This file is indexed.

/usr/lib/python2.7/dist-packages/chempy/cpv.py is in pymol 1.7.2.1-2.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
#A* -------------------------------------------------------------------
#B* This file contains source code for the PyMOL computer program
#C* copyright 1998-2000 by Warren Lyford Delano of DeLano Scientific. 
#D* -------------------------------------------------------------------
#E* It is unlawful to modify or remove this copyright notice.
#F* -------------------------------------------------------------------
#G* Please see the accompanying LICENSE file for further information. 
#H* -------------------------------------------------------------------
#I* Additional authors of this source file include:
#-* 
#-* 
#-*
#Z* -------------------------------------------------------------------
# Generic vector and matrix routines for 3-Space
# Assembled for usage in PyMOL and Chemical Python
#
# Assumes row-major matrices and arrays
# [ [vector 1], [vector 2], [vector 3] ]
#
# Raises ValueError when given bad input
#
# TODO: documentation!

import math
import random
import copy

RSMALL4 = 0.0001

#------------------------------------------------------------------------------
def get_null():
    return [0.0,0.0,0.0]

#------------------------------------------------------------------------------   
def get_identity():
    return [[1.0,0.0,0.0],[0.0,1.0,0.0],[0.0,0.0,1.0]]

#------------------------------------------------------------------------------
def distance_sq(v1, v2):
    d0 = v2[0] - v1[0]
    d1 = v2[1] - v1[1]
    d2 = v2[2] - v1[2]
    return (d0*d0) + (d1*d1) + (d2*d2)

#------------------------------------------------------------------------------
def distance(v1, v2):
    d0 = v2[0] - v1[0]
    d1 = v2[1] - v1[1]
    d2 = v2[2] - v1[2]
    return math.sqrt((d0*d0) + (d1*d1) + (d2*d2))

#------------------------------------------------------------------------------
def length(v):
    return math.sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2])

#------------------------------------------------------------------------------
def random_displacement(v,radius):
    r_vect = lambda r=random.random:[r()-0.5,r()-0.5,r()-0.5]
    while 1:
        vect = r_vect()
        v_len = length(vect)
        if (v_len<=0.5):
            break;
    if v_len > 0.00000000001:
        v_len = random.random()*radius / v_len
        return add(v,scale([vect[0], vect[1], vect[2]],v_len))
    else:
        return v

#------------------------------------------------------------------------------
def random_sphere(v,radius):
    r_vect = lambda r=random.random:[r()-0.5,r()-0.5,r()-0.5]
    while 1:
        vect = r_vect()
        v_len = length(vect)
        if (v_len<=0.5) and (v_len!=0.0):
            break;
    return add(v,scale([vect[0], vect[1], vect[2]],2*radius/v_len))

#------------------------------------------------------------------------------
def random_vector():
    r_vect = lambda r=random.random:[r()-0.5,r()-0.5,r()-0.5]
    while 1:
        vect = r_vect()
        if length(vect)<=0.5:
            break;
    return scale([vect[0], vect[1], vect[2]],2.0)

#------------------------------------------------------------------------------
def add(v1,v2):
    return [v1[0]+v2[0],v1[1]+v2[1],v1[2]+v2[2]]

#------------------------------------------------------------------------------
def average(v1,v2):
    return [(v1[0]+v2[0])/2.0,(v1[1]+v2[1])/2.0,(v1[2]+v2[2])/2.0]

#------------------------------------------------------------------------------
def scale(v,factor):
    return [v[0]*factor,v[1]*factor,v[2]*factor]

#------------------------------------------------------------------------------
def negate(v):
    return [-v[0],-v[1],-v[2]]

#------------------------------------------------------------------------------
def sub(v1,v2):
    return [v1[0]-v2[0],v1[1]-v2[1],v1[2]-v2[2]]

#------------------------------------------------------------------------------
def dot_product(v1,v2):
  return v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]

#------------------------------------------------------------------------------
def cross_product(v1,v2):
  return [(v1[1]*v2[2]) - (v1[2]*v2[1]),
             (v1[2]*v2[0]) - (v1[0]*v2[2]),
             (v1[0]*v2[1]) - (v1[1]*v2[0])]

#------------------------------------------------------------------------------
def transform(m,v):
    return [m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2],
              m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2],
              m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2]]

#------------------------------------------------------------------------------
def inverse_transform(m,v):
    return [m[0][0]*v[0] + m[1][0]*v[1] + m[2][0]*v[2],
            m[0][1]*v[0] + m[1][1]*v[1] + m[2][1]*v[2],
            m[0][2]*v[0] + m[1][2]*v[1] + m[2][2]*v[2]]

