This file is indexed.

/usr/lib/python2.7/dist-packages/photutils/background.py is in python-photutils 0.2.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from distutils.version import LooseVersion
import numpy as np
from numpy.lib.index_tricks import index_exp
from astropy.stats import sigma_clip
from astropy.utils import lazyproperty
import warnings

import astropy
if LooseVersion(astropy.__version__) < LooseVersion('1.1'):
    ASTROPY_LT_1P1 = True
else:
    ASTROPY_LT_1P1 = False


__all__ = ['Background']

__doctest_requires__ = {('Background'): ['scipy']}


class Background(object):
    """
    Class to estimate a 2D background and background rms noise in an
    image.

    The background is estimated using sigma-clipped statistics in each
    mesh of a grid that covers the input ``data`` to create a
    low-resolution background map.  The final background map is the
    bicubic spline interpolation of the low-resolution map.

    The exact method used to estimate the background in each mesh can be
    set with the ``method`` parameter.  The background rms in each mesh
    is estimated by the sigma-clipped standard deviation.
    """

    def __init__(self, data, box_shape, filter_shape=(3, 3),
                 filter_threshold=None, mask=None, method='sextractor',
                 backfunc=None, interp_order=3, sigclip_sigma=3.,
                 sigclip_iters=10):
        """
        Parameters
        ----------
        data : array_like
            The 2D array from which to estimate the background and/or
            background rms map.

        box_shape : 2-tuple of int
            The ``(ny, nx)`` shape of the boxes in which to estimate the
            background.  For best results, the box shape should be
            chosen such that the ``data`` are covered by an integer
            number of boxes in both dimensions.

        filter_shape : 2-tuple of int, optional
            The ``(ny, nx)`` shape of the median filter to apply to the
            low-resolution background map.  A filter shape of ``(1, 1)``
            means no filtering.

        filter_threshold : int, optional
            The threshold value for used for selective median filtering
            of the low-resolution background map.  If not `None`, then
            the median filter will be applied to only the background
            meshes with values larger than ``filter_threshold``.

        mask : array_like (bool), optional
            A boolean mask, with the same shape as ``data``, where a
            `True` value indicates the corresponding element of ``data``
            is masked.  Masked data are excluded from all calculations.

        method : {'mean', 'median', 'sextractor', 'mode_estimate'}, optional
            The method use to estimate the background in the meshes.
            For all methods, the statistics are calculated from the
            sigma-clipped ``data`` values in each mesh.

            * 'mean':  Mean.
            * 'median':  Median.
            * 'sextractor':  The method used by `SExtractor`_.  The
              background in each mesh is a mode estimator: ``(2.5 *
              median) - (1.5 * mean)``.  If ``(mean - median) / std >
              0.3`` then the median is used instead.  Despite what the
              `SExtractor`_ User's Manual says, this is the method it
              *always* uses.
            * 'mode_estimate':  An alternative mode estimator:
              ``(3 * median) - (2 * mean)``.
            * 'custom': Use this method in combination with the
              ``backfunc`` parameter to specific a custom function to
              calculate the background in each mesh.

        backfunc : callable
            The function to compute the background in each mesh.  Must
            be a callable that takes in a 3D `~numpy.ma.MaskedArray` of
            size ``MxNxZ``, where the ``Z`` axis (axis=2) contains the
            sigma-clipped pixels in each background mesh, and outputs a
            2D `~numpy.ndarray` low-resolution background map of size
            ``MxN``.  ``backfunc`` is used only if ``method='custom'``.

        interp_order : int, optional
            The order of the spline interpolation used to resize the
            low-resolution background and background rms maps.  The
            value must be an integer in the range 0-5.  The default is 3
            (bicubic interpolation).

        sigclip_sigma : float, optional
            The number of standard deviations to use as the clipping limit
            when calculating the image background statistics.

        sigclip_iters : int, optional
           The number of iterations to perform sigma clipping, or `None` to
           clip until convergence is achieved (i.e., continue until the last
           iteration clips nothing) when calculating the image background
           statistics.  The default is 10.

        Notes
        -----
        If there is only 1 background mesh element (i.e., ``box_shape``
        is the same size as the ``data``), then the background map will
        simply be a constant image with the value in the background
        mesh.

        Limiting ``sigclip_iters`` will speed up the calculations,
        especially for large images, at the cost of some precision.

