/usr/lib/mysql-testsuite/r/lock_sync.result is in percona-server-test-5.6 5.6.22-rel71.0-0ubuntu4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 | #
# Test how we handle locking in various cases when
# we read data from MyISAM tables.
#
# In this test we mostly check that the SQL-layer correctly
# determines the type of thr_lock.c lock for a table being
# read.
# I.e. that it disallows concurrent inserts when the statement
# is going to be written to the binary log and therefore
# should be serialized, and allows concurrent inserts when
# such serialization is not necessary (e.g. when
# the statement is not written to binary log).
#
# Force concurrent inserts to be performed even if the table
# has gaps. This allows to simplify clean up in scripts
# used below (instead of backing up table being inserted
# into and then restoring it from backup at the end of the
# script we can simply delete rows which were inserted).
set @old_concurrent_insert= @@global.concurrent_insert;
set @@global.concurrent_insert= 2;
select @@global.concurrent_insert;
@@global.concurrent_insert
ALWAYS
# Prepare playground by creating tables, views,
# routines and triggers used in tests.
drop table if exists t0, t1, t2, t3, t4, t5;
drop view if exists v1, v2;
drop procedure if exists p1;
drop procedure if exists p2;
drop procedure if exists p3;
drop function if exists f1;
drop function if exists f2;
drop function if exists f3;
drop function if exists f4;
drop function if exists f5;
drop function if exists f6;
drop function if exists f7;
drop function if exists f8;
drop function if exists f9;
drop function if exists f10;
drop function if exists f11;
drop function if exists f12;
drop function if exists f13;
drop function if exists f14;
drop function if exists f15;
drop function if exists f16;
drop function if exists f17;
create table t1 (i int primary key);
insert into t1 values (1), (2), (3), (4), (5);
create table t2 (j int primary key);
insert into t2 values (1), (2), (3), (4), (5);
create table t3 (k int primary key);
insert into t3 values (1), (2), (3);
create table t4 (l int primary key);
insert into t4 values (1);
create table t5 (l int primary key);
insert into t5 values (1);
create view v1 as select i from t1;
create view v2 as select j from t2 where j in (select i from t1);
create procedure p1(k int) insert into t2 values (k);
create function f1() returns int
begin
declare j int;
select i from t1 where i = 1 into j;
return j;
end|
create function f2() returns int
begin
declare k int;
select i from t1 where i = 1 into k;
insert into t2 values (k + 5);
return 0;
end|
create function f3() returns int
begin
return (select i from t1 where i = 3);
end|
create function f4() returns int
begin
if (select i from t1 where i = 3) then
return 1;
else
return 0;
end if;
end|
create function f5() returns int
begin
insert into t2 values ((select i from t1 where i = 1) + 5);
return 0;
end|
create function f6() returns int
begin
declare k int;
select i from v1 where i = 1 into k;
return k;
end|
create function f7() returns int
begin
declare k int;
select j from v2 where j = 1 into k;
return k;
end|
create function f8() returns int
begin
declare k int;
select i from v1 where i = 1 into k;
insert into t2 values (k+5);
return k;
end|
create function f9() returns int
begin
update v2 set j=j+10 where j=1;
return 1;
end|
create function f10() returns int
begin
return f1();
end|
create function f11() returns int
begin
declare k int;
set k= f1();
insert into t2 values (k+5);
return k;
end|
create function f12(p int) returns int
begin
insert into t2 values (p);
return p;
end|
create function f13(p int) returns int
begin
return p;
end|
create procedure p2(inout p int)
begin
select i from t1 where i = 1 into p;
end|
create function f14() returns int
begin
declare k int;
call p2(k);
insert into t2 values (k+5);
return k;
end|
create function f15() returns int
begin
declare k int;
call p2(k);
return k;
end|
create function f16() returns int
begin
create temporary table if not exists temp1 (a int);
insert into temp1 select * from t1;
drop temporary table temp1;
return 1;
end|
create function f17() returns int
begin
declare j int;
select i from t1 where i = 1 into j;
call p3;
return 1;
end|
create procedure p3()
begin
create temporary table if not exists temp1 (a int);
insert into temp1 select * from t1;
drop temporary table temp1;
end|
create trigger t4_bi before insert on t4 for each row
begin
declare k int;
select i from t1 where i=1 into k;
set new.l= k+1;
end|
create trigger t4_bu before update on t4 for each row
begin
if (select i from t1 where i=1) then
set new.l= 2;
end if;
end|
create trigger t4_bd before delete on t4 for each row
begin
if !(select i from v1 where i=1) then
signal sqlstate '45000';
end if;
end|
create trigger t5_bi before insert on t5 for each row
begin
set new.l= f1()+1;
end|
create trigger t5_bu before update on t5 for each row
begin
declare j int;
call p2(j);
set new.l= j + 1;
