This file is indexed.

/usr/bin/pegasus-statistics is in pegasus-wms 4.4.0+dfsg-5.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
#!/usr/bin/env python
import os
import re
import sys
import logging
import optparse
import subprocess
import traceback

# Initialize logging object
logger = logging.getLogger()

# Use pegasus-config to find our lib path
bin_dir = os.path.normpath(os.path.join(os.path.dirname(sys.argv[0])))
pegasus_config = os.path.join(bin_dir, "pegasus-config") + " --noeoln --python"
lib_dir = subprocess.Popen(pegasus_config, stdout=subprocess.PIPE, shell=True).communicate()[0]
pegasus_config = os.path.join(bin_dir, "pegasus-config") + " --noeoln --python-externals"
lib_ext_dir = subprocess.Popen(pegasus_config, stdout=subprocess.PIPE, shell=True).communicate()[0]

# Insert this directory in our search path
os.sys.path.insert(0, lib_ext_dir)
os.sys.path.insert(0, lib_dir)

from Pegasus.tools import utils
from Pegasus.tools import db_utils
from Pegasus.plots_stats import utils as stats_utils
from Pegasus.netlogger.analysis.workflow.stampede_statistics import StampedeStatistics
from Pegasus.netlogger.analysis.workflow.stampede_wf_statistics import StampedeWorkflowStatistics
from Pegasus.netlogger.analysis.schema.schema_check import SchemaVersionError

# Not unused. Logging get initialized
import Pegasus.common

# Regular expressions
re_parse_property = re.compile(r'([^:= \t]+)\s*[:=]?\s*(.*)')

workflow_summary_file_name = "summary"
workflow_summary_time_file_name = "summary-time"
workflow_statistics_file_name = "workflow"
job_statistics_file_name = "jobs"
logical_transformation_statistics_file_name = "breakdown"
time_statistics_file_name = "time"
time_statistics_per_host_file_name = "time-per-host"
text_file_extension = ".txt"
csv_file_extension = ".csv"
calc_wf_stats = False
calc_wf_summary = False
calc_jb_stats = False
calc_tf_stats = False
calc_ti_stats = False
time_filter = None
NEW_LINE_STR = "\n"
DEFAULT_OUTPUT_DIR = "statistics"
FILE_TYPE_TXT='text'
FILE_TYPE_CSV='csv'
uses_PMC=False

# Transformations file column names
transformation_stats_col_name_text = ["Transformation", "Count", "Succeeded", "Failed", "Min", "Max", "Mean", "Total"]
transformation_stats_col_name_csv = ["Workflow_Id", "Dax_Label", "Transformation", "Count", "Succeeded", "Failed", "Min", "Max", "Mean", "Total"]
transformation_stats_col_size = [25, 10, 10, 8, 10, 10, 10, 10]

# Jobs file column names
job_stats_col_name_text = ['Job', 'Try', 'Site', 'Kickstart', 'Mult', 'Kickstart-Mult', 'CPU-Time', 'Post', 'CondorQTime', 'Resource', 'Runtime', 'Seqexec', 'Seqexec-Delay', 'Exitcode', 'Hostname']
job_stats_col_name_csv = ['Workflow_Id', 'Dax_Label', 'Job', 'Try', 'Site', 'Kickstart', 'Mult', 'Kickstart-Mult', 'CPU-Time', 'Post', 'CondorQTime', 'Resource', 'Runtime', 'Seqexec', 'Seqexec-Delay', 'Exitcode', 'Hostname']
job_stats_col_size = [35, 4, 12, 12, 6, 16, 12, 6, 12, 12, 12, 12, 15, 10, 30]

# Summary file column names
workflow_summary_col_name_csv = ["Type", "Succeeded", "Failed", "Incomplete", "Total", "Retries", "Total+Retries"]
workflow_summary_col_name_text = ["Type", "Succeeded", "Failed", "Incomplete", "Total", "Retries", "Total+Retries"]
workflow_summary_col_size = [15, 10, 8, 12, 10, 10, 13]
workflow_time_summary_col_name_csv = ["stat_type", "time_seconds"]