        .. _SExtractor: http://www.astromatic.net/software/sextractor
        """

        if mask is not None:
            if mask.shape != data.shape:
                raise ValueError('mask shape must match data shape')
        valid_methods = ['mean', 'median', 'sextractor', 'mode_estimate',
                         'custom']
        if method not in valid_methods:
            raise ValueError('method "{0}" is not valid'.format(method))
        self.box_shape = (min(box_shape[0], data.shape[0]),
                          min(box_shape[1], data.shape[1]))
        self.filter_shape = filter_shape
        self.filter_threshold = filter_threshold
        self.mask = mask
        self.method = method
        self.backfunc = backfunc
        self.interp_order = interp_order
        self.sigclip_sigma = sigclip_sigma
        self.sigclip_iters = sigclip_iters
        self.yextra = data.shape[0] % box_shape[0]
        self.xextra = data.shape[1] % box_shape[1]
        self.data_shape = data.shape
        self.data_region = index_exp[0:data.shape[0], 0:data.shape[1]]
        if (self.yextra > 0) or (self.xextra > 0):
            self.padded = True
            data_ma = self._pad_data(data, mask)
        else:
            self.padded = False
            data_ma = np.ma.masked_array(data, mask=mask)
        self.data_ma_shape = data_ma.shape
        self._sigclip_data(data_ma)

    @staticmethod
    def _pad(data, xpad, ypad, value=np.nan):
        """
        Pad a data array on the right and top.  Used only for numpy 1.6,
        where np.pad is not available.
        """

        ny, nx = data.shape
        shape = (ny + ypad, nx + xpad)
        padded_data = np.ones(shape) * value
        padded_data[0:ny, 0:nx] = data
        return padded_data

    def _pad_data(self, data, mask=None):
        """
        Pad the ``data`` and ``mask`` on the right and top with zeros if
        necessary to have a integer number of background meshes of size
        ``box_shape``.
        """

        try:
            from numpy import pad
            has_nppad = True
        except ImportError:
            has_nppad = False

        ypad, xpad = 0, 0
        if self.yextra > 0:
            ypad = self.box_shape[0] - self.yextra
        if self.xextra > 0:
            xpad = self.box_shape[1] - self.xextra

        if has_nppad:
            pad_width = ((0, ypad), (0, xpad))
            mode = str('constant')
            padded_data = np.pad(data, pad_width, mode=mode,
                                 constant_values=[np.nan])
        else:
            padded_data = self._pad(data, xpad, ypad, value=np.nan)
        padded_mask = np.isnan(padded_data)

        if mask is not None:
            if has_nppad:
                mask_pad = np.pad(mask, pad_width, mode=mode,
                                  constant_values=[False])
            else:
                mask_pad = self._pad(mask, xpad, ypad,
                                     value=False).astype(np.bool)
            padded_mask = np.logical_or(padded_mask, mask_pad)
        return np.ma.masked_array(padded_data, mask=padded_mask)

    def _sigclip_data(self, data_ma):
        """
        Perform sigma clipping on the data in regions of size
        ``box_shape``.
        """

        ny, nx = data_ma.shape
        ny_box, nx_box = self.box_shape
        y_nbins = int(ny / ny_box)   # always integer because data were padded
        x_nbins = int(nx / nx_box)   # always integer because data were padded
        data_rebin = np.ma.swapaxes(data_ma.reshape(
            y_nbins, ny_box, x_nbins, nx_box), 1, 2).reshape(y_nbins, x_nbins,
                                                             ny_box * nx_box)
        del data_ma
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            if ASTROPY_LT_1P1:
                self.data_sigclip = sigma_clip(
                    data_rebin, sig=self.sigclip_sigma, axis=2,
                    iters=self.sigclip_iters, cenfunc=np.ma.median,
                    varfunc=np.ma.var)
            else:
                self.data_sigclip = sigma_clip(
                    data_rebin, sigma=self.sigclip_sigma, axis=2,
                    iters=self.sigclip_iters, cenfunc=np.ma.median,
                    stdfunc=np.std)
        del data_rebin

    def _filter_meshes(self, data_low_res):
        """
        Apply a 2d median filter to the low-resolution background map,
        including only pixels inside the image at the borders.
        """

        from scipy.ndimage import generic_filter
        try:
            nanmedian_func = np.nanmedian    # numpy >= 1.9
        except AttributeError:
            from scipy.stats import nanmedian
            nanmedian_func = nanmedian

        if self.filter_threshold is None:
            return generic_filter(data_low_res, nanmedian_func,
                                  size=self.filter_shape, mode='constant',
                                  cval=np.nan)
        else:
            data_out = np.copy(data_low_res)
            for i, j in zip(*np.nonzero(data_low_res >
                                        self.filter_threshold)):
                yfs, xfs = self.filter_shape
                hyfs, hxfs = yfs // 2, xfs // 2
                y0, y1 = max(i - hyfs, 0), min(i - hyfs + yfs,
                                               data_low_res.shape[0])
                x0, x1 = max(j - hxfs, 0), min(j - hxfs + xfs,
                                               data_low_res.shape[1])
                data_out[i, j] = np.median(data_low_res[y0:y1, x0:x1])
            return data_out

    def _resize_meshes(self, data_low_res):
        """
        Resize the low-resolution background meshes to the original data
        size using bicubic interpolation.
        """

        if np.min(data_low_res) == np.max(data_low_res):
            # constant image (or only 1 mesh)
            return np.zeros(self.data_shape) + np.min(data_low_res)
        else:
            from scipy.ndimage import zoom
            zoom_factor = (int(self.data_ma_shape[0] / data_low_res.shape[0]),
                           int(self.data_ma_shape[1] / data_low_res.shape[1]))
            return zoom(data_low_res, zoom_factor, order=self.interp_order,
                        mode='reflect')

