/usr/share/doc/pspp/pspp.html/REGRESSION.html is in pspp 0.8.5-5build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- This manual is for GNU PSPP version 0.8.5,
software for statistical analysis.
Copyright (C) 1997, 1998, 2004, 2005, 2009, 2012, 2013, 2014 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License". -->
<!-- Created by GNU Texinfo 6.0, http://www.gnu.org/software/texinfo/ -->
<head>
<title>PSPP: REGRESSION</title>
<meta name="description" content="PSPP: REGRESSION">
<meta name="keywords" content="PSPP: REGRESSION">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Statistics.html#Statistics" rel="up" title="Statistics">
<link href="Syntax.html#Syntax" rel="next" title="Syntax">
<link href="RANK.html#RANK" rel="prev" title="RANK">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space: nowrap}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: serif; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<a name="REGRESSION"></a>
<div class="header">
<p>
Next: <a href="RELIABILITY.html#RELIABILITY" accesskey="n" rel="next">RELIABILITY</a>, Previous: <a href="RANK.html#RANK" accesskey="p" rel="prev">RANK</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="REGRESSION-1"></a>
<h3 class="section">15.15 REGRESSION</h3>
<a name="index-regression"></a>
<a name="index-linear-regression-1"></a>
<p>The <code>REGRESSION</code> procedure fits linear models to data via least-squares
estimation. The procedure is appropriate for data which satisfy those
assumptions typical in linear regression:
</p>
<ul>
<li> The data set contains <em>n</em> observations of a dependent variable, say
<em>Y_1,…,Y_n</em>, and <em>n</em> observations of one or more explanatory
variables.
Let <em>X_{11}, X_{12}</em>, …, <em>X_{1n}</em> denote the <em>n</em> observations
of the first explanatory variable;
<em>X_{21}</em>,…,<em>X_{2n}</em> denote the <em>n</em> observations of the second
explanatory variable;
<em>X_{k1}</em>,…,<em>X_{kn}</em> denote the <em>n</em> observations of
the <em>k</em>th explanatory variable.
</li><li> The dependent variable <em>Y</em> has the following relationship to the
explanatory variables:
<em>Y_i = b_0 + b_1 X_{1i} + ... + b_k X_{ki} + Z_i</em>
where <em>b_0, b_1, …, b_k</em> are unknown
coefficients, and <em>Z_1,…,Z_n</em> are independent, normally
distributed <em>noise</em> terms with mean zero and common variance.
The noise, or <em>error</em> terms are unobserved.
This relationship is called the <em>linear model</em>.
</li></ul>
<p>The <code>REGRESSION</code> procedure estimates the coefficients
<em>b_0,…,b_k</em> and produces output relevant to inferences for the
linear model.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="Syntax.html#Syntax" accesskey="1">Syntax</a>:</td><td> </td><td align="left" valign="top">Syntax definition.
</td></tr>
<tr><td align="left" valign="top">• <a href="Examples.html#Examples" accesskey="2">Examples</a>:</td><td> </td><td align="left" valign="top">Using the REGRESSION procedure.
</td></tr>
</table>
</body>
</html>
|