/usr/bin/pegasus-statistics is in pegasus-wms 4.4.0+dfsg-5.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 | #!/usr/bin/env python
import os
import re
import sys
import logging
import optparse
import subprocess
import traceback
# Initialize logging object
logger = logging.getLogger()
# Use pegasus-config to find our lib path
bin_dir = os.path.normpath(os.path.join(os.path.dirname(sys.argv[0])))
pegasus_config = os.path.join(bin_dir, "pegasus-config") + " --noeoln --python"
lib_dir = subprocess.Popen(pegasus_config, stdout=subprocess.PIPE, shell=True).communicate()[0]
pegasus_config = os.path.join(bin_dir, "pegasus-config") + " --noeoln --python-externals"
lib_ext_dir = subprocess.Popen(pegasus_config, stdout=subprocess.PIPE, shell=True).communicate()[0]
# Insert this directory in our search path
os.sys.path.insert(0, lib_ext_dir)
os.sys.path.insert(0, lib_dir)
from Pegasus.tools import utils
from Pegasus.tools import db_utils
from Pegasus.plots_stats import utils as stats_utils
from Pegasus.netlogger.analysis.workflow.stampede_statistics import StampedeStatistics
from Pegasus.netlogger.analysis.workflow.stampede_wf_statistics import StampedeWorkflowStatistics
from Pegasus.netlogger.analysis.schema.schema_check import SchemaVersionError
# Not unused. Logging get initialized
import Pegasus.common
# Regular expressions
re_parse_property = re.compile(r'([^:= \t]+)\s*[:=]?\s*(.*)')
workflow_summary_file_name = "summary"
workflow_summary_time_file_name = "summary-time"
workflow_statistics_file_name = "workflow"
job_statistics_file_name = "jobs"
logical_transformation_statistics_file_name = "breakdown"
time_statistics_file_name = "time"
time_statistics_per_host_file_name = "time-per-host"
text_file_extension = ".txt"
csv_file_extension = ".csv"
calc_wf_stats = False
calc_wf_summary = False
calc_jb_stats = False
calc_tf_stats = False
calc_ti_stats = False
time_filter = None
NEW_LINE_STR = "\n"
DEFAULT_OUTPUT_DIR = "statistics"
FILE_TYPE_TXT='text'
FILE_TYPE_CSV='csv'
uses_PMC=False
# Transformations file column names
transformation_stats_col_name_text = ["Transformation", "Count", "Succeeded", "Failed", "Min", "Max", "Mean", "Total"]
transformation_stats_col_name_csv = ["Workflow_Id", "Dax_Label", "Transformation", "Count", "Succeeded", "Failed", "Min", "Max", "Mean", "Total"]
transformation_stats_col_size = [25, 10, 10, 8, 10, 10, 10, 10]
# Jobs file column names
job_stats_col_name_text = ['Job', 'Try', 'Site', 'Kickstart', 'Mult', 'Kickstart-Mult', 'CPU-Time', 'Post', 'CondorQTime', 'Resource', 'Runtime', 'Seqexec', 'Seqexec-Delay', 'Exitcode', 'Hostname']
job_stats_col_name_csv = ['Workflow_Id', 'Dax_Label', 'Job', 'Try', 'Site', 'Kickstart', 'Mult', 'Kickstart-Mult', 'CPU-Time', 'Post', 'CondorQTime', 'Resource', 'Runtime', 'Seqexec', 'Seqexec-Delay', 'Exitcode', 'Hostname']
job_stats_col_size = [35, 4, 12, 12, 6, 16, 12, 6, 12, 12, 12, 12, 15, 10, 30]
# Summary file column names
workflow_summary_col_name_csv = ["Type", "Succeeded", "Failed", "Incomplete", "Total", "Retries", "Total+Retries"]
workflow_summary_col_name_text = ["Type", "Succeeded", "Failed", "Incomplete", "Total", "Retries", "Total+Retries"]
workflow_summary_col_size = [15, 10, 8, 12, 10, 10, 13]
workflow_time_summary_col_name_csv = ["stat_type", "time_seconds"]
# Workflow file column names
workflow_status_col_name_text = ["Type","Succeeded","Failed","Incomplete","Total","Retries","Total+Retries","WF Retries"]
workflow_status_col_name_csv = ["Workflow_Id","Dax_Label","Type","Succeeded","Failed","Incomplete","Total","Retries","Total+Retries","WF_Retries"]
workflow_status_col_size = [15, 11, 10, 12, 10, 10, 15, 10]
# Time file column names
time_stats_col_name_csv = ["stat_type", "date", "count", "runtime (sec)"]
time_stats_col_name_text = ["Date", "Count", "Runtime (sec)"]
time_stats_col_size = [30, 20, 20]
time_host_stats_col_name_csv = ["stat_type", "date", "host", "count", "runtime (sec)"]
time_host_stats_col_name_text = ["Date", "Host", "Count", "Runtime (sec)"]
time_host_stats_col_size = [23, 25, 10, 20]
class JobStatistics:
def __init__(self):
self.name = None
self.site = None
self.kickstart = None
self.multiplier_factor = None
self.kickstart_mult = None
self.remote_cpu_time = None
self.post = None
self.condor_delay = None
self.resource = None
self.runtime = None
self.condorQlen =None
self.seqexec = None
self.seqexec_delay = None
self.retry_count = 0
self.exitcode = None
self.hostname = None
def getFormattedJobStatistics(self):
return [
self.name,
str(self.retry_count),
self.site or '-',
fstr(self.kickstart),
str(self.multiplier_factor),
fstr(self.kickstart_mult),
fstr(self.remote_cpu_time),
fstr(self.post),
fstr(self.condor_delay),
fstr(self.resource),
fstr(self.runtime),
fstr(self.seqexec),
fstr(self.seqexec_delay),
str(self.exitcode),
self.hostname
]
def formatted_wf_summary_legends_part1():
return """
