/usr/lib/python2.7/dist-packages/photutils/background.py is in python-photutils 0.2.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390  | # Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from distutils.version import LooseVersion
import numpy as np
from numpy.lib.index_tricks import index_exp
from astropy.stats import sigma_clip
from astropy.utils import lazyproperty
import warnings
import astropy
if LooseVersion(astropy.__version__) < LooseVersion('1.1'):
    ASTROPY_LT_1P1 = True
else:
    ASTROPY_LT_1P1 = False
__all__ = ['Background']
__doctest_requires__ = {('Background'): ['scipy']}
class Background(object):
    """
    Class to estimate a 2D background and background rms noise in an
    image.
    The background is estimated using sigma-clipped statistics in each
    mesh of a grid that covers the input ``data`` to create a
    low-resolution background map.  The final background map is the
    bicubic spline interpolation of the low-resolution map.
    The exact method used to estimate the background in each mesh can be
    set with the ``method`` parameter.  The background rms in each mesh
    is estimated by the sigma-clipped standard deviation.
    """
    def __init__(self, data, box_shape, filter_shape=(3, 3),
                 filter_threshold=None, mask=None, method='sextractor',
                 backfunc=None, interp_order=3, sigclip_sigma=3.,
                 sigclip_iters=10):
        """
        Parameters
        ----------
        data : array_like
            The 2D array from which to estimate the background and/or
            background rms map.
        box_shape : 2-tuple of int
            The ``(ny, nx)`` shape of the boxes in which to estimate the
            background.  For best results, the box shape should be
            chosen such that the ``data`` are covered by an integer
            number of boxes in both dimensions.
        filter_shape : 2-tuple of int, optional
            The ``(ny, nx)`` shape of the median filter to apply to the
            low-resolution background map.  A filter shape of ``(1, 1)``
            means no filtering.
        filter_threshold : int, optional
            The threshold value for used for selective median filtering
            of the low-resolution background map.  If not `None`, then
            the median filter will be applied to only the background
            meshes with values larger than ``filter_threshold``.
        mask : array_like (bool), optional
            A boolean mask, with the same shape as ``data``, where a
            `True` value indicates the corresponding element of ``data``
            is masked.  Masked data are excluded from all calculations.
        method : {'mean', 'median', 'sextractor', 'mode_estimate'}, optional
            The method use to estimate the background in the meshes.
            For all methods, the statistics are calculated from the
            sigma-clipped ``data`` values in each mesh.
            * 'mean':  Mean.
            * 'median':  Median.
            * 'sextractor':  The method used by `SExtractor`_.  The
              background in each mesh is a mode estimator: ``(2.5 *
              median) - (1.5 * mean)``.  If ``(mean - median) / std >
              0.3`` then the median is used instead.  Despite what the
              `SExtractor`_ User's Manual says, this is the method it
              *always* uses.
            * 'mode_estimate':  An alternative mode estimator:
              ``(3 * median) - (2 * mean)``.
            * 'custom': Use this method in combination with the
              ``backfunc`` parameter to specific a custom function to
              calculate the background in each mesh.
        backfunc : callable
            The function to compute the background in each mesh.  Must
            be a callable that takes in a 3D `~numpy.ma.MaskedArray` of
            size ``MxNxZ``, where the ``Z`` axis (axis=2) contains the
            sigma-clipped pixels in each background mesh, and outputs a
            2D `~numpy.ndarray` low-resolution background map of size
            ``MxN``.  ``backfunc`` is used only if ``method='custom'``.
        interp_order : int, optional
            The order of the spline interpolation used to resize the
            low-resolution background and background rms maps.  The
            value must be an integer in the range 0-5.  The default is 3
            (bicubic interpolation).
        sigclip_sigma : float, optional
            The number of standard deviations to use as the clipping limit
            when calculating the image background statistics.
        sigclip_iters : int, optional
           The number of iterations to perform sigma clipping, or `None` to
           clip until convergence is achieved (i.e., continue until the last
           iteration clips nothing) when calculating the image background
           statistics.  The default is 10.
        Notes
        -----
        If there is only 1 background mesh element (i.e., ``box_shape``
        is the same size as the ``data``), then the background map will
        simply be a constant image with the value in the background
        mesh.
        Limiting ``sigclip_iters`` will speed up the calculations,
        especially for large images, at the cost of some precision.