# Workflow file column names
workflow_status_col_name_text = ["Type","Succeeded","Failed","Incomplete","Total","Retries","Total+Retries","WF Retries"]
workflow_status_col_name_csv = ["Workflow_Id","Dax_Label","Type","Succeeded","Failed","Incomplete","Total","Retries","Total+Retries","WF_Retries"]
workflow_status_col_size = [15, 11, 10, 12, 10, 10, 15, 10]

# Time file column names
time_stats_col_name_csv = ["stat_type", "date", "count", "runtime (sec)"]
time_stats_col_name_text = ["Date", "Count", "Runtime (sec)"]
time_stats_col_size = [30, 20, 20]
time_host_stats_col_name_csv = ["stat_type", "date", "host", "count", "runtime (sec)"]
time_host_stats_col_name_text = ["Date", "Host", "Count", "Runtime (sec)"]
time_host_stats_col_size = [23, 25, 10, 20]

class JobStatistics:
    def __init__(self):
        self.name = None
        self.site = None
        self.kickstart = None
        self.multiplier_factor = None
        self.kickstart_mult = None
        self.remote_cpu_time = None
        self.post = None
        self.condor_delay = None
        self.resource = None
        self.runtime = None
        self.condorQlen =None
        self.seqexec = None
        self.seqexec_delay = None
        self.retry_count = 0
        self.exitcode = None
        self.hostname = None

    def getFormattedJobStatistics(self):
        return [
            self.name,
            str(self.retry_count),
            self.site or '-',
            fstr(self.kickstart),
            str(self.multiplier_factor),
            fstr(self.kickstart_mult),
            fstr(self.remote_cpu_time),
            fstr(self.post),
            fstr(self.condor_delay),
            fstr(self.resource),
            fstr(self.runtime),
            fstr(self.seqexec),
            fstr(self.seqexec_delay),
            str(self.exitcode),
            self.hostname
        ]


def formatted_wf_summary_legends_part1():
    return """
#
# Pegasus Workflow Management System - http://pegasus.isi.edu
#
# Workflow summary:
#   Summary of the workflow execution. It shows total
#   tasks/jobs/sub workflows run, how many succeeded/failed etc.
#   In case of hierarchical workflow the calculation shows the
#   statistics across all the sub workflows.It shows the following
#   statistics about tasks, jobs and sub workflows.
#     * Succeeded - total count of succeeded tasks/jobs/sub workflows.
#     * Failed - total count of failed tasks/jobs/sub workflows.
#     * Incomplete - total count of tasks/jobs/sub workflows that are
#       not in succeeded or failed state. This includes all the jobs
#       that are not submitted, submitted but not completed etc. This
#       is calculated as  difference between 'total' count and sum of
#       'succeeded' and 'failed' count.
#     * Total - total count of tasks/jobs/sub workflows.
#     * Retries - total retry count of tasks/jobs/sub workflows.
#     * Total+Retries - total count of tasks/jobs/sub workflows executed
#       during workflow run. This is the cumulative of retries,
#       succeeded and failed count."""

def formatted_wf_summary_legends_part2():
    return """
# Workflow wall time:
#   The walltime from the start of the workflow execution to the end as
#   reported by the DAGMAN.In case of rescue dag the value is the
#   cumulative of all retries.
# Workflow cumulative job wall time:
#   The sum of the walltime of all jobs as reported by kickstart.
#   In case of job retries the value is the cumulative of all retries.
#   For workflows having sub workflow jobs (i.e SUBDAG and SUBDAX jobs),
#   the walltime value includes jobs from the sub workflows as well.
# Cumulative job walltime as seen from submit side:
#   The sum of the walltime of all jobs as reported by DAGMan.
#   This is similar to the regular cumulative job walltime, but includes
#   job management overhead and delays. In case of job retries the value
#   is the cumulative of all retries. For workflows having sub workflow
#   jobs (i.e SUBDAG and SUBDAX jobs), the walltime value includes jobs
#   from the sub workflows as well."""

