This file is indexed.

/usr/lib/python2.7/dist-packages/ephem/cities.py is in python-ephem 3.7.6.0-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
"""Modest database of more than a hundred world cities."""

import ephem
import json
import sys
from math import radians

_python3 = sys.version_info > (3,)
if _python3:
    from urllib.parse import urlencode
    from urllib.request import urlopen
else:
    from urllib import urlencode
    from urllib2 import urlopen

_city_data = {
    'London': ('51.5001524', '-0.1262362', 14.605533),  # United Kingdom
    'Paris': ('48.8566667', '2.3509871', 35.917042),  # France
    'New York': ('40.7143528', '-74.0059731', 9.775694),  # United States
    'Tokyo': ('35.6894875', '139.6917064', 37.145370),  # Japan
    'Chicago': ('41.8781136', '-87.6297982', 181.319290),  # United States
    'Frankfurt': ('50.1115118', '8.6805059', 106.258285),  # Germany
    'Hong Kong': ('22.396428', '114.109497', 321.110260),  # Hong Kong
    'Los Angeles': ('34.0522342', '-118.2436849', 86.847092),  # United States
    'Milan': ('45.4636889', '9.1881408', 122.246513),  # Italy
    'Singapore': ('1.352083', '103.819836', 57.821636),  # Singapore
    'San Francisco': ('37.7749295', '-122.4194155', 15.557819),  # United States
    'Sydney': ('-33.8599722', '151.2111111', 3.341026),  # Australia
    'Toronto': ('43.6525', '-79.3816667', 90.239403),  # Canada
    'Zurich': ('47.3833333', '8.5333333', 405.500916),  # Switzerland
    'Brussels': ('50.8503', '4.35171', 26.808620),  # Belgium
    'Madrid': ('40.4166909', '-3.7003454', 653.005005),  # Spain
    'Mexico City': ('19.4270499', '-99.1275711', 2228.146484),  # Mexico
    'Sao Paulo': ('-23.5489433', '-46.6388182', 760.344849),  # Brazil
    'Moscow': ('55.755786', '37.617633', 151.189835),  # Russian Federation
    'Seoul': ('37.566535', '126.9779692', 41.980915),  # South Korea
    'Amsterdam': ('52.3730556', '4.8922222', 14.975505),  # The Netherlands
    'Boston': ('42.3584308', '-71.0597732', 15.338848),  # United States
    'Caracas': ('10.491016', '-66.902061', 974.727417),  # Venezuela
    'Dallas': ('32.802955', '-96.769923', 154.140625),  # United States
    'Dusseldorf': ('51.2249429', '6.7756524', 43.204800),  # Germany
    'Geneva': ('46.2057645', '6.141593', 379.026245),  # Switzerland
    'Houston': ('29.7628844', '-95.3830615', 6.916622),  # United States
    'Jakarta': ('-6.211544', '106.845172', 10.218226),  # Indonesia
    'Johannesburg': ('-26.1704415', '27.9717606', 1687.251099),  # South Africa
    'Melbourne': ('-37.8131869', '144.9629796', 27.000000),  # Australia
    'Osaka': ('34.6937378', '135.5021651', 16.347811),  # Japan
    'Prague': ('50.0878114', '14.4204598', 191.103485),  # Czech Republic
    'Santiago': ('-33.4253598', '-70.5664659', 665.926880),  # Chile
    'Taipei': ('25.091075', '121.5598345', 32.288563),  # Taiwan
    'Washington': ('38.8951118', '-77.0363658', 7.119641),  # United States
    'Bangkok': ('13.7234186', '100.4762319', 4.090096),  # Thailand
    'Beijing': ('39.904214', '116.407413', 51.858883),  # China
    'Montreal': ('45.5088889', '-73.5541667', 16.620916),  # Canada
    'Rome': ('41.8954656', '12.4823243', 19.704413),  # Italy
    'Stockholm': ('59.3327881', '18.0644881', 25.595907),  # Sweden
    'Warsaw': ('52.2296756', '21.0122287', 115.027786),  # Poland