end|
#
# Set common variables to be used by the scripts
# called below.
#
# Switch to connection 'con1'.
# Cache all functions used in the tests below so statements
# calling them won't need to open and lock mysql.proc table
# and we can assume that each statement locks its tables
# once during its execution.
show create procedure p1;
show create procedure p2;
show create procedure p3;
show create function f1;
show create function f2;
show create function f3;
show create function f4;
show create function f5;
show create function f6;
show create function f7;
show create function f8;
show create function f9;
show create function f10;
show create function f11;
show create function f12;
show create function f13;
show create function f14;
show create function f15;
show create function f16;
show create function f17;
# Switch back to connection 'default'.
#
# 1. Statements that read tables and do not use subqueries.
#
#
# 1.1 Simple SELECT statement.
#
# No locks are necessary as this statement won't be written
# to the binary log and thanks to how MyISAM works SELECT
# will see version of the table prior to concurrent insert.
Success: 'select * from t1' allows concurrent inserts into 't1'.
#
# 1.2 Multi-UPDATE statement.
#
# Has to take shared locks on rows in the table being read as this
# statement will be written to the binary log and therefore should
# be serialized with concurrent statements.
Success: 'update t2, t1 set j= j - 1 where i = j' doesn't allow concurrent inserts into 't1'.
#
# 1.3 Multi-DELETE statement.
#
# The above is true for this statement as well.
Success: 'delete t2 from t1, t2 where i = j' doesn't allow concurrent inserts into 't1'.
#
# 1.4 DESCRIBE statement.
#
# This statement does not really read data from the
# target table and thus does not take any lock on it.
# We check this for completeness of coverage.
lock table t1 write;
# Switching to connection 'con1'.
# This statement should not be blocked.
describe t1;
# Switching to connection 'default'.
unlock tables;
#
# 1.5 SHOW statements.
#
# The above is true for SHOW statements as well.
lock table t1 write;
# Switching to connection 'con1'.
# These statements should not be blocked.
show keys from t1;
# Switching to connection 'default'.
unlock tables;
#
# 2. Statements which read tables through subqueries.
#
#
# 2.1 CALL with a subquery.
#
# A strong lock is not necessary as this statement is not
# written to the binary log as a whole (it is written
# statement-by-statement).
Success: 'call p1((select i + 5 from t1 where i = 1))' allows concurrent inserts into 't1'.
#
# 2.2 CREATE TABLE with a subquery.
#
# Has to take a strong lock on the table being read as
# this statement is written to the binary log and therefore
# should be serialized with concurrent statements.
Success: 'create table t0 select * from t1' doesn't allow concurrent inserts into 't1'.
drop table t0;
Success: 'create table t0 select j from t2 where j in (select i from t1)' doesn't allow concurrent inserts into 't1'.
drop table t0;
#
# 2.3 DELETE with a subquery.
#
# The above is true for this statement as well.
Success: 'delete from t2 where j in (select i from t1)' doesn't allow concurrent inserts into 't1'.
#
# 2.4 MULTI-DELETE with a subquery.
#
# Same is true for this statement as well.
Success: 'delete t2 from t3, t2 where k = j and j in (select i from t1)' doesn't allow concurrent inserts into 't1'.
#
# 2.5 DO with a subquery.
#
# A strong lock is not necessary as it is not logged.
Success: 'do (select i from t1 where i = 1)' allows concurrent inserts into 't1'.
#
# 2.6 INSERT with a subquery.
#
# Has to take a strong lock on the table being read as
# this statement is written to the binary log and therefore
# should be serialized with concurrent inserts.
Success: 'insert into t2 select i+5 from t1' doesn't allow concurrent inserts into 't1'.
Success: 'insert into t2 values ((select i+5 from t1 where i = 4))' doesn't allow concurrent inserts into 't1'.