#
# Pegasus Workflow Management System - http://pegasus.isi.edu
#
# Workflow summary:
# Summary of the workflow execution. It shows total
# tasks/jobs/sub workflows run, how many succeeded/failed etc.
# In case of hierarchical workflow the calculation shows the
# statistics across all the sub workflows.It shows the following
# statistics about tasks, jobs and sub workflows.
# * Succeeded - total count of succeeded tasks/jobs/sub workflows.
# * Failed - total count of failed tasks/jobs/sub workflows.
# * Incomplete - total count of tasks/jobs/sub workflows that are
# not in succeeded or failed state. This includes all the jobs
# that are not submitted, submitted but not completed etc. This
# is calculated as difference between 'total' count and sum of
# 'succeeded' and 'failed' count.
# * Total - total count of tasks/jobs/sub workflows.
# * Retries - total retry count of tasks/jobs/sub workflows.
# * Total+Retries - total count of tasks/jobs/sub workflows executed
# during workflow run. This is the cumulative of retries,
# succeeded and failed count."""
def formatted_wf_summary_legends_part2():
return """
# Workflow wall time:
# The walltime from the start of the workflow execution to the end as
# reported by the DAGMAN.In case of rescue dag the value is the
# cumulative of all retries.
# Workflow cumulative job wall time:
# The sum of the walltime of all jobs as reported by kickstart.
# In case of job retries the value is the cumulative of all retries.
# For workflows having sub workflow jobs (i.e SUBDAG and SUBDAX jobs),
# the walltime value includes jobs from the sub workflows as well.
# Cumulative job walltime as seen from submit side:
# The sum of the walltime of all jobs as reported by DAGMan.
# This is similar to the regular cumulative job walltime, but includes
# job management overhead and delays. In case of job retries the value
# is the cumulative of all retries. For workflows having sub workflow
# jobs (i.e SUBDAG and SUBDAX jobs), the walltime value includes jobs
# from the sub workflows as well."""
def formatted_wf_summary_legends_txt():
return formatted_wf_summary_legends_part1() + formatted_wf_summary_legends_part2()
def formatted_wf_summary_legends_csv1():
return formatted_wf_summary_legends_part1()
def formatted_wf_summary_legends_csv2():
return formatted_wf_summary_legends_part2()
def formatted_wf_status_legends():
return """
# Workflow summary
# Summary of the workflow execution. It shows total
# tasks/jobs/sub workflows run, how many succeeded/failed etc.
# In case of hierarchical workflow the calculation shows the
# statistics of each individual sub workflow.The file also
# contains a 'Total' table at the bottom which is the cummulative
# of all the individual statistics details.t shows the following
# statistics about tasks, jobs and sub workflows.
#
# * WF Retries - number of times a workflow was retried.
# * Succeeded - total count of succeeded tasks/jobs/sub workflows.
# * Failed - total count of failed tasks/jobs/sub workflows.
# * Incomplete - total count of tasks/jobs/sub workflows that are
# not in succeeded or failed state. This includes all the jobs
# that are not submitted, submitted but not completed etc. This
# is calculated as difference between 'total' count and sum of
# 'succeeded' and 'failed' count.
# * Total - total count of tasks/jobs/sub workflows.
# * Retries - total retry count of tasks/jobs/sub workflows.
# * Total+Retries - total count of tasks/jobs/sub workflows executed
# during workflow run. This is the cumulative of retries,
# succeeded and failed count.
#
"""
def formatted_job_stats_legends():
return """
# Job - name of the job
# Try - number representing the job instance run count
# Site - site where the job ran
# Kickstart - actual duration of the job instance in seconds on the
# remote compute node
# Mult - multiplier factor specified by the user
# Kickstart-Mult - Kickstart time multiplied by the multiplier factor
# CPU-Time - remote cpu time computed as the stime + utime
# Post - postscript time as reported by DAGMan
# CondorQTime - time between submission by DAGMan and the remote Grid
# submission. It is an estimate of the time spent in the
# condor q on the submit node
# Resource - time between the remote Grid submission and start of
# remote execution. It is an estimate of the time job
# spent in the remote queue
# Runtime - time spent on the resource as seen by Condor DAGMan.
# Is always >= Kickstart
# Seqexec - time taken for the completion of a clustered job
# Seqexec-Delay - time difference between the time for the completion
# of a clustered job and sum of all the individual
# tasks Kickstart time
# Exitcode - exitcode for this job
# Hostname - name of the host where the job ran, as reported by
# Kickstart"""
def formatted_transformation_stats_legends():
return """
# Transformation - name of the transformation.
# Count - the number of times the invocations corresponding to
# the transformation was executed.
# Succeeded - the count of the succeeded invocations corresponding
# to the transformation.
# Failed - the count of the failed invocations corresponding to
# the transformation.
# Min(sec) - the minimum invocation runtime value corresponding
# to the transformation.
# Max(sec) - the maximum invocation runtime value corresponding
# to the transformation.
# Mean(sec) - the mean of the invocation runtime corresponding
# to the transformation.
# Total(sec) - the cumulative of invocation runtime corresponding
# to the transformation."""
def formatted_time_stats_legends_text():
return """
# Job instance statistics per FILTER:
# the number of job instances run, total runtime sorted by FILTER
# Invocation statistics per FILTER:
# the number of invocations , total runtime sorted by FILTER
# Job instance statistics by host per FILTER:
# the number of job instance run, total runtime on each host sorted by FILTER
# Invocation by host per FILTER:
# the number of invocations, total runtime on each host sorted by FILTER
""".replace("FILTER", str(time_filter))
def formatted_time_stats_legends_csv():
return """
# Job instance statistics per FILTER:
# the number of job instances run, total runtime sorted by FILTER
# Invocation statistics per FILTER:
# the number of invocations , total runtime sorted by FILTER
""".replace("FILTER", str(time_filter))
def formatted_time_host_stats_legends_csv():
return """
# Job instance statistics by host per FILTER:
# the number of job instance run, total runtime on each host sorted by FILTER
# Invocation by host per FILTER:
# the number of invocations, total runtime on each host sorted by FILTER
""".replace("FILTER", str(time_filter))
def write_to_file(file_path, mode, content):
"""
Utility method for writing content to a given file
@param file_path : file path
@param mode : file writing mode 'a' append , 'w' write
@param content : content to write to file
"""
try:
fh = open(file_path, mode)
fh.write(content)
except IOError:
logger.error("Unable to write to file " + file_path)
sys.exit(1)
else:
fh.close()
def format_seconds(duration):
"""
Utility for converting time to a readable format
@param duration : time in seconds and miliseconds
@return time in format day,hour, min,sec
"""
return stats_utils.format_seconds(duration)
def istr(value):
"""
Utility for returning a str representation of the given value.
