polar()
			start_angle = self.start_angle; end_angle = self.end_angle
			p2 = self.trafo(Polar(1, phi))
			if start_angle == end_angle:
				result = (abs(p - p2), p2)
			else:
				result = []
				if phi < 0:
					phi = phi + 2 * pi
				if start_angle < end_angle:
					between = start_angle <= phi <= end_angle
				else:
					between = start_angle <= phi or phi <= end_angle
				if between:
					result.append((abs(p - p2), p2))
				start = self.trafo(Polar(self.start_angle))
				end = self.trafo(Polar(self.end_angle))
				if self.arc_type == ArcArc:
					result.append((abs(start - p), start))
					result.append((abs(end - p), end))
				elif self.arc_type == ArcChord:
					result.append((snap_to_line(start, end, p)))
				elif self.arc_type == ArcPieSlice:
					center = self.trafo.offset()
					result.append(snap_to_line(start, center, p))
					result.append(snap_to_line(end, center, p))
				result = min(result)
			return result
		except SingularMatrix:
			# XXX this case could be handled better.
			return (1e200, p)


	def update_rects(self):
		trafo = self.trafo
		start = trafo.offset()
		# On some systems, atan2 can raise a ValueError if both
		# parameters are 0. In that case, the actual value the of angle
		# is not important since in the computation of p below, the
		# coordinate depending on the angle will always be 0 because
		# both trafo coefficients are 0. So set the angle to 0 in case
		# of an exception.
		try:
			phi1 = atan2(trafo.m12, trafo.m11)
		except ValueError:
			phi1 = 0
		try:
			phi2 = atan2(trafo.m22, trafo.m21)
		except ValueError:
			phi2 = 0
		p = Point(trafo.m11 * cos(phi1) + trafo.m12 * sin(phi1),
					trafo.m21 * cos(phi2) + trafo.m22 * sin(phi2))
		self.coord_rect = r = Rect(start + p, start - p)
		if self.properties.HasLine():
			width = self.properties.line_width
			r = r.grown(width / 2 + 1)
			# add the bounding boxes of arrows
			if self.arc_type == ArcArc:
				pi2 = pi / 2
				arrow1 = self.properties.line_arrow1
				if arrow1 is not None:
					pos = trafo(Polar(1, self.start_angle))
					dir = trafo.DTransform(Polar(1, self.start_angle - pi2))
					r = UnionRects(r, arrow1.BoundingRect(pos, dir, width))
				arrow2 = self.properties.line_arrow2
				if arrow2 is not None:
					pos = trafo(Polar(1, self.end_angle))
					dir = trafo.DTransform(Polar(1, self.end_angle + pi2))
					r = UnionRects(r, arrow2.BoundingRect(pos, dir, width))
		self.bounding_rect = r

	def Info(self):
		trafo = self.trafo
		w = hypot(trafo.m11, trafo.m21)
		h = hypot(trafo.m12, trafo.m22)
		dict = {'center': trafo.offset(), 'radius': w, 'axes': (w, h)}
		if w == h:
			text = _("Circle radius %(radius)[length], "
						"center %(center)[position]")
		else:
			text = _("Ellipse axes %(axes)[size], center %(center)[position]")
		return text, dict

	def SaveToFile(self, file):
		Primitive.SaveToFile(self, file)
		file.Ellipse(self.trafo, self.start_angle, self.end_angle,
						self.arc_type)

	def Editor(self):
		return EllipseEditor(self)

	context_commands = ('EllipseArc', 'EllipseChord', 'EllipsePieSlice')

RegisterCommands(Ellipse)


class EllipseCreator(RectangularCreator):

	creation_text = _("Create Ellipse")

	def compute_trafo(self, state):
		start = self.drag_start
		end = self.drag_cur
		if state & AlternateMask:
			# start is the center of the ellipse
			if state & ConstraintMask:
				# end is a point of the periphery of a *circle* centered
				# at start
				radius = abs(start - end)
				self.trafo = Trafo(radius, 0, 0, radius, start.x, start.y)
			else:
				# end is a corner of the bounding box
				d = end - start
				self.trafo = Trafo(d.x, 0, 0, d.y, start.x, start.y)
		else:
			# the ellipse is inscribed into the rectangle with start and
			# end as opposite corners. 
			end = self.apply_constraint(self.drag_cur, state)
			d = (end - start) / 2
			self.trafo = Trafo(d.x, 0, 0, d.y, start.x + d.x, start.y + d.y)
			