#
# 2.7 LOAD DATA with a subquery.
#
# The above is true for this statement as well.
Success: 'load data infile '../../std_data/rpl_loaddata.dat' into table t2 (@a, @b) set j= @b + (select i from t1 where i = 1)' doesn't allow concurrent inserts into 't1'.
#
# 2.8 REPLACE with a subquery.
#
# Same is true for this statement as well.
Success: 'replace into t2 select i+5 from t1' doesn't allow concurrent inserts into 't1'.
Success: 'replace into t2 values ((select i+5 from t1 where i = 4))' doesn't allow concurrent inserts into 't1'.
#
# 2.9 SELECT with a subquery.
#
# Strong locks are not necessary as this statement is not written
# to the binary log and thanks to how MyISAM works this statement
# sees a version of the table prior to the concurrent insert.
Success: 'select * from t2 where j in (select i from t1)' allows concurrent inserts into 't1'.
#
# 2.10 SET with a subquery.
#
# The same is true for this statement as well.
Success: 'set @a:= (select i from t1 where i = 1)' allows concurrent inserts into 't1'.
#
# 2.11 SHOW with a subquery.
#
# And for this statement too.
Success: 'show tables from test where Tables_in_test = 't2' and (select i from t1 where i = 1)' allows concurrent inserts into 't1'.
Success: 'show columns from t2 where (select i from t1 where i = 1)' allows concurrent inserts into 't1'.
#
# 2.12 UPDATE with a subquery.
#
# Has to take a strong lock on the table being read as
# this statement is written to the binary log and therefore
# should be serialized with concurrent inserts.
Success: 'update t2 set j= j-10 where j in (select i from t1)' doesn't allow concurrent inserts into 't1'.
#
# 2.13 MULTI-UPDATE with a subquery.
#
# Same is true for this statement as well.
Success: 'update t2, t3 set j= j -10 where j=k and j in (select i from t1)' doesn't allow concurrent inserts into 't1'.
#
# 3. Statements which read tables through a view.
#
#
# 3.1 SELECT statement which uses some table through a view.
#
# Since this statement is not written to the binary log and
# an old version of the table is accessible thanks to how MyISAM
# handles concurrent insert, no locking is necessary.
Success: 'select * from v1' allows concurrent inserts into 't1'.
Success: 'select * from v2' allows concurrent inserts into 't1'.
Success: 'select * from t2 where j in (select i from v1)' allows concurrent inserts into 't1'.
Success: 'select * from t3 where k in (select j from v2)' allows concurrent inserts into 't1'.
#
# 3.2 Statements which modify a table and use views.
#
# Since such statements are going to be written to the binary
# log they need to be serialized against concurrent statements
# and therefore should take strong locks on the data read.
Success: 'update t2 set j= j-10 where j in (select i from v1)' doesn't allow concurrent inserts into 't1'.
Success: 'update t3 set k= k-10 where k in (select j from v2)' doesn't allow concurrent inserts into 't1'.
Success: 'update t2, v1 set j= j-10 where j = i' doesn't allow concurrent inserts into 't1'.
Success: 'update v2 set j= j-10 where j = 3' doesn't allow concurrent inserts into 't1'.
#
# 4. Statements which read tables through stored functions.
#
#
# 4.1 SELECT/SET with a stored function which does not
# modify data and uses SELECT in its turn.
#
# There is no need to take strong locks on the table
# being selected from in SF as the call to such function
# won't get into the binary log.
Success: 'select f1()' allows concurrent inserts into 't1'.
Success: 'set @a:= f1()' allows concurrent inserts into 't1'.
#
# 4.2 INSERT (or other statement which modifies data) with
# a stored function which does not modify data and uses
# SELECT.
#
# Since such statement is written to the binary log it should
# be serialized with concurrent statements affecting the data
# it uses. Therefore it should take strong lock on the data
# it reads.
Success: 'insert into t2 values (f1() + 5)' doesn't allow concurrent inserts into 't1'.
#
# 4.3 SELECT/SET with a stored function which
# reads and modifies data.
#
# Since a call to such function is written to the binary log,
# it should be serialized with concurrent statements affecting
# the data it uses. Hence, a strong lock on the data read
# should be taken.
Success: 'select f2()' doesn't allow concurrent inserts into 't1'.