Return '-' if value is None
@parem value : the given value that need to be converted to string
"""
if value is None:
return '-'
return str(value)
def fstr(value, to=3):
"""
Utility method for rounding the float value to rounded string
@param value : value to round
@param to : how many decimal points to round to
"""
if value is None:
return '-'
return stats_utils.round_decimal_to_str(value,to)
def print_row(row, sizes, fmt):
"""
Utility method for generating formatted row based on the column format given
row : list of column values
sizes : list of column widths for text format
fmt : format of the row ('text' or 'csv')
"""
if fmt in ["text","txt"]:
return "".join(value.ljust(sizes[i]) for i,value in enumerate(row))
elif fmt == "csv":
return ",".join(row)
else:
print "Output format %s not recognized!" % fmt
sys.exit(1)
def print_workflow_details(output_db_url, wf_uuid, output_dir, multiple_wf=False):
"""
Prints the workflow statistics information of all workflows
@param output_db_url : URL of stampede DB
@param wf_uuid : uuid of the top level workflow
@param output_dir : directory to write output files
"""
try:
if multiple_wf:
expanded_workflow_stats = StampedeWorkflowStatistics(output_db_url)
else:
expanded_workflow_stats = StampedeStatistics(output_db_url)
expanded_workflow_stats.initialize(wf_uuid)
except SchemaVersionError:
logger.error("------------------------------------------------------")
logger.error("Database schema mismatch! Please run the upgrade tool")
logger.error("to upgrade the database to the latest schema version.")
sys.exit(1)
except:
logger.error("Failed to load the database." + output_db_url )
logger.warning(traceback.format_exc())
sys.exit(1)
# print workflow statistics
if multiple_wf:
wf_uuid_list = []
desc_wf_uuid_list = expanded_workflow_stats.get_workflow_ids()
else:
wf_uuid_list = [wf_uuid]
desc_wf_uuid_list = expanded_workflow_stats.get_descendant_workflow_ids()
for wf_det in desc_wf_uuid_list:
wf_uuid_list.append(wf_det.wf_uuid)
if calc_wf_stats:
if file_type == FILE_TYPE_TXT:
wf_stats_file_txt = os.path.join(output_dir, workflow_statistics_file_name + text_file_extension)
write_to_file(wf_stats_file_txt, "w", formatted_wf_status_legends())
header = print_row(workflow_status_col_name_text, workflow_status_col_size, "text")
write_to_file(wf_stats_file_txt, "a", header)
if file_type == FILE_TYPE_CSV:
wf_stats_file_csv = os.path.join(output_dir, workflow_statistics_file_name + csv_file_extension)
write_to_file(wf_stats_file_csv, "w", formatted_wf_status_legends())
header = print_row(workflow_status_col_name_csv, workflow_status_col_size, "csv")
write_to_file(wf_stats_file_csv, "a", header)
if calc_jb_stats:
jobs_stats_file_txt = os.path.join(output_dir, job_statistics_file_name + text_file_extension)
if file_type == FILE_TYPE_TXT:
write_to_file(jobs_stats_file_txt, "w", formatted_job_stats_legends())
jobs_stats_file_csv = os.path.join(output_dir, job_statistics_file_name + csv_file_extension)
if file_type == FILE_TYPE_CSV:
write_to_file(jobs_stats_file_csv, "w", formatted_job_stats_legends())
if calc_tf_stats:
if file_type == FILE_TYPE_TXT:
transformation_stats_file_txt = os.path.join(output_dir, logical_transformation_statistics_file_name + text_file_extension)
write_to_file(transformation_stats_file_txt, "w", formatted_transformation_stats_legends())
if file_type == FILE_TYPE_CSV:
transformation_stats_file_csv = os.path.join(output_dir, logical_transformation_statistics_file_name + csv_file_extension)
write_to_file(transformation_stats_file_csv, "w", formatted_transformation_stats_legends())
if calc_ti_stats:
time_stats_file_txt = os.path.join(output_dir, time_statistics_file_name + text_file_extension)
if file_type == FILE_TYPE_TXT:
write_to_file(time_stats_file_txt, "w", formatted_time_stats_legends_text())
content = print_statistics_by_time_and_host(expanded_workflow_stats, "text", combined=True, per_host=True)
write_to_file(time_stats_file_txt, "a", content)
time_stats_file_csv = os.path.join(output_dir, time_statistics_file_name + csv_file_extension)
if file_type == FILE_TYPE_CSV:
write_to_file(time_stats_file_csv, "w", formatted_time_stats_legends_csv())
content = print_statistics_by_time_and_host(expanded_workflow_stats, "csv", combined=True, per_host=False)
write_to_file(time_stats_file_csv, "a", content)
time_stats_file2_csv = os.path.join(output_dir, time_statistics_per_host_file_name + csv_file_extension)
write_to_file(time_stats_file2_csv, "w", formatted_time_host_stats_legends_csv())
content = print_statistics_by_time_and_host(expanded_workflow_stats, "csv", combined=False, per_host=True)
write_to_file(time_stats_file2_csv, "a", content)
if calc_jb_stats or calc_tf_stats or calc_wf_stats:
for sub_wf_uuid in wf_uuid_list:
try:
individual_workflow_stats = StampedeStatistics(output_db_url, False)
individual_workflow_stats.initialize(sub_wf_uuid)
except SchemaVersionError:
logger.error("------------------------------------------------------")
logger.error("Database schema mismatch! Please run the upgrade tool")
logger.error("to upgrade the database to the latest schema version.")