        .. _SExtractor: http://www.astromatic.net/software/sextractor
        """
        if mask is not None:
            if mask.shape != data.shape:
                raise ValueError('mask shape must match data shape')
        valid_methods = ['mean', 'median', 'sextractor', 'mode_estimate',
                         'custom']
        if method not in valid_methods:
            raise ValueError('method "{0}" is not valid'.format(method))
        self.box_shape = (min(box_shape[0], data.shape[0]),
                          min(box_shape[1], data.shape[1]))
        self.filter_shape = filter_shape
        self.filter_threshold = filter_threshold
        self.mask = mask
        self.method = method
        self.backfunc = backfunc
        self.interp_order = interp_order
        self.sigclip_sigma = sigclip_sigma
        self.sigclip_iters = sigclip_iters
        self.yextra = data.shape[0] % box_shape[0]
        self.xextra = data.shape[1] % box_shape[1]
        self.data_shape = data.shape
        self.data_region = index_exp[0:data.shape[0], 0:data.shape[1]]
        if (self.yextra > 0) or (self.xextra > 0):
            self.padded = True
            data_ma = self._pad_data(data, mask)
        else:
            self.padded = False
            data_ma = np.ma.masked_array(data, mask=mask)
        self.data_ma_shape = data_ma.shape
        self._sigclip_data(data_ma)
    @staticmethod
    def _pad(data, xpad, ypad, value=np.nan):
        """
        Pad a data array on the right and top.  Used only for numpy 1.6,
        where np.pad is not available.
        """
        ny, nx = data.shape
        shape = (ny + ypad, nx + xpad)
        padded_data = np.ones(shape) * value
        padded_data[0:ny, 0:nx] = data
        return padded_data
    def _pad_data(self, data, mask=None):
        """
        Pad the ``data`` and ``mask`` on the right and top with zeros if
        necessary to have a integer number of background meshes of size
        ``box_shape``.
        """
        try:
            from numpy import pad
            has_nppad = True
        except ImportError:
            has_nppad = False
        ypad, xpad = 0, 0
        if self.yextra > 0:
            ypad = self.box_shape[0] - self.yextra
        if self.xextra > 0:
            xpad = self.box_shape[1] - self.xextra
        if has_nppad:
            pad_width = ((0, ypad), (0, xpad))
            mode = str('constant')
            padded_data = np.pad(data, pad_width, mode=mode,
                                 constant_values=[np.nan])
        else:
            padded_data = self._pad(data, xpad, ypad, value=np.nan)
        padded_mask = np.isnan(padded_data)
        if mask is not None:
            if has_nppad:
                mask_pad = np.pad(mask, pad_width, mode=mode,
                                  constant_values=[False])
            else:
                mask_pad = self._pad(mask, xpad, ypad,
                                     value=False).astype(np.bool)
            padded_mask = np.logical_or(padded_mask, mask_pad)
        return np.ma.masked_array(padded_data, mask=padded_mask)
    def _sigclip_data(self, data_ma):
        """
        Perform sigma clipping on the data in regions of size
        ``box_shape``.
        """
        ny, nx = data_ma.shape
        ny_box, nx_box = self.box_shape
        y_nbins = int(ny / ny_box)   # always integer because data were padded
        x_nbins = int(nx / nx_box)   # always integer because data were padded
        data_rebin = np.ma.swapaxes(data_ma.reshape(
            y_nbins, ny_box, x_nbins, nx_box), 1, 2).reshape(y_nbins, x_nbins,
                                                             ny_box * nx_box)
        del data_ma
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            if ASTROPY_LT_1P1:
                self.data_sigclip = sigma_clip(
                    data_rebin, sig=self.sigclip_sigma, axis=2,
                    iters=self.sigclip_iters, cenfunc=np.ma.median,
                    varfunc=np.ma.var)
            else:
                self.data_sigclip = sigma_clip(
                    data_rebin, sigma=self.sigclip_sigma, axis=2,
                    iters=self.sigclip_iters, cenfunc=np.ma.median,
                    stdfunc=np.std)
        del data_rebin
    def _filter_meshes(self, data_low_res):
        """
        Apply a 2d median filter to the low-resolution background map,
        including only pixels inside the image at the borders.
        """
        from scipy.ndimage import generic_filter
        try:
            nanmedian_func = np.nanmedian    # numpy >= 1.9
        except AttributeError:
            from scipy.stats import nanmedian
            nanmedian_func = nanmedian
        if self.filter_threshold is None:
            return generic_filter(data_low_res, nanmedian_func,
                                  size=self.filter_shape, mode='constant',
                                  cval=np.nan)
        else:
            data_out = np.copy(data_low_res)
            for i, j in zip(*np.nonzero(data_low_res >
                                        self.filter_threshold)):
                yfs, xfs = self.filter_shape
                hyfs, hxfs = yfs // 2, xfs // 2
                y0, y1 = max(i - hyfs, 0), min(i - hyfs + yfs,
                                               data_low_res.shape[0])
                x0, x1 = max(j - hxfs, 0), min(j - hxfs + xfs,
                                               data_low_res.shape[1])
                data_out[i, j] = np.median(data_low_res[y0:y1, x0:x1])
            return data_out
    def _resize_meshes(self, data_low_res):
        """
        Resize the low-resolution background meshes to the original data
        size using bicubic interpolation.