    'Atlanta': ('33.7489954', '-84.3879824', 319.949738),  # United States
    'Barcelona': ('41.387917', '2.1699187', 19.991053),  # Spain
    'Berlin': ('52.5234051', '13.4113999', 45.013939),  # Germany
    'Buenos Aires': ('-34.6084175', '-58.3731613', 40.544090),  # Argentina
    'Budapest': ('47.4984056', '19.0407578', 106.463295),  # Hungary
    'Copenhagen': ('55.693403', '12.583046', 6.726723),  # Denmark
    'Hamburg': ('53.5538148', '9.9915752', 5.104634),  # Germany
    'Istanbul': ('41.00527', '28.97696', 37.314278),  # Turkey
    'Kuala Lumpur': ('3.139003', '101.686855', 52.271698),  # Malaysia
    'Manila': ('14.5833333', '120.9666667', 3.041384),  # Philippines
    'Miami': ('25.7889689', '-80.2264393', 0.946764),  # United States
    'Minneapolis': ('44.9799654', '-93.2638361', 253.002655),  # United States
    'Munich': ('48.1391265', '11.5801863', 523.000000),  # Germany
    'Shanghai': ('31.230393', '121.473704', 15.904707),  # China
    'Athens': ('37.97918', '23.716647', 47.597061),  # Greece
    'Auckland': ('-36.8484597', '174.7633315', 21.000000),  # New Zealand
    'Dublin': ('53.344104', '-6.2674937', 8.214323),  # Ireland
    'Helsinki': ('60.1698125', '24.9382401', 7.153307),  # Finland
    'Luxembourg': ('49.815273', '6.129583', 305.747925),  # Luxembourg
    'Lyon': ('45.767299', '4.8343287', 182.810547),  # France
    'Mumbai': ('19.0176147', '72.8561644', 12.408822),  # India
    'New Delhi': ('28.635308', '77.22496', 213.999054),  # India
    'Philadelphia': ('39.952335', '-75.163789', 12.465688),  # United States
    'Rio de Janeiro': ('-22.9035393', '-43.2095869', 9.521935),  # Brazil
    'Tel Aviv': ('32.0599254', '34.7851264', 21.114218),  # Israel
    'Vienna': ('48.20662', '16.38282', 170.493149),  # Austria
    'Abu Dhabi': ('24.4666667', '54.3666667', 6.296038),  # United Arab Emirates
    'Almaty': ('43.255058', '76.912628', 785.522156),  # Kazakhstan
    'Birmingham': ('52.4829614', '-1.893592', 141.448563),  # United Kingdom
    'Bogota': ('4.5980556', '-74.0758333', 2614.037109),  # Colombia
    'Bratislava': ('48.1483765', '17.1073105', 155.813446),  # Slovakia
    'Brisbane': ('-27.4709331', '153.0235024', 28.163914),  # Australia
    'Bucharest': ('44.437711', '26.097367', 80.407768),  # Romania
    'Cairo': ('30.064742', '31.249509', 20.248013),  # Egypt
    'Cleveland': ('41.4994954', '-81.6954088', 198.879639),  # United States
    'Cologne': ('50.9406645', '6.9599115', 59.181450),  # Germany
    'Detroit': ('42.331427', '-83.0457538', 182.763428),  # United States
    'Dubai': ('25.2644444', '55.3116667', 8.029230),  # United Arab Emirates
    'Ho Chi Minh City': ('10.75918', '106.662498', 10.757121),  # Vietnam
    'Kiev': ('50.45', '30.5233333', 157.210175),  # Ukraine
    'Lima': ('-12.0433333', '-77.0283333', 154.333740),  # Peru
    'Lisbon': ('38.7070538', '-9.1354884', 2.880179),  # Portugal
    'Manchester': ('53.4807125', '-2.2343765', 57.892406),  # United Kingdom
    'Montevideo': ('-34.8833333', '-56.1666667', 45.005032),  # Uruguay
    'Oslo': ('59.9127263', '10.7460924', 10.502326),  # Norway
    'Rotterdam': ('51.924216', '4.481776', 2.766272),  # The Netherlands
    'Riyadh': ('24.6880015', '46.7224333', 613.475281),  # Saudi Arabia
    'Seattle': ('47.6062095', '-122.3320708', 53.505501),  # United States
    'Stuttgart': ('48.7771056', '9.1807688', 249.205185),  # Germany