sys.exit(1)
except:
logger.error("Failed to load the database." + output_db_url )
logger.warning(traceback.format_exc())
sys.exit(1)
wf_det = individual_workflow_stats.get_workflow_details()[0]
workflow_id = str(sub_wf_uuid)
dax_label = str(wf_det.dax_label)
logger.info("Generating statistics information about the workflow " + workflow_id + " ... ")
if calc_jb_stats:
logger.debug("Generating job instance statistics information for workflow " + workflow_id + " ... ")
individual_workflow_stats.set_job_filter('all')
if file_type == FILE_TYPE_TXT:
content = print_individual_wf_job_stats(individual_workflow_stats, workflow_id, dax_label, "text")
write_to_file(jobs_stats_file_txt, "a", content)
if file_type == FILE_TYPE_CSV:
content = print_individual_wf_job_stats(individual_workflow_stats, workflow_id, dax_label, "csv")
write_to_file(jobs_stats_file_csv, "a", content)
if calc_tf_stats:
logger.debug("Generating invocation statistics information for workflow " + workflow_id + " ... ")
individual_workflow_stats.set_job_filter('all')
if file_type == FILE_TYPE_TXT:
content = print_wf_transformation_stats(individual_workflow_stats, workflow_id, dax_label, "text")
write_to_file(transformation_stats_file_txt, "a", content)
if file_type == FILE_TYPE_CSV:
content = print_wf_transformation_stats(individual_workflow_stats, workflow_id, dax_label, "csv")
write_to_file(transformation_stats_file_csv, "a", content)
if calc_wf_stats:
logger.debug("Generating workflow statistics information for workflow " +
workflow_id + " ... ")
individual_workflow_stats.set_job_filter('all')
# Write text file
if file_type == FILE_TYPE_TXT:
content = print_individual_workflow_stats(individual_workflow_stats, workflow_id, dax_label, "text")
write_to_file(wf_stats_file_txt, "a", content)
# Write csv file
if file_type == FILE_TYPE_CSV:
content = print_individual_workflow_stats(individual_workflow_stats, workflow_id, dax_label, "csv")
write_to_file(wf_stats_file_csv, "a", content)
individual_workflow_stats.close()
stats_output = ""
if calc_wf_summary:
logger.info("Generating workflow summary ... ")
if file_type == FILE_TYPE_TXT:
summary_output = formatted_wf_summary_legends_txt()
summary_output += NEW_LINE_STR
summary_output += print_workflow_summary(expanded_workflow_stats, "text", wf_summary=True, time_summary=True, multiple_wf=multiple_wf)
wf_summary_file_txt = os.path.join(output_dir, workflow_summary_file_name + text_file_extension)
write_to_file(wf_summary_file_txt, "w", summary_output)
stats_output += summary_output + "\n"
stats_output += "%-30s: %s\n" % ("Summary", wf_summary_file_txt)
if file_type == FILE_TYPE_CSV:
# Generate the first csv summary file
summary_output = formatted_wf_summary_legends_csv1()
summary_output += NEW_LINE_STR
summary_output += print_workflow_summary(expanded_workflow_stats, "csv", wf_summary=True, time_summary=False, multiple_wf=multiple_wf)
wf_summary_file_csv = os.path.join(output_dir, workflow_summary_file_name + csv_file_extension)
write_to_file(wf_summary_file_csv, "w", summary_output)
stats_output += "%-30s: %s\n" % ("Summary:", wf_summary_file_csv)
# Generate the second csv summary file
summary_output = formatted_wf_summary_legends_csv2()
summary_output += NEW_LINE_STR
summary_output += print_workflow_summary(expanded_workflow_stats, "csv", wf_summary=False, time_summary=True, multiple_wf=multiple_wf)
wf_summary_file2_csv = os.path.join(output_dir, workflow_summary_time_file_name + csv_file_extension)
write_to_file(wf_summary_file2_csv, "w", summary_output)
stats_output += "%-30s: %s\n" % ("Summary Time:", wf_summary_file2_csv)
if calc_wf_stats:
stats_output += "%-30s: " % "Workflow execution statistics"
if file_type == FILE_TYPE_TXT:
content = print_individual_workflow_stats(expanded_workflow_stats , "All Workflows", "", "text")
write_to_file(wf_stats_file_txt, "a" , content)
stats_output += wf_stats_file_txt +"\n"
if file_type == FILE_TYPE_CSV:
content = print_individual_workflow_stats(expanded_workflow_stats , "ALL", "", "csv")
write_to_file(wf_stats_file_csv, "a" , content)
stats_output += wf_stats_file_csv +"\n"
if calc_jb_stats:
stats_output += "%-30s: " % "Job instance statistics"
if file_type == FILE_TYPE_TXT:
stats_output += jobs_stats_file_txt +"\n"
if file_type == FILE_TYPE_CSV:
stats_output += jobs_stats_file_csv +"\n"
if calc_tf_stats:
expanded_workflow_stats.set_job_filter('all')
stats_output += "%-30s: " % "Transformation statistics"
if file_type == FILE_TYPE_TXT:
content = print_wf_transformation_stats(expanded_workflow_stats , "All", "", "text")
write_to_file(transformation_stats_file_txt, "a" , content)
stats_output += transformation_stats_file_txt +"\n"
if file_type == FILE_TYPE_CSV:
content = print_wf_transformation_stats(expanded_workflow_stats , "ALL", "", "csv")
write_to_file(transformation_stats_file_csv, "a" , content)
stats_output += transformation_stats_file_csv +"\n"
if calc_ti_stats:
stats_output += "%-30s: " % "Time statistics"
if file_type == FILE_TYPE_TXT:
stats_output += time_stats_file_txt +"\n"
if file_type == FILE_TYPE_CSV:
stats_output += time_stats_file_csv +"\n"
expanded_workflow_stats.close()
print stats_output
def print_workflow_summary(workflow_stats, output_format, wf_summary=True, time_summary=True, multiple_wf=False):
"""
Prints the workflow statistics summary of an top level workflow
@param workflow_stats : workflow statistics object reference
"""
summary_str = ""
if wf_summary == True:
# status
workflow_stats.set_job_filter('nonsub')
# Tasks
total_tasks = workflow_stats.get_total_tasks_status()
total_succeeded_tasks = workflow_stats.get_total_succeeded_tasks_status(uses_PMC)
total_failed_tasks = workflow_stats.get_total_failed_tasks_status()
total_unsubmitted_tasks = total_tasks - (total_succeeded_tasks + total_failed_tasks)
total_task_retries = workflow_stats.get_total_tasks_retries()
total_invocations = total_succeeded_tasks + total_failed_tasks + total_task_retries
# Jobs
total_jobs = workflow_stats.get_total_jobs_status()
total_succeeded_failed_jobs = workflow_stats.get_total_succeeded_failed_jobs_status()