Success: 'set @a:= f2()' doesn't allow concurrent inserts into 't1'.
#
# 4.4. SELECT/SET with a stored function which does not
# modify data and reads a table through subselect
# in a control construct.
#
# Call to this function won't get to the
# binary log and thus no strong lock is needed.
Success: 'select f3()' allows concurrent inserts into 't1'.
Success: 'set @a:= f3()' allows concurrent inserts into 't1'.
Success: 'select f4()' allows concurrent inserts into 't1'.
Success: 'set @a:= f4()' allows concurrent inserts into 't1'.
#
# 4.5. INSERT (or other statement which modifies data) with
# a stored function which does not modify data and reads
# the table through a subselect in one of its control
# constructs.
#
# Since such statement is written to the binary log it should
# be serialized with concurrent statements affecting data it
# uses. Therefore it should take a strong lock on the data
# it reads.
Success: 'insert into t2 values (f3() + 5)' doesn't allow concurrent inserts into 't1'.
Success: 'insert into t2 values (f4() + 6)' doesn't allow concurrent inserts into 't1'.
#
# 4.6 SELECT/SET which uses a stored function with
# DML which reads a table via a subquery.
#
# Since call to such function is written to the binary log
# it should be serialized with concurrent statements.
# Hence reads should take a strong lock.
Success: 'select f5()' doesn't allow concurrent inserts into 't1'.
Success: 'set @a:= f5()' doesn't allow concurrent inserts into 't1'.
#
# 4.7 SELECT/SET which uses a stored function which
# doesn't modify data and reads tables through
# a view.
#
# Calls to such functions won't get into
# the binary log and thus don't need strong
# locks.
Success: 'select f6()' allows concurrent inserts into 't1'.
Success: 'set @a:= f6()' allows concurrent inserts into 't1'.
Success: 'select f7()' allows concurrent inserts into 't1'.
Success: 'set @a:= f7()' allows concurrent inserts into 't1'.
#
# 4.8 INSERT which uses stored function which
# doesn't modify data and reads a table
# through a view.
#
# Since such statement is written to the binary log and
# should be serialized with concurrent statements affecting
# the data it uses. Therefore it should take a strong lock on
# the table it reads.
Success: 'insert into t3 values (f6() + 5)' doesn't allow concurrent inserts into 't1'.
Success: 'insert into t3 values (f7() + 5)' doesn't allow concurrent inserts into 't1'.
#
# 4.9 SELECT which uses a stored function which
# modifies data and reads tables through a view.
#
# Since a call to such function is written to the binary log
# it should be serialized with concurrent statements.
# Hence, reads should take strong locks.
Success: 'select f8()' doesn't allow concurrent inserts into 't1'.
Success: 'select f9()' doesn't allow concurrent inserts into 't1'.
#
# 4.10 SELECT which uses a stored function which doesn't modify
# data and reads a table indirectly, by calling another
# function.
#
# Calls to such functions won't get into the binary
# log and thus don't need to acquire strong locks.
Success: 'select f10()' allows concurrent inserts into 't1'.
#
# 4.11 INSERT which uses a stored function which doesn't modify
# data and reads a table indirectly, by calling another
# function.
#
# Since such statement is written to the binary log, it should
# be serialized with concurrent statements affecting the data it
# uses. Therefore it should take strong locks on data it reads.
Success: 'insert into t2 values (f10() + 5)' doesn't allow concurrent inserts into 't1'.
#
# 4.12 SELECT which uses a stored function which modifies
# data and reads a table indirectly, by calling another
# function.
#
# Since a call to such function is written to the binary log
# it should be serialized from concurrent statements.
# Hence, read should take a strong lock.
Success: 'select f11()' doesn't allow concurrent inserts into 't1'.
#
# 4.13 SELECT that reads a table through a subquery passed
# as a parameter to a stored function which modifies
# data.
#
# Even though a call to this function is written to the
# binary log, values of its parameters are written as literals.
# So there is no need to acquire strong locks for tables used in
# the subquery.
Success: 'select f12((select i+10 from t1 where i=1))' allows concurrent inserts into 't1'.
#
# 4.14 INSERT that reads a table via a subquery passed
# as a parameter to a stored function which doesn't
# modify data.
#
# Since this statement is written to the binary log it should
# be serialized with concurrent statements affecting the data it
# uses. Therefore it should take strong locks on the data it reads.
Success: 'insert into t2 values (f13((select i+10 from t1 where i=1)))' doesn't allow concurrent inserts into 't1'.
