This file is indexed.

/usr/share/doc/python-m2crypto/examples/medusa/asyncore.py is in python-m2crypto 0.22.6~rc4-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# -*- Mode: Python; tab-width: 4 -*-
# 	$Id$
#	Author: Sam Rushing <rushing@nightmare.com>

# ======================================================================
# Copyright 1996 by Sam Rushing
# 
#                         All Rights Reserved
# 
# Permission to use, copy, modify, and distribute this software and
# its documentation for any purpose and without fee is hereby
# granted, provided that the above copyright notice appear in all
# copies and that both that copyright notice and this permission
# notice appear in supporting documentation, and that the name of Sam
# Rushing not be used in advertising or publicity pertaining to
# distribution of the software without specific, written prior
# permission.
# 
# SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
# INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
# NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
# CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
# OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
# NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
# CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
# ======================================================================

"""Basic infrastructure for asynchronous socket service clients and servers.

There are only two ways to have a program on a single processor do "more
than one thing at a time".  Multi-threaded programming is the simplest and 
most popular way to do it, but there is another very different technique,
that lets you have nearly all the advantages of multi-threading, without
actually using multiple threads. it's really only practical if your program
is largely I/O bound. If your program is CPU bound, then pre-emptive
scheduled threads are probably what you really need. Network servers are
rarely CPU-bound, however. 

If your operating system supports the select() system call in its I/O 
library (and nearly all do), then you can use it to juggle multiple
communication channels at once; doing other work while your I/O is taking
place in the "background."  Although this strategy can seem strange and
complex, especially at first, it is in many ways easier to understand and
control than multi-threaded programming. The module documented here solves
many of the difficult problems for you, making the task of building
sophisticated high-performance network servers and clients a snap. 
"""

import exceptions
import select
import socket
import string
import sys

import os
if os.name == 'nt':
	EWOULDBLOCK	= 10035
	EINPROGRESS	= 10036
	EALREADY	= 10037
	ECONNRESET  = 10054
	ENOTCONN	= 10057
	ESHUTDOWN	= 10058
else:
	from errno import EALREADY, EINPROGRESS, EWOULDBLOCK, ECONNRESET, ENOTCONN, ESHUTDOWN

try:
	socket_map
except NameError:
	socket_map = {}

class ExitNow (exceptions.Exception):
	pass

DEBUG = 0

def poll (timeout=0.0, map=None):
	global DEBUG
	if map is None:
		map = socket_map
	if map:
		r = []; w = []; e = []
		for fd, obj in map.items():
			if obj.readable():
				r.append (fd)
			if obj.writable():
				w.append (fd)
		r,w,e = select.select (r,w,e, timeout)

		if DEBUG:
			print r,w,e

		for fd in r:
			try:
				obj = map[fd]
				try:
					obj.handle_read_event()
				except ExitNow:
					raise ExitNow
				except:
					obj.handle_error()
			except KeyError:
				pass

		for fd in w:
			try:
				obj = map[fd]
				try:
					obj.handle_write_event()
				except ExitNow:
					raise ExitNow
				except:
					obj.handle_error()
			except KeyError:
				pass

def poll2 (timeout=0.0, map=None):
	import poll
	if map is None:
		map=socket_map
	# timeout is in milliseconds
	timeout = int(timeout*1000)
	if map:
		l = []
		for fd, obj in map.items():
			flags = 0
			if obj.readable():
				flags = poll.POLLIN
			if obj.writable():
				flags = flags | poll.POLLOUT
			if flags:
				l.append ((fd, flags))
		r = poll.poll (l, timeout)
		for fd, flags in r:
			try:
				obj = map[fd]
				try:
					if (flags  & poll.POLLIN):
						obj.handle_read_event()
					if (flags & poll.POLLOUT):
						obj.handle_write_event()
				except ExitNow:
					raise ExitNow
				except:
					obj.handle_error()
			except KeyError:
				pass

def poll3 (timeout=0.0, map=None):
    # Use the poll() support added to the select module in Python 2.0
    if map is None:
        map=socket_map
    # timeout is in milliseconds
    timeout = int(timeout*1000)
    pollster = select.poll()
    if map:
        l = []
        for fd, obj in map.items():
            flags = 0
            if obj.readable():
                flags = select.POLLIN
            if obj.writable():
                flags = flags | select.POLLOUT
            if flags:
                pollster.register(fd, flags)
        r = pollster.poll (timeout)
        for fd, flags in r:
            try:
                obj = map[fd]
                try:
                    if (flags  & select.POLLIN):
                        obj.handle_read_event()
                    if (flags & select.POLLOUT):
                        obj.handle_write_event()
                except ExitNow:
                    raise ExitNow
                except:
                    obj.handle_error()
            except KeyError:
                pass