total_succeeded_jobs = total_succeeded_failed_jobs.succeeded
total_failed_jobs = total_succeeded_failed_jobs.failed
total_unsubmitted_jobs = total_jobs - (total_succeeded_jobs + total_failed_jobs)
total_job_retries = workflow_stats.get_total_jobs_retries()
total_job_instance_retries = total_succeeded_jobs + total_failed_jobs + total_job_retries
# Sub workflows
workflow_stats.set_job_filter('subwf')
total_sub_wfs = workflow_stats.get_total_jobs_status()
total_succeeded_failed_sub_wfs = workflow_stats.get_total_succeeded_failed_jobs_status()
total_succeeded_sub_wfs = total_succeeded_failed_sub_wfs.succeeded
total_failed_sub_wfs = total_succeeded_failed_sub_wfs.failed
#for non hierarichal workflows the combined query can return none
if total_succeeded_sub_wfs is None:
total_succeeded_sub_wfs = 0
if total_failed_sub_wfs is None:
total_failed_sub_wfs = 0
total_unsubmitted_sub_wfs = total_sub_wfs - (total_succeeded_sub_wfs + total_failed_sub_wfs)
total_sub_wfs_retries = workflow_stats.get_total_jobs_retries()
total_sub_wfs_tries = total_succeeded_sub_wfs + total_failed_sub_wfs + total_sub_wfs_retries
# Format the output
if output_format == "text":
summary_str += "".center(sum(workflow_summary_col_size), '-') + "\n"
summary_str += print_row(workflow_summary_col_name_text, workflow_summary_col_size, output_format) + "\n"
else:
summary_str += print_row(workflow_summary_col_name_csv, workflow_summary_col_size, output_format) + "\n"
content = ["Tasks", istr(total_succeeded_tasks), istr(total_failed_tasks),
istr(total_unsubmitted_tasks), istr(total_tasks),
istr(total_task_retries), istr(total_invocations)]
summary_str += print_row(content, workflow_summary_col_size, output_format) + "\n"
content = ["Jobs", istr(total_succeeded_jobs), istr(total_failed_jobs),
istr(total_unsubmitted_jobs), istr(total_jobs),
str(total_job_retries), istr(total_job_instance_retries)]
summary_str += print_row(content, workflow_summary_col_size, output_format) + "\n"
content = ["Sub-Workflows", istr(total_succeeded_sub_wfs),
istr(total_failed_sub_wfs), istr(total_unsubmitted_sub_wfs),
istr(total_sub_wfs), str(total_sub_wfs_retries), istr(total_sub_wfs_tries)]
summary_str += print_row(content, workflow_summary_col_size, output_format) + "\n"
if output_format == "text":
summary_str += "".center(sum(workflow_summary_col_size), '-') + "\n\n"
if time_summary == True:
states = workflow_stats.get_workflow_states()
wwt = stats_utils.get_workflow_wall_time(states)
wcjwt = workflow_stats.get_workflow_cum_job_wall_time()
ssjwt = workflow_stats.get_submit_side_job_wall_time()
if output_format == "text":
def myfmt(val):
if val is None: return "-"
else: return format_seconds(val)
if not multiple_wf:
summary_str += "%-49s: %s\n" % ("Workflow wall time", myfmt(wwt))
summary_str += "%-49s: %s\n" % ("Workflow cumulative job wall time", myfmt(wcjwt))
summary_str += "%-49s: %s\n" % ("Cumulative job walltime as seen from submit side", myfmt(ssjwt))
else:
def myfmt(val):
if val is None: return ""
else: return str(val)
summary_str += print_row(workflow_time_summary_col_name_csv, None, output_format) + "\n"
summary_str += "workflow_wall_time,%s\n" % myfmt(wwt)
summary_str += "workflow_cumulative_job_wall_time,%s\n" % myfmt(wcjwt)
summary_str += "cumulative_job_walltime_from_submit_side,%s\n" % myfmt(ssjwt)
return summary_str
def print_individual_workflow_stats(workflow_stats, workflow_id, dax_label, output_format):
"""
Prints the workflow statistics of workflow
@param workflow_stats : workflow statistics object reference
@param workflow_id : workflow_id (title of the workflow table)
"""
content_str = "\n"
# individual workflow status
# Add dax_label to workflow_id if writing text file
if output_format == "text" and dax_label != "":
workflow_id = workflow_id + " (" + dax_label +")"
# workflow status
workflow_stats.set_job_filter('all')
total_wf_retries = workflow_stats.get_workflow_retries()
# only used for the text output...
content = [workflow_id, istr(total_wf_retries)]
retry_col_size = workflow_status_col_size[len(workflow_status_col_size) - 1]
wf_status_str = print_row(content,
[sum(workflow_status_col_size) - retry_col_size, retry_col_size],
output_format)
# tasks
workflow_stats.set_job_filter('nonsub')
total_tasks = workflow_stats.get_total_tasks_status()
total_succeeded_tasks = workflow_stats.get_total_succeeded_tasks_status(uses_PMC)
total_failed_tasks = workflow_stats.get_total_failed_tasks_status()
total_unsubmitted_tasks = total_tasks - (total_succeeded_tasks + total_failed_tasks)
total_task_retries = workflow_stats.get_total_tasks_retries()
total_task_invocations = total_succeeded_tasks + total_failed_tasks + total_task_retries
if output_format == "text":
content = ["Tasks", istr(total_succeeded_tasks),
istr(total_failed_tasks), istr(total_unsubmitted_tasks), istr(total_tasks),
istr(total_task_retries), istr(total_task_invocations), ""]
else:
content = [workflow_id, dax_label, "Tasks", istr(total_succeeded_tasks),
istr(total_failed_tasks), istr(total_unsubmitted_tasks), istr(total_tasks),
istr(total_task_retries), istr(total_task_invocations), istr(total_wf_retries)]
tasks_status_str = print_row(content, workflow_status_col_size, output_format)
# job status
workflow_stats.set_job_filter('nonsub')
total_jobs = workflow_stats.get_total_jobs_status()
tmp = workflow_stats.get_total_succeeded_failed_jobs_status()
total_succeeded_jobs = tmp.succeeded
total_failed_jobs = tmp.failed
total_unsubmitted_jobs = total_jobs - (total_succeeded_jobs + total_failed_jobs)
total_job_retries = workflow_stats.get_total_jobs_retries()
total_job_invocations = total_succeeded_jobs + total_failed_jobs + total_job_retries
if output_format == "text":
content = ["Jobs", istr(total_succeeded_jobs), istr(total_failed_jobs),
istr(total_unsubmitted_jobs), istr(total_jobs),
istr(total_job_retries), istr(total_job_invocations), ""]
else:
content = [workflow_id, dax_label, "Jobs", istr(total_succeeded_jobs),
istr(total_failed_jobs),
istr(total_unsubmitted_jobs), istr(total_jobs),