#
# 4.15 SELECT/SET with a stored function which
# inserts data into a temporary table using
# SELECT on t1.
#
# Since this statement is written to the binary log it should
# be serialized with concurrent statements affecting the data it
# uses. Therefore it should take strong locks on the data it reads.
Success: 'select f16()' doesn't allow concurrent inserts into 't1'.
Success: 'set @a:= f16()' doesn't allow concurrent inserts into 't1'.
#
# 4.16 SELECT/SET with a stored function which call procedure
# which inserts data into a temporary table using
# SELECT on t1.
#
# Since this statement is written to the binary log it should
# be serialized with concurrent statements affecting the data it
# uses. Therefore it should take strong locks on the data it reads.
Success: 'select f17()' doesn't allow concurrent inserts into 't1'.
Success: 'set @a:= f17()' doesn't allow concurrent inserts into 't1'.
#
# 5. Statements that read tables through stored procedures.
#
#
# 5.1 CALL statement which reads a table via SELECT.
#
# Since neither this statement nor its components are
# written to the binary log, there is no need to take
# strong locks on the data it reads.
Success: 'call p2(@a)' allows concurrent inserts into 't1'.
#
# 5.2 Function that modifies data and uses CALL,
# which reads a table through SELECT.
#
# Since a call to such function is written to the binary
# log, it should be serialized with concurrent statements.
# Hence, in this case reads should take strong locks on data.
Success: 'select f14()' doesn't allow concurrent inserts into 't1'.
#
# 5.3 SELECT that calls a function that doesn't modify data and
# uses a CALL statement that reads a table via SELECT.
#
# Calls to such functions won't get into the binary
# log and thus don't need to acquire strong locks.
Success: 'select f15()' allows concurrent inserts into 't1'.
#
# 5.4 INSERT which calls function which doesn't modify data and
# uses CALL statement which reads table through SELECT.
#
# Since such statement is written to the binary log it should
# be serialized with concurrent statements affecting data it
# uses. Therefore it should take strong locks on data it reads.
Success: 'insert into t2 values (f15()+5)' doesn't allow concurrent inserts into 't1'.
#
# 6. Statements that use triggers.
#
#
# 6.1 Statement invoking a trigger that reads table via SELECT.
#
# Since this statement is written to the binary log it should
# be serialized with concurrent statements affecting the data
# it uses. Therefore, it should take strong locks on the data
# it reads.
Success: 'insert into t4 values (2)' doesn't allow concurrent inserts into 't1'.
#
# 6.2 Statement invoking a trigger that reads table through
# a subquery in a control construct.
#
# The above is true for this statement as well.
Success: 'update t4 set l= 2 where l = 1' doesn't allow concurrent inserts into 't1'.
#
# 6.3 Statement invoking a trigger that reads a table through
# a view.
#
# And for this statement.
Success: 'delete from t4 where l = 1' doesn't allow concurrent inserts into 't1'.
#
# 6.4 Statement invoking a trigger that reads a table through
# a stored function.
#
# And for this statement.
Success: 'insert into t5 values (2)' doesn't allow concurrent inserts into 't1'.
#
# 6.5 Statement invoking a trigger that reads a table through
# stored procedure.
#
# And for this statement.
Success: 'update t5 set l= 2 where l = 1' doesn't allow concurrent inserts into 't1'.
# Clean-up.
drop function f1;
drop function f2;
drop function f3;
drop function f4;
drop function f5;
drop function f6;
drop function f7;
drop function f8;
drop function f9;
drop function f10;
drop function f11;
drop function f12;
drop function f13;
drop function f14;
drop function f15;
drop function f16;
drop function f17;
drop view v1, v2;
drop procedure p1;
drop procedure p2;
drop procedure p3;
drop table t1, t2, t3, t4, t5;
set @@global.concurrent_insert= @old_concurrent_insert;
#
# Test for bug #45143 "All connections hang on concurrent ALTER TABLE".
#
# Concurrent execution of statements which required weak write lock
# (TL_WRITE_ALLOW_WRITE) on several instances of the same table and
# statements which tried to acquire stronger write lock (TL_WRITE,
# TL_WRITE_ALLOW_READ) on this table might have led to deadlock.
drop table if exists t1;
drop view if exists v1;