        """
        if np.min(data_low_res) == np.max(data_low_res):
            # constant image (or only 1 mesh)
            return np.zeros(self.data_shape) + np.min(data_low_res)
        else:
            from scipy.ndimage import zoom
            zoom_factor = (int(self.data_ma_shape[0] / data_low_res.shape[0]),
                           int(self.data_ma_shape[1] / data_low_res.shape[1]))
            return zoom(data_low_res, zoom_factor, order=self.interp_order,
                        mode='reflect')
    @lazyproperty
    def background_low_res(self):
        """
        A 2D `~numpy.ndarray` containing the background estimate in each
        of the meshes of size ``box_shape``.
        This low-resolution background map is equivalent to the
        low-resolution "MINIBACKGROUND" background map in `SExtractor`_.
        """
        if self.method == 'mean':
            bkg_low_res = np.ma.mean(self.data_sigclip, axis=2)
        elif self.method == 'median':
            bkg_low_res = np.ma.median(self.data_sigclip, axis=2)
        elif self.method == 'sextractor':
            box_mean = np.ma.mean(self.data_sigclip, axis=2)
            box_median = np.ma.median(self.data_sigclip, axis=2)
            box_std = np.ma.std(self.data_sigclip, axis=2)
            condition = (np.abs(box_mean - box_median) / box_std) < 0.3
            bkg_est = (2.5 * box_median) - (1.5 * box_mean)
            bkg_low_res = np.ma.where(condition, bkg_est, box_median)
            bkg_low_res = np.ma.where(box_std == 0, box_mean, bkg_low_res)
        elif self.method == 'mode_estimate':
            bkg_low_res = (3. * np.ma.median(self.data_sigclip, axis=2) -
                           2. * np.ma.mean(self.data_sigclip, axis=2))
        elif self.method == 'custom':
            bkg_low_res = self.backfunc(self.data_sigclip)
            if not isinstance(bkg_low_res, np.ndarray):   # np.ma will pass
                raise ValueError('"backfunc" must return a numpy.ndarray.')
            if isinstance(bkg_low_res, np.ma.MaskedArray):
                raise ValueError('"backfunc" must return a numpy.ndarray.')
            if bkg_low_res.shape != (self.data_sigclip.shape[0],
                                     self.data_sigclip.shape[1]):
                raise ValueError('The shape of the array returned by '
                                 '"backfunc" is not correct.')
        if self.method != 'custom':
            bkg_low_res = np.ma.filled(bkg_low_res,
                                       fill_value=np.ma.median(bkg_low_res))
        if self.filter_shape != (1, 1):
            bkg_low_res = self._filter_meshes(bkg_low_res)
        return bkg_low_res
    @lazyproperty
    def background_rms_low_res(self):
        """
        A 2D `~numpy.ndarray` containing the background rms estimate in
        each of the meshes of size ``box_shape``.
        This low-resolution background rms map is equivalent to the
        low-resolution "MINIBACK_RMS" background rms map in
        `SExtractor`_.
        """
        bkgrms_low_res = np.ma.std(self.data_sigclip, axis=2)
        bkgrms_low_res = np.ma.filled(bkgrms_low_res,
                                      fill_value=np.ma.median(bkgrms_low_res))
        if self.filter_shape != (1, 1):
            bkgrms_low_res = self._filter_meshes(bkgrms_low_res)
        return bkgrms_low_res
    @lazyproperty
    def background(self):
        """
        A 2D `~numpy.ndarray` containing the background estimate.
        This is equivalent to the low-resolution "BACKGROUND" background
        map in `SExtractor`_.
        """
        bkg = self._resize_meshes(self.background_low_res)
        if self.padded:
            bkg = bkg[self.data_region]
        return bkg
    @lazyproperty
    def background_rms(self):
        """
        A 2D `~numpy.ndarray` containing the background rms estimate.
        This is equivalent to the low-resolution "BACKGROUND_RMS"
        background rms map in `SExtractor`_.
        """
        bkgrms = self._resize_meshes(self.background_rms_low_res)
        if self.padded:
            bkgrms = bkgrms[self.data_region]
        return bkgrms
    @lazyproperty
    def background_median(self):
        """
        The median value of the low-resolution background map.
        This is equivalent to the value `SExtractor`_ prints to stdout
        (i.e., "(M+D) Background: <value>").
        """
        return np.median(self.background_low_res)
    @lazyproperty
    def background_rms_median(self):
        """
        The median value of the low-resolution background rms map.
        This is equivalent to the value `SExtractor`_ prints to stdout
        (i.e., "(M+D) RMS: <value>").
        """
        return np.median(self.background_rms_low_res)
 |