#------------------------------------------------------------------------------
def multiply(m1,m2): # HAVEN'T YET VERIFIED THAT THIS CONFORMS TO STANDARD DEFT
    return [[m1[0][0]*m2[0][0] + m1[0][1]*m2[1][0] + m1[0][2]*m2[2][0],
                m1[1][0]*m2[0][0] + m1[1][1]*m2[1][0] + m1[1][2]*m2[2][0],
                m1[2][0]*m2[0][0] + m1[2][1]*m2[1][0] + m1[2][2]*m2[2][0]],
              [m1[0][0]*m2[0][1] + m1[0][1]*m2[1][1] + m1[0][2]*m2[2][1],
                m1[1][0]*m2[0][1] + m1[1][1]*m2[1][1] + m1[1][2]*m2[2][1],
                m1[2][0]*m2[0][1] + m1[2][1]*m2[1][1] + m1[2][2]*m2[2][1]],
              [m1[0][0]*m2[0][2] + m1[0][1]*m2[1][2] + m1[0][2]*m2[2][2],
                m1[1][0]*m2[0][2] + m1[1][1]*m2[1][2] + m1[1][2]*m2[2][2],
                m1[2][0]*m2[0][2] + m1[2][1]*m2[1][2] + m1[2][2]*m2[2][2]]]

#------------------------------------------------------------------------------
def transpose(m1): 
    return [[m1[0][0],
             m1[1][0],
             m1[2][0]],
            [m1[0][1],
             m1[1][1],
             m1[2][1]],
            [m1[0][2],
             m1[1][2],
             m1[2][2]]]

#------------------------------------------------------------------------------
def get_system2(x,y):
    z = cross_product(x,y)
    z = normalize(z)
    y = cross_product(z,x);
    y = normalize(y);
    x = normalize(x);
    return [x,y,z]

#------------------------------------------------------------------------------
def scale_system(s,factor):
    r = []
    for a in s:
        r.append([a[0]*factor,a[1]*factor,a[2]*factor])
    return r

#------------------------------------------------------------------------------
def transpose(m):
    return [[m[0][0], m[1][0], m[2][0]],
              [m[0][1], m[1][1], m[2][1]],
              [m[0][2], m[1][2], m[2][2]]]

#------------------------------------------------------------------------------
def transform_about_point(m,v,p):
    return add(transform(m,sub(v,p)),p)

#------------------------------------------------------------------------------
def get_angle(v1,v2): # v1,v2 must be unit vectors
    denom = (math.sqrt(((v1[0]*v1[0]) + (v1[1]*v1[1]) + (v1[2]*v1[2]))) *
                math.sqrt(((v2[0]*v2[0]) + (v2[1]*v2[1]) + (v2[2]*v2[2]))))
    if denom>1e-10:
        result = ( (v1[0]*v2[0]) + (v1[1]*v2[1]) + (v1[2]*v2[2]) ) / denom
    else:
        result = 0.0
    result = math.acos(result)
    return result

#------------------------------------------------------------------------------
def get_angle_formed_by(p1,p2,p3): # angle formed by three positions in space

    # based on code submitted by Paul Sherwood
    r1 = distance(p1,p2)
    r2 = distance(p2,p3)
    r3 = distance(p1,p3)
    
    small = 1.0e-10
    
    if (r1 + r2 - r3) < small:
        # This seems to happen occasionally for 180 angles 
        theta = math.pi
    else:
        theta = math.acos( (r1*r1 + r2*r2  - r3*r3) / (2.0 * r1*r2) )
    return theta;

#------------------------------------------------------------------------------
def project(v,n):
    dot = v[0]*n[0] + v[1]*n[1] + v[2]*n[2]
    return [ dot * n[0], dot * n[1], dot * n[2] ]

#------------------------------------------------------------------------------
def remove_component(v, n):
    dot = v[0]*n[0] + v[1]*n[1] + v[2]*n[2]
    return [v[0] - dot * n[0], v[1] - dot * n[1], v[2] - dot * n[2]]

#------------------------------------------------------------------------------
def normalize(v):
    vlen = math.sqrt((v[0]*v[0]) + (v[1]*v[1]) + (v[2]*v[2]))
    if vlen>RSMALL4:
        return [v[0]/vlen,v[1]/vlen,v[2]/vlen]
    else:
        return get_null()

#------------------------------------------------------------------------------
def reverse(v):
    return [ -v[0], -v[1], -v[2] ]

#------------------------------------------------------------------------------
def normalize_failsafe(v):
    vlen = math.sqrt((v[0]*v[0]) + (v[1]*v[1]) + (v[2]*v[2]))
    if vlen>RSMALL4:
        return [v[0]/vlen,v[1]/vlen,v[2]/vlen]
    else:
        return [1.0,0.0,0.0]

#------------------------------------------------------------------------------
def rotation_matrix(angle,axis):
    
    x=axis[0]
    y=axis[1]
    z=axis[2]
    
    s = math.sin(angle)
    c = math.cos(angle)

    mag = math.sqrt( x*x + y*y + z*z )

    if abs(mag)<RSMALL4:
        return get_identity()
    
    x = x / mag
    y = y / mag
    z = z / mag
 
    xx = x * x
    yy = y * y
    zz = z * z
    xy = x * y
    yz = y * z
    zx = z * x
    xs = x * s
    ys = y * s
    zs = z * s
    one_c = 1.0 - c
 
    return [[ (one_c * xx) + c , (one_c * xy) - zs, (one_c * zx) + ys],
              [ (one_c * xy) + zs, (one_c * yy) + c , (one_c * yz) - xs],
              [ (one_c * zx) - ys, (one_c * yz) + xs, (one_c * zz) + c ]]