istr(total_job_retries), istr(total_job_invocations),
istr(total_wf_retries)]
jobs_status_str = print_row(content, workflow_status_col_size, output_format)
# sub workflow
workflow_stats.set_job_filter('subwf')
total_sub_wfs = workflow_stats.get_total_jobs_status()
tmp = workflow_stats.get_total_succeeded_failed_jobs_status()
total_succeeded_sub_wfs = 0
if tmp.succeeded:
total_succeeded_sub_wfs = tmp.succeeded
total_failed_sub_wfs = 0
if tmp.failed:
total_failed_sub_wfs = tmp.failed
total_unsubmitted_sub_wfs = total_sub_wfs - (total_succeeded_sub_wfs + total_failed_sub_wfs)
total_sub_wfs_retries = workflow_stats.get_total_jobs_retries()
total_sub_wfs_invocations = total_succeeded_sub_wfs + total_failed_sub_wfs + total_sub_wfs_retries
if output_format == "text":
content = ["Sub Workflows", istr(total_succeeded_sub_wfs),
istr(total_failed_sub_wfs), istr(total_unsubmitted_sub_wfs),
istr(total_sub_wfs), istr(total_sub_wfs_retries),
istr(total_sub_wfs_invocations), ""]
else:
content = [workflow_id, dax_label, "Sub_Workflows", istr(total_succeeded_sub_wfs),
istr(total_failed_sub_wfs), istr(total_unsubmitted_sub_wfs),
istr(total_sub_wfs), istr(total_sub_wfs_retries),
istr(total_sub_wfs_invocations), istr(total_wf_retries)]
sub_wf_status_str = print_row(content, workflow_status_col_size, output_format)
if output_format == "text":
# Only print these in the text format output
content_str += "".center(sum(workflow_status_col_size), '-') + "\n"
content_str += wf_status_str + "\n"
content_str += tasks_status_str + "\n"
content_str += jobs_status_str + "\n"
content_str += sub_wf_status_str + "\n"
return content_str
def print_individual_wf_job_stats(workflow_stats, workflow_id, dax_label, output_format):
"""
Prints the job statistics of workflow
@param workflow_stats : workflow statistics object reference
@param workflow_id : workflow_id (title for the table)
"""
job_stats_dict = {}
job_stats_list = []
job_retry_count_dict = {}
# Add dax_label to workflow_id if writing text file
if output_format == "text":
workflow_id = workflow_id + " (" + dax_label +")"
if output_format == "text":
job_status_str = "\n# " + workflow_id + "\n"
else:
job_status_str = "\n"
if output_format == "text":
max_length = [max(0, len (i)) for i in job_stats_col_name_text]
wf_job_stats_list = workflow_stats.get_job_statistics()
# Go through each job in the workflow
for job in wf_job_stats_list:
job_stats = JobStatistics()
job_stats.name = job.job_name
job_stats.site = job.site
job_stats.kickstart = job.kickstart
job_stats.multiplier_factor = job.multiplier_factor
job_stats.kickstart_mult = job.kickstart_multi
job_stats.remote_cpu_time = job.remote_cpu_time
job_stats.post = job.post_time
job_stats.runtime = job.runtime
job_stats.condor_delay = job.condor_q_time
job_stats.resource = job.resource_delay
job_stats.seqexec = job.seqexec
job_stats.exitcode = utils.raw_to_regular(job.exit_code)
job_stats.hostname = job.host_name
if job_stats.seqexec is not None and job_stats.kickstart is not None:
job_stats.seqexec_delay = (float(job_stats.seqexec) - float(job_stats.kickstart))
if job_retry_count_dict.has_key(job.job_name):
job_retry_count_dict[job.job_name] += 1
else:
job_retry_count_dict[job.job_name] = 1
job_stats.retry_count = job_retry_count_dict[job.job_name]
if output_format == "text":
max_length[0] = max(max_length[0], len(job_stats.name))
max_length[1] = max(max_length[1], len(str(job_stats.retry_count)))
max_length[2] = max(max_length[2], len(job_stats.site))
max_length[3] = max(max_length[3], len(str(job_stats.kickstart)))
max_length[4] = max(max_length[4], len(str(job_stats.multiplier_factor)))
max_length[5] = max(max_length[5], len(str(job_stats.kickstart_mult)))
max_length[6] = max(max_length[6], len(str(job_stats.remote_cpu_time)))
max_length[7] = max(max_length[7], len(str(job_stats.post)))
max_length[8] = max(max_length[8], len(str(job_stats.condor_delay)))
max_length[9] = max(max_length[9], len(str(job_stats.resource)))
max_length[10] = max(max_length[10], len(str(job_stats.runtime)))
max_length[11] = max(max_length[11], len(str(job_stats.seqexec)))
max_length[12] = max(max_length[12], len(str(job_stats.seqexec_delay)))
max_length[13] = max(max_length[13], len(str(job_stats.exitcode)))
max_length[14] = max(max_length[14], len(job_stats.hostname if job_stats.hostname else 'None'))
job_stats_list.append(job_stats)
max_length = [i + 1 for i in max_length]
# Print header
if output_format == "text":
job_status_str += print_row(job_stats_col_name_text, max_length, output_format)
else:
job_status_str += print_row(job_stats_col_name_csv, job_stats_col_size, output_format)
job_status_str += "\n"
# printing
content_list = []
# find the pretty print length
for job_stat in job_stats_list:
job_det = job_stat.getFormattedJobStatistics()
if output_format == "text":
index = 0
for content in job_det:
job_status_str += str(content).ljust(max_length[index])
index = index + 1
else:
job_status_str += workflow_id
job_status_str += ","
job_status_str += dax_label
for content in job_det:
job_status_str += "," + str(content)
job_status_str += NEW_LINE_STR
return job_status_str
def print_wf_transformation_stats(stats, workflow_id, dax_label, fmt):
"""
Prints the transformation statistics of workflow
stats : workflow statistics object reference
workflow_id : UUID of workflow
dax_label : Name of workflow
format : Format of report ('text' or 'csv')
"""
if fmt not in ['text','csv']:
print "Output format %s not recognized!" % fmt
sys.exit(1)
report = ["\n"]
if fmt == "text":
# In text file, we need a line with the workflow id first
report.append("# %s (%s)" % (workflow_id, dax_label or "All"))
col_names = transformation_stats_col_name_text
if fmt == "csv": col_names = transformation_stats_col_name_csv
transformation_statistics = stats.get_transformation_statistics()
if fmt == "text":
max_length = [max(0, len(col_names[i])) for i in range(8)]
for t in transformation_statistics:
max_length[0] = max(max_length[0], len(t.transformation))
max_length[1] = max(max_length[1], len(str(t.count)))