    'The Hague': ('52.0698576', '4.2911114', 3.686689),  # The Netherlands
    'Vancouver': ('49.248523', '-123.1088', 70.145927),  # Canada
    'Adelaide': ('-34.9305556', '138.6205556', 49.098354),  # Australia
    'Antwerp': ('51.21992', '4.39625', 7.296879),  # Belgium
    'Arhus': ('56.162939', '10.203921', 26.879421),  # Denmark
    'Baltimore': ('39.2903848', '-76.6121893', 10.258920),  # United States
    'Bangalore': ('12.9715987', '77.5945627', 911.858398),  # India
    'Bologna': ('44.4942191', '11.3464815', 72.875923),  # Italy
    'Brazilia': ('-14.235004', '-51.92528', 259.063477),  # Brazil
    'Calgary': ('51.045', '-114.0572222', 1046.000000),  # Canada
    'Cape Town': ('-33.924788', '18.429916', 5.838447),  # South Africa
    'Colombo': ('6.927468', '79.848358', 9.969995),  # Sri Lanka
    'Columbus': ('39.9611755', '-82.9987942', 237.651932),  # United States
    'Dresden': ('51.0509912', '13.7336335', 114.032356),  # Germany
    'Edinburgh': ('55.9501755', '-3.1875359', 84.453995),  # United Kingdom
    'Genoa': ('44.4070624', '8.9339889', 35.418076),  # Italy
    'Glasgow': ('55.8656274', '-4.2572227', 38.046883),  # United Kingdom
    'Gothenburg': ('57.6969943', '11.9865', 15.986326),  # Sweden
    'Guangzhou': ('23.129163', '113.264435', 18.892920),  # China
    'Hanoi': ('21.0333333', '105.85', 20.009024),  # Vietnam
    'Kansas City': ('39.1066667', '-94.6763889', 274.249390),  # United States
    'Leeds': ('53.7996388', '-1.5491221', 47.762367),  # United Kingdom
    'Lille': ('50.6371834', '3.0630174', 28.139490),  # France
    'Marseille': ('43.2976116', '5.3810421', 24.785774),  # France
    'Richmond': ('37.542979', '-77.469092', 63.624462),  # United States
    'St. Petersburg': ('59.939039', '30.315785', 11.502971),  # Russian Federation
    'Tashkent': ('41.2666667', '69.2166667', 430.668427),  # Uzbekistan
    'Tehran': ('35.6961111', '51.4230556', 1180.595947),  # Iran
    'Tijuana': ('32.533489', '-117.018204', 22.712011),  # Mexico
    'Turin': ('45.0705621', '7.6866186', 234.000000),  # Italy
    'Utrecht': ('52.0901422', '5.1096649', 7.720881),  # The Netherlands
    'Wellington': ('-41.2924945', '174.7732353', 17.000000),  # New Zealand
    }

def city(name):
    try:
        data = _city_data[name]
    except KeyError:
        raise KeyError('Unknown city: %r' % (name,))
    o = ephem.Observer()
    o.name = name
    o.lat, o.lon, o.elevation = data
    o.compute_pressure()
    return o

def lookup(address):
    """Given a string `address`, do a Google lookup and return an Observer.

    Avoid calling this very often, to honor Google's terms of service.
    Instead you can run it once, print out the result, and cut and paste
    the Observer back into your code to use as often as you like!

    """
    parameters = urlencode({'address': address, 'sensor': 'false'})
    url = 'http://maps.googleapis.com/maps/api/geocode/json?' + parameters
    data = json.loads(urlopen(url).read().decode('utf-8'))
    results = data['results']
    if not results:
        raise ValueError('Google cannot find a place named %r' % address)
    address_components = results[0]['address_components']
    location = results[0]['geometry']['location']

    o = ephem.Observer()
    o.name = ', '.join(c['long_name'] for c in address_components)
    o.lat = radians(location['lat'])
    o.lon = radians(location['lng'])
    return o