def formatted_wf_summary_legends_txt():
    return formatted_wf_summary_legends_part1() + formatted_wf_summary_legends_part2()

def formatted_wf_summary_legends_csv1():
    return formatted_wf_summary_legends_part1()

def formatted_wf_summary_legends_csv2():
    return formatted_wf_summary_legends_part2()

def formatted_wf_status_legends():
    return """
# Workflow summary
#   Summary of the workflow execution. It shows total
#   tasks/jobs/sub workflows run, how many succeeded/failed etc.
#   In case of hierarchical workflow the calculation shows the
#   statistics of each individual sub workflow.The file also
#   contains a 'Total' table at the bottom which is the cummulative
#   of all the individual statistics details.t shows the following
#   statistics about tasks, jobs and sub workflows.
#
#     * WF Retries - number of times a workflow was retried.
#     * Succeeded - total count of succeeded tasks/jobs/sub workflows.
#     * Failed - total count of failed tasks/jobs/sub workflows.
#     * Incomplete - total count of tasks/jobs/sub workflows that are
#       not in succeeded or failed state. This includes all the jobs
#       that are not submitted, submitted but not completed etc. This
#       is calculated as  difference between 'total' count and sum of
#       'succeeded' and 'failed' count.
#     * Total - total count of tasks/jobs/sub workflows.
#     * Retries - total retry count of tasks/jobs/sub workflows.
#     * Total+Retries - total count of tasks/jobs/sub workflows executed
#       during workflow run. This is the cumulative of retries,
#       succeeded and failed count.
#
"""

def formatted_job_stats_legends():
    return """
# Job            - name of the job
# Try            - number representing the job instance run count
# Site           - site where the job ran
# Kickstart      - actual duration of the job instance in seconds on the
#                  remote compute node
# Mult           - multiplier factor specified by the user
# Kickstart-Mult - Kickstart time multiplied by the multiplier factor
# CPU-Time       - remote cpu time computed as the stime + utime
# Post           - postscript time as reported by DAGMan
# CondorQTime    - time between submission by DAGMan and the remote Grid
#                  submission. It is an estimate of the time spent in the
#                  condor q on the submit node
# Resource       - time between the remote Grid submission and start of
#                  remote execution. It is an estimate of the time job
#                  spent in the remote queue
# Runtime        - time spent on the resource as seen by Condor DAGMan.
#                  Is always >= Kickstart
# Seqexec        - time taken for the completion of a clustered job
# Seqexec-Delay  - time difference between the time for the completion
#                  of a clustered job and sum of all the individual
#                  tasks Kickstart time
# Exitcode       - exitcode for this job
# Hostname       - name of the host where the job ran, as reported by
#                  Kickstart"""

def formatted_transformation_stats_legends():
    return """
# Transformation - name of the transformation.
# Count          - the number of times the invocations corresponding to
#                  the transformation was executed.
# Succeeded      - the count of the succeeded invocations corresponding
#                  to the transformation.
# Failed         - the count of the failed invocations corresponding to
#                  the transformation.
# Min(sec)       - the minimum invocation runtime value corresponding
#                  to the transformation.
# Max(sec)       - the maximum invocation runtime value corresponding
#                  to the transformation.
# Mean(sec)      - the mean of the invocation runtime corresponding
#                  to the transformation.
# Total(sec)     - the cumulative of invocation runtime corresponding
#                  to the transformation."""

def formatted_time_stats_legends_text():
    return """
# Job instance statistics per FILTER:
#   the number of job instances run, total runtime sorted by FILTER
# Invocation statistics per FILTER:
#   the number of invocations , total runtime sorted by FILTER
# Job instance statistics by host per FILTER:
#   the number of job instance run, total runtime on each host sorted by FILTER
# Invocation by host per FILTER:
#   the number of invocations, total runtime on each host sorted by FILTER
""".replace("FILTER", str(time_filter))

def formatted_time_stats_legends_csv():
    return """
# Job instance statistics per FILTER:
#   the number of job instances run, total runtime sorted by FILTER
# Invocation statistics per FILTER:
#   the number of invocations , total runtime sorted by FILTER
""".replace("FILTER", str(time_filter))

def formatted_time_host_stats_legends_csv():
    return """
# Job instance statistics by host per FILTER:
#   the number of job instance run, total runtime on each host sorted by FILTER
# Invocation by host per FILTER:
#   the number of invocations, total runtime on each host sorted by FILTER
""".replace("FILTER", str(time_filter))

