This file is indexed.

/usr/share/pyshared/svm.py is in python-libsvm 3.12-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#!/usr/bin/env python

from ctypes import *
from ctypes.util import find_library
import sys
import os

# For unix the prefix 'lib' is not considered.
if find_library('svm'):
	libsvm = CDLL(find_library('svm'))
elif find_library('libsvm'):
	libsvm = CDLL(find_library('libsvm'))
else:
	if sys.platform == 'win32':
		libsvm = CDLL(os.path.join(os.path.dirname(__file__),\
				'../windows/libsvm.dll'))
	else:
		libsvm = CDLL(os.path.join(os.path.dirname(__file__),\
				'../libsvm.so.2'))

# Construct constants
SVM_TYPE = ['C_SVC', 'NU_SVC', 'ONE_CLASS', 'EPSILON_SVR', 'NU_SVR' ]
KERNEL_TYPE = ['LINEAR', 'POLY', 'RBF', 'SIGMOID', 'PRECOMPUTED']
for i, s in enumerate(SVM_TYPE): exec("%s = %d" % (s , i))
for i, s in enumerate(KERNEL_TYPE): exec("%s = %d" % (s , i))

PRINT_STRING_FUN = CFUNCTYPE(None, c_char_p)
def print_null(s): 
	return 

def genFields(names, types): 
	return list(zip(names, types))

def fillprototype(f, restype, argtypes): 
	f.restype = restype
	f.argtypes = argtypes

class svm_node(Structure):
	_names = ["index", "value"]
	_types = [c_int, c_double]
	_fields_ = genFields(_names, _types)

def gen_svm_nodearray(xi, feature_max=None, isKernel=None):
	if isinstance(xi, dict):
		index_range = xi.keys()
	elif isinstance(xi, (list, tuple)):
		if not isKernel:
			xi = [0] + xi  # idx should start from 1
		index_range = range(len(xi))
	else:
		raise TypeError('xi should be a dictionary, list or tuple')

	if feature_max:
		assert(isinstance(feature_max, int))
		index_range = filter(lambda j: j <= feature_max, index_range)
	if not isKernel: 
		index_range = filter(lambda j:xi[j] != 0, index_range)

	index_range = sorted(index_range)
	ret = (svm_node * (len(index_range)+1))()
	ret[-1].index = -1
	for idx, j in enumerate(index_range):
		ret[idx].index = j
		ret[idx].value = xi[j]
	max_idx = 0
	if index_range: 
		max_idx = index_range[-1]
	return ret, max_idx

class svm_problem(Structure):
	_names = ["l", "y", "x"]
	_types = [c_int, POINTER(c_double), POINTER(POINTER(svm_node))]
	_fields_ = genFields(_names, _types)

	def __init__(self, y, x, isKernel=None):
		if len(y) != len(x):
			raise ValueError("len(y) != len(x)")
		self.l = l = len(y)

		max_idx = 0
		x_space = self.x_space = []
		for i, xi in enumerate(x):
			tmp_xi, tmp_idx = gen_svm_nodearray(xi,isKernel=isKernel)
			x_space += [tmp_xi]
			max_idx = max(max_idx, tmp_idx)
		self.n = max_idx

		self.y = (c_double * l)()
		for i, yi in enumerate(y): self.y[i] = yi

		self.x = (POINTER(svm_node) * l)() 
		for i, xi in enumerate(self.x_space): self.x[i] = xi

class svm_parameter(Structure):
	_names = ["svm_type", "kernel_type", "degree", "gamma", "coef0",
			"cache_size", "eps", "C", "nr_weight", "weight_label", "weight", 
			"nu", "p", "shrinking", "probability"]
	_types = [c_int, c_int, c_int, c_double, c_double, 
			c_double, c_double, c_double, c_int, POINTER(c_int), POINTER(c_double),
			c_double, c_double, c_int, c_int]
	_fields_ = genFields(_names, _types)

	def __init__(self, options = None):
		if options == None:
			options = ''
		self.parse_options(options)

	def show(self):
		attrs = svm_parameter._names + self.__dict__.keys()
		values = map(lambda attr: getattr(self, attr), attrs) 
		for attr, val in zip(attrs, values):
			print(' %s: %s' % (attr, val))

	def set_to_default_values(self):
		self.svm_type = C_SVC;
		self.kernel_type = RBF
		self.degree = 3
		self.gamma = 0
		self.coef0 = 0
		self.nu = 0.5
		self.cache_size = 100
		self.C = 1
		self.eps = 0.001
		self.p = 0.1
		self.shrinking = 1
		self.probability = 0
		self.nr_weight = 0
		self.weight_label = (c_int*0)()
		self.weight = (c_double*0)()
		self.cross_validation = False
		self.nr_fold = 0
		self.print_func = None

	def parse_options(self, options):
		argv = options.split()
		self.set_to_default_values()
		self.print_func = cast(None, PRINT_STRING_FUN)
		weight_label = []
		weight = []