# Create auxiliary connections used through the test.
# Reset DEBUG_SYNC facility before using it.
set debug_sync= 'RESET';
# Turn off logging so calls to locking subsystem performed
# for general_log table won't interfere with our test.
set @old_general_log = @@global.general_log;
set @@global.general_log= OFF;
create table t1 (i int) engine=InnoDB;
# We have to use view in order to make LOCK TABLES avoid
# acquiring SNRW metadata lock on table.
create view v1 as select * from t1;
insert into t1 values (1);
# Prepare user lock which will be used for resuming execution of
# the first statement after it acquires TL_WRITE_ALLOW_WRITE lock.
select get_lock("lock_bug45143_wait", 0);
get_lock("lock_bug45143_wait", 0)
1
# Switch to connection 'con_bug45143_1'.
# Sending:
insert into t1 values (get_lock("lock_bug45143_wait", 100));;
# Switch to connection 'con_bug45143_2'.
# Wait until the above INSERT takes TL_WRITE_ALLOW_WRITE lock on 't1'
# and then gets blocked on user lock 'lock_bug45143_wait'.
# Ensure that upcoming SELECT waits after acquiring TL_WRITE_ALLOW_WRITE
# lock for the first instance of 't1'.
set debug_sync='thr_multi_lock_after_thr_lock SIGNAL parked WAIT_FOR go';
# Sending:
select count(*) > 0 from t1 as a, t1 as b for update;;
# Switch to connection 'con_bug45143_3'.
# Wait until the above SELECT ... FOR UPDATE is blocked after
# acquiring lock for the the first instance of 't1'.
set debug_sync= 'now WAIT_FOR parked';
# Send LOCK TABLE statement which will try to get TL_WRITE lock on 't1':
lock table v1 write;;
# Switch to connection 'default'.
# Wait until this LOCK TABLES statement starts waiting for table lock.
# Allow SELECT ... FOR UPDATE to resume.
# Since it already has TL_WRITE_ALLOW_WRITE lock on the first instance
# of 't1' it should be able to get lock on the second instance without
# waiting, even although there is another thread which has such lock
# on this table and also there is a thread waiting for a TL_WRITE on it.
set debug_sync= 'now SIGNAL go';
# Switch to connection 'con_bug45143_2'.
# Reap SELECT ... FOR UPDATE
count(*) > 0
1
# Switch to connection 'default'.
# Resume execution of the INSERT statement.
select release_lock("lock_bug45143_wait");
release_lock("lock_bug45143_wait")
1
# Switch to connection 'con_bug45143_1'.
# Reap INSERT statement.
# In Statement and Mixed replication mode we get here "Unsafe
# for binlog" warnings. In row mode there are no warnings.
# Hide the discrepancy.
# Switch to connection 'con_bug45143_3'.
# Reap LOCK TABLES statement.
unlock tables;
# Switch to connection 'default'.
# Do clean-up.
set debug_sync= 'RESET';
set @@global.general_log= @old_general_log;
drop view v1;
drop table t1;
#
# Bug#50821 Deadlock between LOCK TABLES and ALTER TABLE
#
DROP TABLE IF EXISTS t1, t2;
CREATE TABLE t1(id INT);
CREATE TABLE t2(id INT);
# Connection con2
START TRANSACTION;
SELECT * FROM t1;
id
# Connection default
# Sending:
ALTER TABLE t1 ADD COLUMN j INT;
# Connection con2
# This used to cause a deadlock.
INSERT INTO t2 SELECT * FROM t1;
COMMIT;
# Connection default
# Reaping ALTER TABLE t1 ADD COLUMN j INT
DROP TABLE t1, t2;
#
# Bug#51391 Deadlock involving events during rqg_info_schema test
#
CREATE EVENT e1 ON SCHEDULE EVERY 5 HOUR DO SELECT 1;
CREATE EVENT e2 ON SCHEDULE EVERY 5 HOUR DO SELECT 2;
# Connection con1
SET DEBUG_SYNC="before_lock_tables_takes_lock SIGNAL drop WAIT_FOR query";
# Sending:
DROP EVENT e1;;
# Connection default
SET DEBUG_SYNC="now WAIT_FOR drop";
SELECT name FROM mysql.event, INFORMATION_SCHEMA.GLOBAL_VARIABLES
WHERE definer = VARIABLE_VALUE;
name
SET DEBUG_SYNC="now SIGNAL query";
# Connection con1
# Reaping: DROP EVENT t1
# Connection default
DROP EVENT e2;
SET DEBUG_SYNC="RESET";
