This file is indexed.

/usr/lib/python2.7/dist-packages/pebl/cpd.py is in python-pebl 1.0.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
"""Classes for conditional probability distributions."""

import math
from itertools import izip

import numpy as N

try:
    from pebl import _cpd
except:
    _cpd = None

#
# CPD classes
#
class CPD(object):
    """Conditional probability distributions.
    
    Currently, pebl only includes multinomial cpds and there are two versions:
    a pure-python and a fast C implementation. The C implementation will be
    used if available.
    
    """

    def __init__(self, data_):
        """Create a CPD.

        data_ should only contain data for the nodes involved in this CPD. The
        first column should be for the child node and the rest for its parents.
        
        The Dataset.subset method can be used to create the required dataset::

            d = data.fromfile("somedata.txt")
            n = network.random_network(d.variables)
            d.subset([child] + n.edges.parents(child))

        """

    def loglikelihood(self):
        """Calculates the loglikelihood of the data.

        This method implements the log of the g function (equation 12) from:

        Cooper, Herskovitz. A Bayesian Method for the Induction of
        Probabilistic Networks from Data.
        
        """ 
        pass

    def replace_data(self, oldrow, newrow):
        """Replaces a data row with a new one.
        
        Missing values are handled using some form of sampling over the
        possible values and this requires making small changes to the data.
        Instead of recreating a CPD after every change, it's far more efficient
        to simply make a small change in the CPD.

        """
        pass


class MultinomialCPD_Py(CPD):
    """Pure python implementation of Multinomial cpd.
                     
    See MultinomialCPD for method documentation.                 
    """

    # cache shared by all instances
    lnfactorial_cache = N.array([])

    def __init__(self, data_):
        self.data = data_
        arities = [v.arity for v in data_.variables]

        # ensure that there won't be a cache miss
        maxcount = data_.samples.size + max(arities)
        if len(self.__class__.lnfactorial_cache) < maxcount:
            self._prefill_lnfactorial_cache(maxcount)
        
        # create a Conditional Probability Table (cpt)
        qi = int(N.product(arities[1:]))
        self.counts = N.zeros((qi, arities[0] + 1), dtype=int)
        
        if data_.variables.size == 1:
            self.offsets = N.array([0])
        else:
            multipliers = N.concatenate(([1], arities[1:-1]))
            offsets = N.multiply.accumulate(multipliers)
            self.offsets = N.concatenate(([0], offsets))

        # add data to cpt
        self._change_counts(data_.observations, 1)


    #
    # Public methods
    #
    def replace_data(self, oldrow, newrow):
        add_index = sum(i*o for i,o in izip(newrow, self.offsets))
        remove_index = sum(i*o for i,o in izip(oldrow, self.offsets))

        self.counts[add_index][newrow[0]] += 1
        self.counts[add_index][-1] += 1

        self.counts[remove_index][oldrow[0]] -= 1
        self.counts[remove_index][-1] -= 1


    def loglikelihood(self):
        lnfac = self.lnfactorial_cache
        counts = self.counts

        ri = self.data.variables[0].arity
        part1 = lnfac[ri-1]

        result = N.sum( 
              part1                                 # log((ri-1)!) 
            - lnfac[counts[:,-1] + ri -1]           # log((Nij + ri -1)!)
            + N.sum(lnfac[counts[:,:-1]], axis=1)   # log(Product(Nijk!))
        )

        return result

    #
    # Private methods
    #
    def _change_counts(self, observations, change=1):
        indices = N.dot(observations, self.offsets)
        child_values = observations[:,0]

        for j,k in izip(indices, child_values):
            self.counts[j,k] += change
            self.counts[j,-1] += change

    def _prefill_lnfactorial_cache(self, size):
        # logs = log(x) for x in [0, 1, 2, ..., size+10]
        #    * EXCEPT, log(0) = 0 instead of -inf.
        logs = N.concatenate(([0.0], N.log(N.arange(1, size+10, dtype=float))))

        # add.accumulate does running sums..
        self.__class__.lnfactorial_cache = N.add.accumulate(logs)


class MultinomialCPD_C(MultinomialCPD_Py):
    """C implementation of Multinomial cpd."""

    def __init__(self, data_):
        if not _cpd:
            raise Exception("_cpd C extension module not loaded.")

        self.data = data_
        arities = [v.arity for v in data_.variables]
        num_parents = len(arities)-1

        # ensure that there won't be a cache miss
        maxcount = data_.samples.size + max(arities)
        if len(self.__class__.lnfactorial_cache) < maxcount:
            self._prefill_lnfactorial_cache(maxcount)
        
        self.__cpt = _cpd.buildcpt(data_.observations, arities, num_parents)

    def loglikelihood(self):
        return _cpd.loglikelihood(self.__cpt, self.lnfactorial_cache)

    def replace_data(self, oldrow, newrow):
        _cpd.replace_data(self.__cpt, oldrow, newrow)

    def __del__(self):
        _cpd.dealloc_cpt(self.__cpt)


# use the C implementation if possible, else the python one
MultinomialCPD = MultinomialCPD_C if _cpd else MultinomialCPD_Py