def write_to_file(file_path, mode, content):
    """
    Utility method for writing content to a given file
    @param file_path :  file path
    @param mode :   file writing mode 'a' append , 'w' write
    @param content :  content to write to file
    """
    try:
        fh = open(file_path, mode)
        fh.write(content)
    except IOError:
        logger.error("Unable to write to file " + file_path)
        sys.exit(1)
    else:
        fh.close()

def format_seconds(duration):
    """
    Utility for converting time to a readable format
    @param duration :  time in seconds and miliseconds
    @return time in format day,hour, min,sec
    """
    return stats_utils.format_seconds(duration)

def istr(value):
    """
    Utility for returning a str representation of the given value.
    Return '-' if value is None
    @parem value : the given value that need to be converted to string
    """
    if value is None:
        return '-'
    return str(value)

def fstr(value, to=3):
    """
    Utility method for rounding the float value to rounded string
    @param value :  value to round
    @param to    :  how many decimal points to round to
    """
    if value is None:
        return '-'
    return stats_utils.round_decimal_to_str(value,to)

def print_row(row, sizes, fmt):
    """
    Utility method for generating formatted row based on the column format given
    row   : list of column values
    sizes : list of column widths for text format
    fmt   : format of the row ('text' or 'csv')
    """
    if fmt in ["text","txt"]:
        return "".join(value.ljust(sizes[i]) for i,value in enumerate(row))
    elif fmt == "csv":
        return ",".join(row)
    else:
        print "Output format %s not recognized!" % fmt
        sys.exit(1)

def print_workflow_details(output_db_url, wf_uuid, output_dir, multiple_wf=False):
    """
    Prints the workflow statistics information of all workflows
    @param output_db_url : URL of stampede DB
    @param wf_uuid       : uuid of the top level workflow
    @param output_dir    : directory to write output files
    """
    try:
        if multiple_wf:
            expanded_workflow_stats = StampedeWorkflowStatistics(output_db_url)
        else:
             expanded_workflow_stats = StampedeStatistics(output_db_url)

        expanded_workflow_stats.initialize(wf_uuid)
    except SchemaVersionError:
        logger.error("------------------------------------------------------")
        logger.error("Database schema mismatch! Please run the upgrade tool")
        logger.error("to upgrade the database to the latest schema version.")
        sys.exit(1)
    except:
        logger.error("Failed to load the database." + output_db_url )
        logger.warning(traceback.format_exc())
        sys.exit(1)

    # print workflow statistics
    if multiple_wf:
        wf_uuid_list = []
        desc_wf_uuid_list = expanded_workflow_stats.get_workflow_ids()
    else:
        wf_uuid_list = [wf_uuid]
        desc_wf_uuid_list = expanded_workflow_stats.get_descendant_workflow_ids()

    for wf_det in desc_wf_uuid_list:
        wf_uuid_list.append(wf_det.wf_uuid)

    if calc_wf_stats:
        if file_type == FILE_TYPE_TXT:
            wf_stats_file_txt = os.path.join(output_dir, workflow_statistics_file_name + text_file_extension)
            write_to_file(wf_stats_file_txt, "w", formatted_wf_status_legends())
            header = print_row(workflow_status_col_name_text, workflow_status_col_size, "text")
            write_to_file(wf_stats_file_txt, "a", header)

        if file_type == FILE_TYPE_CSV:
            wf_stats_file_csv = os.path.join(output_dir, workflow_statistics_file_name + csv_file_extension)
            write_to_file(wf_stats_file_csv, "w", formatted_wf_status_legends())
            header = print_row(workflow_status_col_name_csv, workflow_status_col_size, "csv")
            write_to_file(wf_stats_file_csv, "a", header)

    if calc_jb_stats:
        jobs_stats_file_txt = os.path.join(output_dir, job_statistics_file_name + text_file_extension)
        if file_type == FILE_TYPE_TXT:
            write_to_file(jobs_stats_file_txt, "w", formatted_job_stats_legends())