	def MouseMove(self, p, state):
		# Bypass RectangularCreator
		Creator.MouseMove(self, p, state)
		self.compute_trafo(state)

	def ButtonUp(self, p, button, state):
		Creator.DragStop(self, p)
		self.compute_trafo(state)

	def DrawDragged(self, device, partially):
		device.DrawEllipse(self.trafo(-1, -1), self.trafo(1, 1))

	def CurrentInfoText(self):
		t = self.trafo
		data = {}
		if abs(round(t.m11, 2)) == abs(round(t.m22, 2)):
			text = _("Circle %(radius)[length], center %(center)[position]")
			data['radius'] = t.m11
		else:
			text = _("Ellipse %(size)[size], center %(center)[position]")
			data['size'] = (abs(t.m11), abs(t.m22))
		data['center'] = t.offset()
		return text, data

	def CreatedObject(self):
		return Ellipse(self.trafo,
						properties = DefaultGraphicsProperties())


class EllipseEditor(Editor):

	EditedClass = Ellipse

	selection = 0

	def ButtonDown(self, p, button, state):
		if self.selection == 1:
			start = self.trafo(cos(self.start_angle), sin(self.start_angle))
		else:
			start = self.trafo(cos(self.end_angle), sin(self.end_angle))
		Editor.DragStart(self, start)
		return p - start

	def apply_constraint(self, p, state):
		if state & ConstraintMask:
			try:
				inverse = self.trafo.inverse()
				p2 = inverse(p)
				r, phi = p2.polar()
				pi12 = pi / 12
				angle = pi12 * floor(phi / pi12 + 0.5)
				pi2 = 2 * pi
				d1 = fmod(abs(phi - angle), pi2)
				if self.selection == 1:
					selected_angle = self.end_angle
				else:
					selected_angle = self.start_angle
				d2 = fmod(abs(phi - selected_angle), pi2)
				if d2 < d1:
					phi = selected_angle
				else:
					phi = angle
				p = self.trafo(Polar(r, phi))
			except SingularMatrix:
				pass
		return p

	def MouseMove(self, p, state):
		p = self.apply_constraint(p, state)
		Editor.MouseMove(self, p, state)

	def ButtonUp(self, p, button, state):
		p = self.apply_constraint(p, state)
		Editor.DragStop(self, p)
		start_angle, end_angle, arc_type = self.angles()
		return CreateMultiUndo(self.object.SetAngles(start_angle, end_angle),
								self.object.SetArcType(arc_type))

	def angles(self):
		start_angle = self.start_angle; end_angle = self.end_angle
		if self.arc_type == ArcChord:
			arc_type = ArcChord
		else:
			arc_type = ArcPieSlice

		try:
			inverse = self.trafo.inverse()
			p = inverse(self.drag_cur)
			if self.selection == 1:
				start_angle = atan2(p.y, p.x)
			elif self.selection == 2:
				end_angle = atan2(p.y, p.x)
			if abs(p) > 1:
				arc_type = ArcArc
		except SingularMatrix:
			pass
		if fmod(abs(start_angle - end_angle), 2 * pi) < 0.0001:
			if self.selection == 1:
				start_angle = end_angle
			else:
				end_angle = start_angle
		return (start_angle, end_angle, arc_type)

	def DrawDragged(self, device, partially):
		start_angle, end_angle, arc_type = self.angles()
		device.SimpleEllipse(self.trafo, start_angle, end_angle, arc_type)

	def GetHandles(self):
		trafo = self.trafo
		start_angle = self.start_angle; end_angle = self.end_angle
		p1 = trafo(cos(self.start_angle), sin(self.start_angle))
		if start_angle == end_angle:
			return [handle.MakeNodeHandle(p1)]
		p2 = trafo(cos(self.end_angle), sin(self.end_angle))
		return [handle.MakeNodeHandle(p1), handle.MakeNodeHandle(p2)]

	def SelectHandle(self, handle, mode):
		self.selection = handle.index + 1

	def SelectPoint(self, p, rect, device, mode):
		return 0