    @lazyproperty
    def background_low_res(self):
        """
        A 2D `~numpy.ndarray` containing the background estimate in each
        of the meshes of size ``box_shape``.

        This low-resolution background map is equivalent to the
        low-resolution "MINIBACKGROUND" background map in `SExtractor`_.
        """

        if self.method == 'mean':
            bkg_low_res = np.ma.mean(self.data_sigclip, axis=2)
        elif self.method == 'median':
            bkg_low_res = np.ma.median(self.data_sigclip, axis=2)
        elif self.method == 'sextractor':
            box_mean = np.ma.mean(self.data_sigclip, axis=2)
            box_median = np.ma.median(self.data_sigclip, axis=2)
            box_std = np.ma.std(self.data_sigclip, axis=2)
            condition = (np.abs(box_mean - box_median) / box_std) < 0.3
            bkg_est = (2.5 * box_median) - (1.5 * box_mean)
            bkg_low_res = np.ma.where(condition, bkg_est, box_median)
            bkg_low_res = np.ma.where(box_std == 0, box_mean, bkg_low_res)
        elif self.method == 'mode_estimate':
            bkg_low_res = (3. * np.ma.median(self.data_sigclip, axis=2) -
                           2. * np.ma.mean(self.data_sigclip, axis=2))
        elif self.method == 'custom':
            bkg_low_res = self.backfunc(self.data_sigclip)
            if not isinstance(bkg_low_res, np.ndarray):   # np.ma will pass
                raise ValueError('"backfunc" must return a numpy.ndarray.')
            if isinstance(bkg_low_res, np.ma.MaskedArray):
                raise ValueError('"backfunc" must return a numpy.ndarray.')
            if bkg_low_res.shape != (self.data_sigclip.shape[0],
                                     self.data_sigclip.shape[1]):
                raise ValueError('The shape of the array returned by '
                                 '"backfunc" is not correct.')
        if self.method != 'custom':
            bkg_low_res = np.ma.filled(bkg_low_res,
                                       fill_value=np.ma.median(bkg_low_res))
        if self.filter_shape != (1, 1):
            bkg_low_res = self._filter_meshes(bkg_low_res)
        return bkg_low_res

    @lazyproperty
    def background_rms_low_res(self):
        """
        A 2D `~numpy.ndarray` containing the background rms estimate in
        each of the meshes of size ``box_shape``.

        This low-resolution background rms map is equivalent to the
        low-resolution "MINIBACK_RMS" background rms map in
        `SExtractor`_.
        """

        bkgrms_low_res = np.ma.std(self.data_sigclip, axis=2)
        bkgrms_low_res = np.ma.filled(bkgrms_low_res,
                                      fill_value=np.ma.median(bkgrms_low_res))
        if self.filter_shape != (1, 1):
            bkgrms_low_res = self._filter_meshes(bkgrms_low_res)
        return bkgrms_low_res

    @lazyproperty
    def background(self):
        """
        A 2D `~numpy.ndarray` containing the background estimate.

        This is equivalent to the low-resolution "BACKGROUND" background
        map in `SExtractor`_.
        """

        bkg = self._resize_meshes(self.background_low_res)
        if self.padded:
            bkg = bkg[self.data_region]
        return bkg

    @lazyproperty
    def background_rms(self):
        """
        A 2D `~numpy.ndarray` containing the background rms estimate.

        This is equivalent to the low-resolution "BACKGROUND_RMS"
        background rms map in `SExtractor`_.
        """

        bkgrms = self._resize_meshes(self.background_rms_low_res)
        if self.padded:
            bkgrms = bkgrms[self.data_region]
        return bkgrms

    @lazyproperty
    def background_median(self):
        """
        The median value of the low-resolution background map.

        This is equivalent to the value `SExtractor`_ prints to stdout
        (i.e., "(M+D) Background: <value>").
        """

        return np.median(self.background_low_res)

    @lazyproperty
    def background_rms_median(self):
        """
        The median value of the low-resolution background rms map.

        This is equivalent to the value `SExtractor`_ prints to stdout
        (i.e., "(M+D) RMS: <value>").
        """

        return np.median(self.background_rms_low_res)