#
# Bug#55930 Assertion `thd->transaction.stmt.is_empty() ||
# thd->in_sub_stmt || (thd->state..
#
DROP TABLE IF EXISTS t1;
CREATE TABLE t1(a INT) engine=InnoDB;
INSERT INTO t1 VALUES (1), (2);
# Note: This test now provides coverage for the scenario where
# opening of table during analyze phase of OPTIMIZE TABLE
# fails (instead of original coverage for open_ltable() code).
# Connection con1
SET SESSION lock_wait_timeout= 1;
SET DEBUG_SYNC= 'ha_admin_open_ltable SIGNAL opti_recreate WAIT_FOR opti_analyze';
# Sending:
OPTIMIZE TABLE t1;
# Connection con2
SET DEBUG_SYNC= 'now WAIT_FOR opti_recreate';
SET DEBUG_SYNC= 'after_lock_tables_takes_lock SIGNAL thrlock WAIT_FOR release_thrlock';
# Sending:
LOCK TABLES t1 WRITE;
# Connection default
SET DEBUG_SYNC= 'now WAIT_FOR thrlock';
SET DEBUG_SYNC= 'now SIGNAL opti_analyze';
# Connection con1
# Reaping: OPTIMIZE TABLE t1
Table Op Msg_type Msg_text
test.t1 optimize note Table does not support optimize, doing recreate + analyze instead
test.t1 optimize error Lock wait timeout exceeded; try restarting transaction
test.t1 optimize status Operation failed
Warnings:
Error 1205 Lock wait timeout exceeded; try restarting transaction
SET DEBUG_SYNC= 'now SIGNAL release_thrlock';
# Connection con2
# Reaping: LOCK TABLES t1 WRITE
# Connection default
DROP TABLE t1;
SET DEBUG_SYNC= 'RESET';
#
# Bug#57130 crash in Item_field::print during SHOW CREATE TABLE or VIEW
#
DROP TABLE IF EXISTS t1;
DROP VIEW IF EXISTS v1;
DROP FUNCTION IF EXISTS f1;
CREATE TABLE t1(a INT);
CREATE FUNCTION f1() RETURNS INTEGER RETURN 1;
CREATE VIEW v1 AS SELECT * FROM t1 WHERE f1() = 1;
DROP FUNCTION f1;
# Connection con1
SET DEBUG_SYNC= 'open_tables_after_open_and_process_table SIGNAL opened WAIT_FOR dropped EXECUTE 2';
# Sending:
SHOW CREATE VIEW v1;
# Connection con2
SET DEBUG_SYNC= 'now WAIT_FOR opened';
SET DEBUG_SYNC= 'now SIGNAL dropped';
SET DEBUG_SYNC= 'now WAIT_FOR opened';
# Sending:
FLUSH TABLES;