def loop (timeout=30.0, use_poll=0, map=None):

	if use_poll:
		if hasattr (select, 'poll'):
			poll_fun = poll3
		else:
			poll_fun = poll2
	else:
		poll_fun = poll

	if map is None:
		map=socket_map

	while map:
		poll_fun (timeout, map)

class dispatcher:
	debug = 0
	connected = 0
	accepting = 0
	closing = 0
	addr = None

	def __init__ (self, sock=None, map=None):
		if sock:
			self.set_socket (sock, map)
			# I think it should inherit this anyway
			self.socket.setblocking (0)
			self.connected = 1

	def __repr__ (self):
		try:
			status = []
			if self.accepting and self.addr:
				status.append ('listening')
			elif self.connected:
				status.append ('connected')
			if self.addr:
				status.append ('%s:%d' % self.addr)
			return '<%s %s at %x>' % (
				self.__class__.__name__,
				string.join (status, ' '),
				id(self)
				)
		except:
			try:
				ar = repr(self.addr)
			except:
				ar = 'no self.addr!'
				
			return '<__repr__ (self) failed for object at %x (addr=%s)>' % (id(self),ar)

	def add_channel (self, map=None):
		#self.log_info ('adding channel %s' % self)
		if map is None:
			map=socket_map
		map [self._fileno] = self

	def del_channel (self, map=None):
		fd = self._fileno
		if map is None:
			map=socket_map
		if map.has_key (fd):
			#self.log_info ('closing channel %d:%s' % (fd, self))
			del map [fd]

	def create_socket (self, family, type):
		self.family_and_type = family, type
		self.socket = socket.socket (family, type)
		self.socket.setblocking(0)
		self._fileno = self.socket.fileno()
		self.add_channel()

	def set_socket (self, sock, map=None):
		self.__dict__['socket'] = sock
		self._fileno = sock.fileno()
		self.add_channel (map)

	def set_reuse_addr (self):
		# try to re-use a server port if possible
		try:
			self.socket.setsockopt (
				socket.SOL_SOCKET, socket.SO_REUSEADDR,
				self.socket.getsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR) | 1
				)
		except:
			pass

	# ==================================================
	# predicates for select()
	# these are used as filters for the lists of sockets
	# to pass to select().
	# ==================================================

	def readable (self):
		return 1

	if os.name == 'mac':
		# The macintosh will select a listening socket for
		# write if you let it.  What might this mean?
		def writable (self):
			return not self.accepting
	else:
		def writable (self):
			return 1

	# ==================================================
	# socket object methods.
	# ==================================================

	def listen (self, num):
		self.accepting = 1
		if os.name == 'nt' and num > 5:
			num = 1
		return self.socket.listen (num)

	def bind (self, addr):
		self.addr = addr
		return self.socket.bind (addr)

	def connect (self, address):
		self.connected = 0
		try:
			self.socket.connect (address)
		except socket.error, why:
			if why[0] in (EINPROGRESS, EALREADY, EWOULDBLOCK):
				return
			else:
				raise socket.error, why
		self.connected = 1
		self.handle_connect()

	def accept (self):
		try:
			conn, addr = self.socket.accept()
			return conn, addr
		except socket.error, why:
			if why[0] == EWOULDBLOCK:
				pass
			else:
				raise socket.error, why

	def send (self, data):
		try:
			result = self.socket.send (data)
			return result
		except socket.error, why:
			if why[0] == EWOULDBLOCK:
				return 0
			else:
				raise socket.error, why
			return 0

	def recv (self, buffer_size):
		try:
			data = self.socket.recv (buffer_size)
			if not data:
				# a closed connection is indicated by signaling
				# a read condition, and having recv() return 0.
				self.handle_close()
				return ''
			else:
				return data
		except socket.error, why:
			# winsock sometimes throws ENOTCONN
			if why[0] in [ECONNRESET, ENOTCONN, ESHUTDOWN]:
				self.handle_close()
				return ''
			else:
				raise socket.error, why

	def close (self):
		self.del_channel()
		self.socket.close()

	# cheap inheritance, used to pass all other attribute
	# references to the underlying socket object.
	def __getattr__ (self, attr):
		return getattr (self.socket, attr)

	# log and log_info maybe overriden to provide more sophisitcated
	# logging and warning methods. In general, log is for 'hit' logging
	# and 'log_info' is for informational, warning and error logging. 