#------------------------------------------------------------------------------
def transform_array(rot_mtx,vec_array):

    '''transform_array( matrix, vector_array ) -> vector_array

    '''

    return map( lambda x,m=rot_mtx:transform(m,x), vec_array )

#------------------------------------------------------------------------------
def translate_array(trans_vec,vec_array):

    '''translate_array(trans_vec,vec_array) -> vec_array

    Adds 'mult'*'trans_vec' to each element in vec_array, and returns
    the translated vector.
    '''

    return map ( lambda x,m=trans_vec:add(m,x),vec_array )

#------------------------------------------------------------------------------
def fit_apply(fit_result,vec_array):
    '''fit_apply(fir_result,vec_array) -> vec_array
    
    Applies a fit result to an array of vectors
    '''

    return map( lambda x,t1=fit_result[0],mt2=negate(fit_result[1]),
        m=fit_result[2]: add(t1,transform(m,add(mt2,x))),vec_array)

#------------------------------------------------------------------------------
def fit(target_array, source_array):

    '''fit(target_array, source_array) -> (t1, t2, rot_mtx, rmsd) [fit_result]

    Calculates the translation vectors and rotation matrix required
    to superimpose source_array onto target_array.  Original arrays are
    not modified.  NOTE: Currently assumes 3-dimensional coordinates

    t1,t2 are vectors from origin to centers of mass...
    '''

# Check dimensions of input arrays
    if len(target_array) != len(source_array):
        print ("Error: arrays must be of same length for RMS fitting.")
        raise ValueError
    if len(target_array[0]) != 3 or len(source_array[0]) != 3:
        print ("Error: arrays must be dimension 3 for RMS fitting.")
        raise ValueError
    nvec = len(target_array)
    ndim = 3
    maxiter = 200
    tol = 0.001

# Calculate translation vectors (center-of-mass).

    t1 = get_null()
    t2 = get_null()
    tvec1 = get_null()
    tvec2 = get_null()

    for i in range(nvec):
        for j in range(ndim):
            t1[j] = t1[j] + target_array[i][j]
            t2[j] = t2[j] + source_array[i][j]
    for j in range(ndim):
        t1[j] = t1[j] / nvec
        t2[j] = t2[j] / nvec

# Calculate correlation matrix.

    corr_mtx = []
    for i in range(ndim):
        temp_vec = []
        for j in range(ndim):
            temp_vec.append(0.0)
        corr_mtx.append(temp_vec)

    rot_mtx = []
    for i in range(ndim):
        temp_vec = []
        for j in range(ndim):
            temp_vec.append(0.0)
        rot_mtx.append(temp_vec)
    for i in range(ndim):
        rot_mtx[i][i] = 1.

    for i in range(nvec):
        for j in range(ndim):
            tvec1[j] = target_array[i][j] - t1[j]
            tvec2[j] = source_array[i][j] - t2[j]
        for j in range(ndim):
            for k in range(ndim):
                corr_mtx[j][k] = corr_mtx[j][k] + tvec2[j]*tvec1[k]

# Main iteration scheme (hardwired for 3X3 matrix, but could be extended).

    iters = 0
    while (iters < maxiter):
        iters = iters + 1
        ix = (iters-1)%ndim
        iy = iters%ndim
        iz = (iters+1)%ndim
        sig = corr_mtx[iz][iy] - corr_mtx[iy][iz]
        gam = corr_mtx[iy][iy] + corr_mtx[iz][iz]

        sg = (sig**2 + gam**2)**0.5
        if sg != 0.0 and (abs(sig) > tol*abs(gam)):
            sg = 1.0 / sg
            for i in range(ndim):

                bb = gam*corr_mtx[iy][i] + sig*corr_mtx[iz][i]
                cc = gam*corr_mtx[iz][i] - sig*corr_mtx[iy][i]
                corr_mtx[iy][i] = bb*sg
                corr_mtx[iz][i] = cc*sg

                bb = gam*rot_mtx[iy][i] + sig*rot_mtx[iz][i]
                cc = gam*rot_mtx[iz][i] - sig*rot_mtx[iy][i]
                rot_mtx[iy][i] = bb*sg
                rot_mtx[iz][i] = cc*sg

        else:
# We have a converged rotation matrix.  Calculate RMS deviation.
            vt1 = translate_array(negate(t1),target_array)
            vt2 = translate_array(negate(t2),source_array)
            vt3 = transform_array(rot_mtx,vt2)
            rmsd = 0.0
            for i in range(nvec):
                rmsd = rmsd + distance_sq(vt1[i], vt3[i])
            rmsd = math.sqrt(rmsd/nvec)
            return(t1, t2, rot_mtx, rmsd)

# Too many iterations; something wrong.
    print ("Error: Too many iterations in RMS fit.")
    raise ValueError