max_length[2] = max(max_length[2], len(str(t.success)))
max_length[3] = max(max_length[3], len(str(t.failure)))
max_length[4] = max(max_length[4], len(str(t.min)))
max_length[5] = max(max_length[5], len(str(t.max)))
max_length[6] = max(max_length[6], len(str(t.avg)))
max_length[6] = max(max_length[7], len(str(t.sum)))
max_length = [i + 1 for i in max_length]
header_printed = False
for t in transformation_statistics:
content = [t.transformation, str(t.count), str(t.success), str(t.failure),
fstr(t.min), fstr(t.max), fstr(t.avg), fstr(t.sum)]
if fmt == "text":
for i in range(0, 8):
col_names[i] = col_names[i].ljust(max_length[i])
content[i] = content[i].ljust(max_length[i])
if fmt == "csv":
content = [workflow_id, dax_label] + content
if not header_printed:
header_printed = True
report.append(print_row(col_names, transformation_stats_col_size, fmt))
report.append(print_row(content, transformation_stats_col_size, fmt))
return NEW_LINE_STR.join(report) + NEW_LINE_STR
def print_statistics_by_time_and_host(stats, fmt, combined=True, per_host=True):
"""
Prints the job instance and invocation statistics sorted by time
@param stats : workflow statistics object reference
@param fmt : indicates how to format the output: "text" or "csv"
@param combined : print combined output (all hosts consolidated)
@param per_host : print per-host totals
"""
report = []
stats.set_job_filter('nonsub')
stats.set_time_filter('hour')
stats.set_transformation_filter(exclude=['condor::dagman'])
if combined == True:
col_names = time_stats_col_name_text
if fmt == "csv": col_names = time_stats_col_name_csv
report.append("\n# Job instances statistics per " + time_filter)
report.append(print_row(col_names, time_stats_col_size, fmt))
stats_by_time = stats.get_jobs_run_by_time()
formatted = stats_utils.convert_stats_to_base_time(stats_by_time, time_filter)
for s in formatted:
content = [s['date_format'], str(s['count']), fstr(s['runtime'])]
if fmt == "csv": content.insert(0, "jobs/" + time_filter)
report.append(print_row(content, time_stats_col_size, fmt))
report.append("\n# Invocation statistics run per " + time_filter)
report.append(print_row(col_names, time_stats_col_size, fmt))
stats_by_time = stats.get_invocation_by_time()
formatted = stats_utils.convert_stats_to_base_time(stats_by_time, time_filter)
for s in formatted:
content = [s['date_format'], str(s['count']), fstr(s['runtime'])]
if fmt == "csv": content.insert(0, "invocations/" + time_filter)
report.append(print_row(content, time_stats_col_size, fmt))
if per_host == True:
col_names = time_host_stats_col_name_text
if fmt == "csv": col_names = time_host_stats_col_name_csv
report.append("\n# Job instances statistics on host per " + time_filter)
report.append(print_row(col_names, time_host_stats_col_size, fmt))
stats_by_time = stats.get_jobs_run_by_time_per_host()
formatted_stats_list = stats_utils.convert_stats_to_base_time(stats_by_time, time_filter, True)
for s in formatted_stats_list:
content = [s['date_format'], str(s['host']), str(s['count']), fstr(s['runtime'])]
if fmt == "csv": content.insert(0, "jobs/host/" + time_filter)
report.append(print_row(content, time_host_stats_col_size, fmt))
report.append("\n# Invocation statistics on host per " + time_filter)
report.append(print_row(col_names, time_host_stats_col_size, fmt))
stats_by_time = stats.get_invocation_by_time_per_host()
formatted_stats_list = stats_utils.convert_stats_to_base_time(stats_by_time, time_filter, True)
for s in formatted_stats_list:
content = [s['date_format'], str(s['host']), str(s['count']), fstr(s['runtime'])]
if fmt == "csv": content.insert(0, "invocations/host/" + time_filter)
report.append(print_row(content, time_host_stats_col_size, fmt))
return "\n".join(report)
def main():
# Configure command line option parser
prog_usage = "%s [options] [[SUBMIT_DIRECTORY ..] | [WORKFLOW_UUID ..]]" % sys.argv[0]
parser = optparse.OptionParser(usage=prog_usage)
parser.add_option("-o", "--output", action = "store", dest = "output_dir",
help = "Writes the output to given directory.")
parser.add_option("-f", "--file", action="store", dest="filetype", choices=[FILE_TYPE_TXT, FILE_TYPE_CSV],
default=FILE_TYPE_TXT,
help="Select output file type. Valid values are 'text' and 'csv'. Default is '%default'.")
parser.add_option("-c","--conf", action = "store", type = "string", dest = "config_properties", default=None,
help = "Specifies the properties file to use. This option overrides all other property files.")
parser.add_option("-s", "--statistics-level", action="store", dest="statistics_level",
choices=['all', 'summary', 'wf_stats', 'jb_stats', 'tf_stats', 'ti_stats'],
default='summary',
help = "Valid levels are: all,summary,wf_stats,jb_stats,tf_stats,ti_stats; Default is '%default'.")
parser.add_option("-t", "--time-filter", action = "store", dest = "time_filter",
choices=['day', 'hour'], default='day',
help = "Valid levels are: day,hour; Default is '%default'.")
parser.add_option("-i", "--ignore-db-inconsistency", action="store_true", default=False,
dest = "ignore_db_inconsistency", help = "turn off the check for db consistency")
parser.add_option("-v", "--verbose", action="count", default=0, dest="verbose",
help="Increase verbosity, repeatable")
parser.add_option("-q", "--quiet", action="count", default=0, dest="quiet",
help="Decrease verbosity, repeatable")
parser.add_option("-m", "--multiple-wf", action="store_true", dest="multiple_wf", default=False,
help="Calculate statistics for multiple workflows")
parser.add_option("-p", "--ispmc", action="store_true", dest="is_pmc", default=False,
help="Calculate statistics for workflows which use PMC")
parser.add_option("-u", "--isuuid", action="store_true", dest="is_uuid", default=False,
help="Set if the positional arguments are wf uuids")
# Parse command line options
(options, args) = parser.parse_args()
# Multiple workflow is set to true if there are multiple positional arguments.
multiple_wf = options.multiple_wf
if len(args) < 1:
# * means all workflows in the database, and . means current directory
submit_dir = '.'