        jobs_stats_file_csv = os.path.join(output_dir, job_statistics_file_name + csv_file_extension)
        if file_type == FILE_TYPE_CSV:
            write_to_file(jobs_stats_file_csv, "w", formatted_job_stats_legends())

    if calc_tf_stats:
        if file_type == FILE_TYPE_TXT:
            transformation_stats_file_txt = os.path.join(output_dir, logical_transformation_statistics_file_name + text_file_extension)
            write_to_file(transformation_stats_file_txt, "w", formatted_transformation_stats_legends())

        if file_type == FILE_TYPE_CSV:
            transformation_stats_file_csv = os.path.join(output_dir, logical_transformation_statistics_file_name + csv_file_extension)
            write_to_file(transformation_stats_file_csv, "w", formatted_transformation_stats_legends())

    if calc_ti_stats:
        time_stats_file_txt = os.path.join(output_dir, time_statistics_file_name + text_file_extension)
        if file_type == FILE_TYPE_TXT:
            write_to_file(time_stats_file_txt, "w", formatted_time_stats_legends_text())
            content = print_statistics_by_time_and_host(expanded_workflow_stats, "text", combined=True, per_host=True)
            write_to_file(time_stats_file_txt, "a", content)

        time_stats_file_csv = os.path.join(output_dir, time_statistics_file_name + csv_file_extension)
        if file_type == FILE_TYPE_CSV:
            write_to_file(time_stats_file_csv, "w", formatted_time_stats_legends_csv())
            content = print_statistics_by_time_and_host(expanded_workflow_stats, "csv", combined=True, per_host=False)
            write_to_file(time_stats_file_csv, "a", content)

            time_stats_file2_csv = os.path.join(output_dir, time_statistics_per_host_file_name + csv_file_extension)
            write_to_file(time_stats_file2_csv, "w", formatted_time_host_stats_legends_csv())
            content = print_statistics_by_time_and_host(expanded_workflow_stats, "csv", combined=False, per_host=True)
            write_to_file(time_stats_file2_csv, "a", content)

    if calc_jb_stats or calc_tf_stats or calc_wf_stats:
        for sub_wf_uuid in wf_uuid_list:
            try:
                individual_workflow_stats = StampedeStatistics(output_db_url, False)
                individual_workflow_stats.initialize(sub_wf_uuid)
            except SchemaVersionError:
                logger.error("------------------------------------------------------")
                logger.error("Database schema mismatch! Please run the upgrade tool")
                logger.error("to upgrade the database to the latest schema version.")
                sys.exit(1)
            except:
                logger.error("Failed to load the database." + output_db_url )
                logger.warning(traceback.format_exc())
                sys.exit(1)

            wf_det = individual_workflow_stats.get_workflow_details()[0]

            workflow_id = str(sub_wf_uuid)
            dax_label = str(wf_det.dax_label)
            logger.info("Generating statistics information about the workflow " + workflow_id + " ... ")

            if calc_jb_stats:
                logger.debug("Generating job instance statistics information for workflow " + workflow_id + " ... ")
                individual_workflow_stats.set_job_filter('all')

                if file_type == FILE_TYPE_TXT:
                    content = print_individual_wf_job_stats(individual_workflow_stats, workflow_id, dax_label, "text")
                    write_to_file(jobs_stats_file_txt, "a", content)

                if file_type == FILE_TYPE_CSV:
                    content = print_individual_wf_job_stats(individual_workflow_stats, workflow_id, dax_label, "csv")
                    write_to_file(jobs_stats_file_csv, "a", content)

            if calc_tf_stats:
                logger.debug("Generating invocation statistics information for workflow " + workflow_id + " ... ")
                individual_workflow_stats.set_job_filter('all')
                if file_type == FILE_TYPE_TXT:
                    content = print_wf_transformation_stats(individual_workflow_stats, workflow_id, dax_label, "text")
                    write_to_file(transformation_stats_file_txt, "a", content)

                if file_type == FILE_TYPE_CSV:
                    content = print_wf_transformation_stats(individual_workflow_stats, workflow_id, dax_label, "csv")
                    write_to_file(transformation_stats_file_csv, "a", content)