	def log (self, message):
		sys.stderr.write ('log: %s\n' % str(message))

	def log_info (self, message, type='info'):
		if __debug__ or type != 'info':
			print '%s: %s' % (type, message)

	def handle_read_event (self):
		if self.accepting:
			# for an accepting socket, getting a read implies
			# that we are connected
			if not self.connected:
				self.connected = 1
			self.handle_accept()
		elif not self.connected:
			self.handle_connect()
			self.connected = 1
			self.handle_read()
		else:
			self.handle_read()

	def handle_write_event (self):
		# getting a write implies that we are connected
		if not self.connected:
			self.handle_connect()
			self.connected = 1
		self.handle_write()

	def handle_expt_event (self):
		self.handle_expt()

	def handle_error (self):
		(file,fun,line), t, v, tbinfo = compact_traceback()

		# sometimes a user repr method will crash.
		try:
			self_repr = repr (self)
		except:
			self_repr = '<__repr__ (self) failed for object at %0x>' % id(self)

		self.log_info (
			'uncaptured python exception, closing channel %s (%s:%s %s)' % (
				self_repr,
				t,
				v,
				tbinfo
				),
			'error'
			)
		self.close()

	def handle_expt (self):
		self.log_info ('unhandled exception', 'warning')

	def handle_read (self):
		self.log_info ('unhandled read event', 'warning')

	def handle_write (self):
		self.log_info ('unhandled write event', 'warning')

	def handle_connect (self):
		self.log_info ('unhandled connect event', 'warning')

	def handle_accept (self):
		self.log_info ('unhandled accept event', 'warning')

	def handle_close (self):
		self.log_info ('unhandled close event', 'warning')
		self.close()

# ---------------------------------------------------------------------------
# adds simple buffered output capability, useful for simple clients.
# [for more sophisticated usage use asynchat.async_chat]
# ---------------------------------------------------------------------------

class dispatcher_with_send (dispatcher):
	def __init__ (self, sock=None):
		dispatcher.__init__ (self, sock)
		self.out_buffer = ''

	def initiate_send (self):
		num_sent = 0
		num_sent = dispatcher.send (self, self.out_buffer[:512])
		self.out_buffer = self.out_buffer[num_sent:]

	def handle_write (self):
		self.initiate_send()

	def writable (self):
		return (not self.connected) or len(self.out_buffer)

	def send (self, data):
		if self.debug:
			self.log_info ('sending %s' % repr(data))
		self.out_buffer = self.out_buffer + data
		self.initiate_send()

# ---------------------------------------------------------------------------
# used for debugging.
# ---------------------------------------------------------------------------

def compact_traceback ():
	t,v,tb = sys.exc_info()
	tbinfo = []
	while 1:
		tbinfo.append ((
			tb.tb_frame.f_code.co_filename,
			tb.tb_frame.f_code.co_name,				
			str(tb.tb_lineno)
			))
		tb = tb.tb_next
		if not tb:
			break

	# just to be safe
	del tb

	file, function, line = tbinfo[-1]
	info = '[' + string.join (
		map (
			lambda x: string.join (x, '|'),
			tbinfo
			),
		'] ['
		) + ']'
	return (file, function, line), t, v, info

def close_all (map=None):
	if map is None:
		map=socket_map
	for x in map.values():
		x.socket.close()
	map.clear()

# Asynchronous File I/O:
#
# After a little research (reading man pages on various unixen, and
# digging through the linux kernel), I've determined that select()
# isn't meant for doing doing asynchronous file i/o.
# Heartening, though - reading linux/mm/filemap.c shows that linux
# supports asynchronous read-ahead.  So _MOST_ of the time, the data
# will be sitting in memory for us already when we go to read it.
#
# What other OS's (besides NT) support async file i/o?  [VMS?]
#
# Regardless, this is useful for pipes, and stdin/stdout...

import os
if os.name == 'posix':
	import fcntl
	import FCNTL

	class file_wrapper:
		# here we override just enough to make a file
		# look like a socket for the purposes of asyncore.
		def __init__ (self, fd):
			self.fd = fd

		def recv (self, *args):
			return apply (os.read, (self.fd,)+args)

		def send (self, *args):
			return apply (os.write, (self.fd,)+args)

		read = recv
		write = send

		def close (self):
			return os.close (self.fd)

		def fileno (self):
			return self.fd

	class file_dispatcher (dispatcher):
		def __init__ (self, fd):
			dispatcher.__init__ (self)
			self.connected = 1
			# set it to non-blocking mode
			flags = fcntl.fcntl (fd, FCNTL.F_GETFL, 0)
			flags = flags | FCNTL.O_NONBLOCK
			fcntl.fcntl (fd, FCNTL.F_SETFL, flags)
			self.set_file (fd)

		def set_file (self, fd):
			self._fileno = fd
			self.socket = file_wrapper (fd)
			self.add_channel()