if multiple_wf:
submit_dir = '*'
elif len(args) > 1:
options.multiple_wf = True
multiple_wf = True
submit_dir = args
else:
options.multiple_wf = False
multiple_wf = False
submit_dir = args[0]
log_level = options.verbose - options.quiet
if log_level < 0:
logger.setLevel(logging.ERROR)
elif log_level == 0:
logger.setLevel(logging.WARNING)
elif log_level == 1:
logger.setLevel(logging.INFO)
elif log_level > 1:
logger.setLevel(logging.DEBUG)
def check_dump (dir):
braindump = os.path.join(dir,"braindump.txt")
if not os.path.isfile(braindump):
sys.stderr.write("Not a workflow submit directory: %s\n" % submit_dir)
sys.exit(1)
if multiple_wf:
#Check for braindump file's existence if workflows are not specified as UUIDs and
# statistics need to be calculated only on a sub set of workflows
if not options.is_uuid and submit_dir != '*':
for dir in submit_dir:
check_dump(dir)
else:
if not options.is_uuid:
check_dump(submit_dir)
if options.ignore_db_inconsistency:
logger.warning("Ignoring db inconsistency")
logger.warning("The tool is meant to be run after the completion of workflow run.")
else:
def loading_complete(dir):
if not utils.loading_completed(dir):
if utils.monitoring_running(dir):
sys.stderr.write("pegasus-monitord still running. Please wait for it to complete.\n")
else:
sys.stderr.write("Please run pegasus monitord in replay mode.\n")
sys.exit(1)
if multiple_wf:
if submit_dir == '*':
logger.warning("Statistics have to be calculated on all workflows. Tool cannot check to see if all of them have finished. Ensure that all workflows have finished")
if not options.is_uuid and submit_dir != '*':
for dir in submit_dir:
loading_complete(dir)
else:
if not options.is_uuid:
loading_complete(submit_dir)
# Figure out what statistics we need to calculate
global calc_wf_stats
global calc_wf_summary
global calc_jb_stats
global calc_tf_stats
global calc_ti_stats
sl = options.statistics_level
logger.info("Statistics level is %s" % sl)
if sl == 'all':
calc_wf_stats = True
calc_wf_summary = True
calc_tf_stats = True
calc_ti_stats = True
if not multiple_wf:
calc_jb_stats = True
elif sl =='summary':
calc_wf_summary = True
elif sl =='wf_stats':
calc_wf_stats = True
elif sl == 'jb_stats':
if multiple_wf:
logger.fatal('Job breakdown statistics cannot be computed over multiple workflows')
sys.exit(1)
calc_jb_stats = True
elif sl == 'tf_stats':
calc_tf_stats = True
else:
calc_ti_stats = True
global file_type
file_type = options.filetype
logger.info("File type is %s" % file_type)
global time_filter
time_filter = options.time_filter
logger.info("Time filter is %s" % time_filter)
# Change the legend to show the time filter format
tf_format = str(stats_utils.get_date_print_format(time_filter))
time_stats_col_name_text[0] += tf_format
time_stats_col_name_csv[1] += tf_format
time_host_stats_col_name_text[0] += tf_format
time_host_stats_col_name_csv[1] += tf_format
if options.output_dir:
output_dir = options.output_dir
else:
if multiple_wf or options.is_uuid:
sys.stderr.write("Output directory option is required when calculating statistics over multiple workflows.\n")
sys.exit(1)
else:
output_dir = os.path.join(submit_dir, DEFAULT_OUTPUT_DIR)
logger.info("Output directory is %s" % output_dir)
utils.create_directory(output_dir, True)
global uses_PMC
def use_pmc(dir):
braindb = utils.slurp_braindb(dir)
if "uses_pmc" in braindb:
if "true" == braindb["uses_pmc"].lower():
return True
return False
if options.is_pmc:
logger.info('Calculating statistics with use of PMC clustering')
uses_PMC = True
else:
if options.is_uuid:
# User provided workflow UUID
logger.info('Workflows are specified as UUIDs and ispmc option is not set.')
uses_PMC = False
else:
# User provided workflow submit directories
if multiple_wf:
if submit_dir == '*':
logger.info('Calculating statistics over all workflows, and ispmc option is not set.')
else:
# int(True) -> 1
tmp = sum([int(use_pmc(dir)) for dir in submit_dir])
# All workflow are either PMC or non PMC workflows?
if tmp == len(submit_dir) or tmp == 0:
uses_PMC = use_pmc(submit_dir[0])
else:
uses_PMC = False
logger.warn('Input workflows use both PMC & regular clustering! Calculating statistics with regular clustering')
else:
uses_PMC = use_pmc(submit_dir)
# Check db_url, and get wf_uuid's
if multiple_wf:
if options.is_uuid or submit_dir == '*':
# URL picked from config_properties file.
output_db_url = db_utils.get_db_url(options.config_properties)
wf_uuid = submit_dir
if not output_db_url:
logger.error('Unable to determine database URL. Kindly specify a value for "pegasus.monitord.output" property')
sys.exit(1)
else:
db_url_set = set()
wf_uuid = []
for dir in submit_dir:
db_url, uuid = db_utils.get_db_url_wf_uuid(dir, options.config_properties)
db_url_set.add(db_url)
wf_uuid.append(uuid)
if len(db_url_set) != 1:
logger.error("Workflows are distributed across multiple databases, which is not supported")
sys.exit(1)
output_db_url = db_url_set.pop()
else:
if options.is_uuid:
output_db_url = db_utils.get_db_url(options.config_properties)
wf_uuid = submit_dir
if not output_db_url:
logger.error('Unable to determine database URL. Kindly specify a value for "pegasus.monitord.output" property')
sys.exit(1)
else:
output_db_url, wf_uuid = db_utils.get_db_url_wf_uuid(submit_dir, options.config_properties)
logger.info('DB URL is: %s' % output_db_url)
logger.info('workflow UUID is: %s' % wf_uuid)
if output_db_url is not None:
print_workflow_details(output_db_url, wf_uuid, output_dir, multiple_wf=multiple_wf)
if __name__ == '__main__':
main()
|