This file is indexed.

/usr/lib/python2.7/dist-packages/biggles/hammer.py is in python-pybiggles 1.6.6-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#
# $Id: hammer.py,v 1.25 2001/10/29 07:52:53 mrnolta Exp $
#
# Copyright (C) 2000-2001 :
#
#   Walter Brisken <walterfb@users.sourceforge.net>
#   Mike Nolta <mrnolta@users.sourceforge.net>
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public
# License along with this program; if not, write to the
# Free Software Foundation, Inc., 59 Temple Place - Suite 330,
# Boston, MA  02111-1307, USA.
#

#
# Hammer-Aitoff coordinates are an equal area projection of the
# sphere into the plane. The spherical coordinates l and b are
# used where l runs from -pi to pi and b from -pi/2 to pi/2.
# The equator is b=0, and b = +/-pi/2 are the north/south poles.
#

import math
from biggles import \
	_series, _PlotComposite, _PlotGeometry, _PlotContainer, Geodesic, Curve
from geometry import *
import _biggles

class _HammerAitoffGeometry:

	def __init__( self, dest, l0=0., b0=0, rot=0. ):
		self.src_bbox = BoundingBox( (-1.,-.5), (1.,.5) )
		self.dest_bbox = dest
		self.aff = RectilinearMap( self.src_bbox, dest )
		self.l0 = l0
		self.b0 = b0
		self.rot = rot

	def __call__( self, l_, b_ ):
		xh, yh = _biggles.hammer_call( \
			l_, b_, self.l0, self.b0, self.rot )
		return self.aff( xh, yh )

	def call_vec( self, l_, b_ ):
		xh, yh = _biggles.hammer_call_vec( \
			l_, b_, self.l0, self.b0, self.rot )
		return self.aff.call_vec( xh, yh )

	def geodesic( self, l_, b_, div=2 ):
		l, b = _biggles.hammer_geodesic_fill( l_, b_, div )
		segs = []
		i0 = 0
		for i in range(1,len(l)):
			if _biggles.hammer_connect( \
					l[i-1], b[i-1], l[i], b[i], \
					self.l0, self.b0, self.rot ):
				segs.append( (l[i0:i],b[i0:i]) )
				i0 = i
		segs.append( (l[i0:],b[i0:]) )
		return segs

class _HammerAitoffContext:

	def __init__( self, device, dev, l0=0., b0=0., rot=0. ):
		self.draw = device
		self.dev_bbox = dev
		self.geom = _HammerAitoffGeometry( dev, l0, b0, rot )
		self.plot_geom = _PlotGeometry( BoundingBox((0,0),(1,1)), dev )

	def do_clip( self ):
		pass

class HammerAitoffPlot( _PlotContainer ):

	_attr_deprecated = {
		"num_l_ribs"	: "ribs_l",
		"num_b_ribs"	: "ribs_b",
	}

	def __init__( self, l0=0., b0=0, rot=0., **kw ):
 		apply( _PlotContainer.__init__, (self,) )
 		apply( self.conf_setattr, ("HammerAitoffPlot",), kw )
		self.content = _PlotComposite()
		self.l0 = l0
		self.b0 = b0
		self.rot = rot

	_attr_deprecated = {
		"num_l_ribs"	: "ribs_l",
		"num_b_ribs"	: "ribs_b",
	}

	def __setattr__( self, name, value ):
		self.__dict__[ self._attr_deprecated.get(name,name) ] = value

	def __iadd__( self, other ):
		self.add( other )

	def add( self, *args ):
		apply( self.content.add, args )

	def _draw_background( self, context ):
		pc = _PlotComposite()

		nl = self.ribs_l
		b = _series( -90/2, 90/2, 2*math.pi/180. )
		for l0 in _series( -nl, nl, math.pi/nl ):
			c = apply( Curve, ([l0]*len(b), b), self.ribs_style )
			pc.add( c )

		nb = self.ribs_b
		l = _series( -180/2, 180/2, 2*math.pi/180. )
		for b0 in _series( -nb, nb, 0.5*math.pi/(nb+1) ):
			c = apply( Curve, (l, [b0]*len(l)), self.ribs_style )
			pc.add( c )

		pc.render( context )

	def exterior( self, device, interior ):
		bb = interior.copy()
		context = _HammerAitoffContext( device, interior,
			self.l0, self.b0, self.rot )
		bb.union( self.content.bbox(context) )
		return bb

	def compose_interior( self, device, interior ):
		_PlotContainer.compose_interior( self, device, interior )
		context = _HammerAitoffContext( device, interior,
			self.l0, self.b0, self.rot )
		self._draw_background( context )
		self.content.render( context )