# Connection default
# Waiting for FLUSH TABLES to be blocked.
SET DEBUG_SYNC= 'now SIGNAL dropped';
# Connection con1
# Reaping: SHOW CREATE VIEW v1
View Create View character_set_client collation_connection
v1 CREATE ALGORITHM=UNDEFINED DEFINER=`root`@`localhost` SQL SECURITY DEFINER VIEW `v1` AS select `t1`.`a` AS `a` from `t1` where (`f1`() = 1) latin1 latin1_swedish_ci
Warnings:
Warning 1356 View 'test.v1' references invalid table(s) or column(s) or function(s) or definer/invoker of view lack rights to use them
# Connection con2
# Reaping: FLUSH TABLES
# Connection default
SET DEBUG_SYNC= 'RESET';
DROP VIEW v1;
DROP TABLE t1;
#
#Bug#18110156: RECREATE+ANALYZE OPTIMIZE TABLE T AND ONLINE
# ALTER TABLE T MAY DEADLOCK
CREATE TABLE t1 (fld1 INT) ENGINE=InnoDB;
connection con1;
SET DEBUG_SYNC= 'before_lock_tables_takes_lock SIGNAL before_thr_lock WAIT_FOR do_thr_lock EXECUTE 3';
SET DEBUG_SYNC= 'ha_admin_open_ltable SIGNAL opti_recreate WAIT_FOR opti_analyze';
OPTIMIZE TABLE t1;
connection con2;
# Skip thr_lock acquisition during the initial phase of OPTIMIZE TABLE
SET DEBUG_SYNC= 'now WAIT_FOR before_thr_lock';
SET DEBUG_SYNC= 'now SIGNAL do_thr_lock';
# Skip thr_lock acquisition during the recreate phase of OPTIMIZE TABLE
SET DEBUG_SYNC= 'now WAIT_FOR before_thr_lock';
SET DEBUG_SYNC= 'now SIGNAL do_thr_lock';
SET DEBUG_SYNC= 'now WAIT_FOR opti_recreate';
SET DEBUG_SYNC= 'alter_table_inplace_after_lock_downgrade SIGNAL lock_downgraded
WAIT_FOR finish_alter';
ALTER TABLE t1 ADD INDEX index1(fld1), ALGORITHM=INPLACE, LOCK=NONE;
#Without the patch, the test case hangs.
connection default;
SET DEBUG_SYNC= 'now WAIT_FOR lock_downgraded';
SET DEBUG_SYNC= 'now SIGNAL opti_analyze';
SET DEBUG_SYNC= 'now WAIT_FOR before_thr_lock';
SET DEBUG_SYNC= 'now SIGNAL finish_alter';
SET DEBUG_SYNC= 'now SIGNAL do_thr_lock';
#Reap: OPTIMIZE TABLE t1
connection con1;
Table Op Msg_type Msg_text
test.t1 optimize note Table does not support optimize, doing recreate + analyze instead
test.t1 optimize status OK
#Reap: ALTER TABLE t1
connection con2;
#Clean up.
DROP TABLE t1;
SET DEBUG_SYNC= 'RESET';
#
# Bug#19070633 - POSSIBLE ACCESS TO FREED MEMORY IN IS_FREE_LOCK() AND IS_USED_LOCK().
#
# Verifying issue for IS_FREE_LOCK() function.
SELECT GET_LOCK("lock_19070633", 600);
GET_LOCK("lock_19070633", 600)
1
connect con1, localhost, root,,;
# Waiting after getting user level lock info and releasing mutex.
SET DEBUG_SYNC= 'after_getting_user_level_lock_info SIGNAL parked WAIT_FOR go';
# Sending: SELECT IS_FREE_LOCK("lock_19070633");
SELECT IS_FREE_LOCK("lock_19070633");
connection default;
SET DEBUG_SYNC= 'now WAIT_FOR parked';
SELECT RELEASE_LOCK("lock_19070633");
RELEASE_LOCK("lock_19070633")
1
# Signaling connection con1 after releasing the lock.
# Without fix, accessing user level lock info in con1 would result in
# crash or valgrind issue invalid read is reported.
SET DEBUG_SYNC= 'now SIGNAL go';
connection con1;
# Reaping: SELECT IS_FREE_LOCK("lock_19070633");
IS_FREE_LOCK("lock_19070633")
0
connection default;
# Verifying issue for IS_USED_LOCK() function.
SELECT GET_LOCK("lock_19070633", 600);
GET_LOCK("lock_19070633", 600)
1
connection con1;
# Waiting after getting user level lock info and releasing mutex.
SET DEBUG_SYNC= 'after_getting_user_level_lock_info SIGNAL parked WAIT_FOR go';
# Sending: SELECT IS_USED_LOCK("lock_19070633");
SELECT IS_USED_LOCK("lock_19070633");
connection default;
SET DEBUG_SYNC= 'now WAIT_FOR parked';
SELECT RELEASE_LOCK("lock_19070633");
RELEASE_LOCK("lock_19070633")
1
# Signaling connection con1 after releasing the lock.
# Without fix, accessing user level lock info in con1 would result in
# crash or valgrind issue invalid read is reported.
SET DEBUG_SYNC= 'now SIGNAL go';
connection con1;
# Reaping: SELECT IS_USED_LOCK("lock_19070633");
IS_USED_LOCK("lock_19070633")
#
connection default;
SET DEBUG_SYNC= 'RESET';
disconnect con1;
|