		i = 0
		while i < len(argv):
			if argv[i] == "-s":
				i = i + 1
				self.svm_type = int(argv[i])
			elif argv[i] == "-t":
				i = i + 1
				self.kernel_type = int(argv[i])
			elif argv[i] == "-d":
				i = i + 1
				self.degree = int(argv[i])
			elif argv[i] == "-g":
				i = i + 1
				self.gamma = float(argv[i])
			elif argv[i] == "-r":
				i = i + 1
				self.coef0 = float(argv[i])
			elif argv[i] == "-n":
				i = i + 1
				self.nu = float(argv[i])
			elif argv[i] == "-m":
				i = i + 1
				self.cache_size = float(argv[i])
			elif argv[i] == "-c":
				i = i + 1
				self.C = float(argv[i])
			elif argv[i] == "-e":
				i = i + 1
				self.eps = float(argv[i])
			elif argv[i] == "-p":
				i = i + 1
				self.p = float(argv[i])
			elif argv[i] == "-h":
				i = i + 1
				self.shrinking = int(argv[i])
			elif argv[i] == "-b":
				i = i + 1
				self.probability = int(argv[i])
			elif argv[i] == "-q":
				self.print_func = PRINT_STRING_FUN(print_null)
			elif argv[i] == "-v":
				i = i + 1
				self.cross_validation = 1
				self.nr_fold = int(argv[i])
				if self.nr_fold < 2:
					raise ValueError("n-fold cross validation: n must >= 2")
			elif argv[i].startswith("-w"):
				i = i + 1
				self.nr_weight += 1
				nr_weight = self.nr_weight
				weight_label += [int(argv[i-1][2:])]
				weight += [float(argv[i])]
			else:
				raise ValueError("Wrong options")
			i += 1

		libsvm.svm_set_print_string_function(self.print_func)
		self.weight_label = (c_int*self.nr_weight)()
		self.weight = (c_double*self.nr_weight)()
		for i in range(self.nr_weight): 
			self.weight[i] = weight[i]
			self.weight_label[i] = weight_label[i]

class svm_model(Structure):
	_names = ['param', 'nr_class', 'l', 'SV', 'sv_coef', 'rho',
			'probA', 'probB', 'label', 'nSV', 'free_sv']
	_types = [svm_parameter, c_int, c_int, POINTER(POINTER(svm_node)),
			POINTER(POINTER(c_double)), POINTER(c_double),
			POINTER(c_double), POINTER(c_double), POINTER(c_int),
			POINTER(c_int), c_int]
	_fields_ = genFields(_names, _types)

	def __init__(self):
		self.__createfrom__ = 'python'

	def __del__(self):
		# free memory created by C to avoid memory leak
		if hasattr(self, '__createfrom__') and self.__createfrom__ == 'C':
			libsvm.svm_free_and_destroy_model(pointer(self))

	def get_svm_type(self):
		return libsvm.svm_get_svm_type(self)

	def get_nr_class(self):
		return libsvm.svm_get_nr_class(self)

	def get_svr_probability(self):
		return libsvm.svm_get_svr_probability(self)

	def get_labels(self):
		nr_class = self.get_nr_class()
		labels = (c_int * nr_class)()
		libsvm.svm_get_labels(self, labels)
		return labels[:nr_class]

	def is_probability_model(self):
		return (libsvm.svm_check_probability_model(self) == 1)

	def get_sv_coef(self):
		return [tuple(self.sv_coef[j][i] for j in xrange(self.nr_class - 1))
				for i in xrange(self.l)]

	def get_SV(self):
		result = []
		for sparse_sv in self.SV[:self.l]:
			row = dict()
			
			i = 0
			while True:
				row[sparse_sv[i].index] = sparse_sv[i].value
				if sparse_sv[i].index == -1:
					break
				i += 1

			result.append(row)
		return result

def toPyModel(model_ptr):
	"""
	toPyModel(model_ptr) -> svm_model

	Convert a ctypes POINTER(svm_model) to a Python svm_model
	"""
	if bool(model_ptr) == False:
		raise ValueError("Null pointer")
	m = model_ptr.contents
	m.__createfrom__ = 'C'
	return m

fillprototype(libsvm.svm_train, POINTER(svm_model), [POINTER(svm_problem), POINTER(svm_parameter)])
fillprototype(libsvm.svm_cross_validation, None, [POINTER(svm_problem), POINTER(svm_parameter), c_int, POINTER(c_double)])

fillprototype(libsvm.svm_save_model, c_int, [c_char_p, POINTER(svm_model)])
fillprototype(libsvm.svm_load_model, POINTER(svm_model), [c_char_p])

fillprototype(libsvm.svm_get_svm_type, c_int, [POINTER(svm_model)])
fillprototype(libsvm.svm_get_nr_class, c_int, [POINTER(svm_model)])
fillprototype(libsvm.svm_get_labels, None, [POINTER(svm_model), POINTER(c_int)])
fillprototype(libsvm.svm_get_svr_probability, c_double, [POINTER(svm_model)])

fillprototype(libsvm.svm_predict_values, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)])
fillprototype(libsvm.svm_predict, c_double, [POINTER(svm_model), POINTER(svm_node)])
fillprototype(libsvm.svm_predict_probability, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)])

fillprototype(libsvm.svm_free_model_content, None, [POINTER(svm_model)])
fillprototype(libsvm.svm_free_and_destroy_model, None, [POINTER(POINTER(svm_model))])
fillprototype(libsvm.svm_destroy_param, None, [POINTER(svm_parameter)])

fillprototype(libsvm.svm_check_parameter, c_char_p, [POINTER(svm_problem), POINTER(svm_parameter)])
fillprototype(libsvm.svm_check_probability_model, c_int, [POINTER(svm_model)])
fillprototype(libsvm.svm_set_print_string_function, None, [PRINT_STRING_FUN])