            if calc_wf_stats:
                logger.debug("Generating workflow statistics information for workflow " +
                             workflow_id  + " ... ")
                individual_workflow_stats.set_job_filter('all')
                # Write text file
                if file_type == FILE_TYPE_TXT:
                    content = print_individual_workflow_stats(individual_workflow_stats, workflow_id, dax_label, "text")
                    write_to_file(wf_stats_file_txt, "a", content)
                    # Write csv file
                if file_type == FILE_TYPE_CSV:
                    content = print_individual_workflow_stats(individual_workflow_stats, workflow_id, dax_label, "csv")
                    write_to_file(wf_stats_file_csv, "a", content)

            individual_workflow_stats.close()

    stats_output = ""

    if calc_wf_summary:
        logger.info("Generating workflow summary ... ")

        if file_type == FILE_TYPE_TXT:
            summary_output = formatted_wf_summary_legends_txt()
            summary_output += NEW_LINE_STR
            summary_output += print_workflow_summary(expanded_workflow_stats, "text", wf_summary=True, time_summary=True, multiple_wf=multiple_wf)
            wf_summary_file_txt = os.path.join(output_dir, workflow_summary_file_name + text_file_extension)
            write_to_file(wf_summary_file_txt, "w", summary_output)

            stats_output += summary_output + "\n"
            stats_output += "%-30s: %s\n" % ("Summary", wf_summary_file_txt)

        if file_type == FILE_TYPE_CSV:
            # Generate the first csv summary file
            summary_output = formatted_wf_summary_legends_csv1()
            summary_output += NEW_LINE_STR
            summary_output += print_workflow_summary(expanded_workflow_stats, "csv", wf_summary=True, time_summary=False, multiple_wf=multiple_wf)
            wf_summary_file_csv = os.path.join(output_dir, workflow_summary_file_name + csv_file_extension)
            write_to_file(wf_summary_file_csv, "w", summary_output)

            stats_output += "%-30s: %s\n" % ("Summary:", wf_summary_file_csv)

            # Generate the second csv summary file
            summary_output = formatted_wf_summary_legends_csv2()
            summary_output += NEW_LINE_STR
            summary_output += print_workflow_summary(expanded_workflow_stats, "csv", wf_summary=False, time_summary=True, multiple_wf=multiple_wf)
            wf_summary_file2_csv = os.path.join(output_dir, workflow_summary_time_file_name + csv_file_extension)
            write_to_file(wf_summary_file2_csv, "w", summary_output)

            stats_output += "%-30s: %s\n" % ("Summary Time:", wf_summary_file2_csv)

    if calc_wf_stats:
        stats_output += "%-30s: " % "Workflow execution statistics"

        if file_type == FILE_TYPE_TXT:
            content = print_individual_workflow_stats(expanded_workflow_stats , "All Workflows", "", "text")
            write_to_file(wf_stats_file_txt, "a" , content)
            stats_output += wf_stats_file_txt +"\n"

        if file_type == FILE_TYPE_CSV:
            content = print_individual_workflow_stats(expanded_workflow_stats , "ALL", "", "csv")
            write_to_file(wf_stats_file_csv, "a" , content)
            stats_output += wf_stats_file_csv +"\n"

    if calc_jb_stats:
        stats_output += "%-30s: " % "Job instance statistics"
        if file_type == FILE_TYPE_TXT:
            stats_output += jobs_stats_file_txt +"\n"

        if file_type == FILE_TYPE_CSV:
            stats_output += jobs_stats_file_csv +"\n"

    if calc_tf_stats:
        expanded_workflow_stats.set_job_filter('all')
        stats_output += "%-30s: " % "Transformation statistics"

        if file_type == FILE_TYPE_TXT:
            content = print_wf_transformation_stats(expanded_workflow_stats , "All", "", "text")
            write_to_file(transformation_stats_file_txt, "a" , content)
            stats_output += transformation_stats_file_txt +"\n"

        if file_type == FILE_TYPE_CSV:
            content = print_wf_transformation_stats(expanded_workflow_stats , "ALL", "", "csv")
            write_to_file(transformation_stats_file_csv, "a" , content)
            stats_output += transformation_stats_file_csv +"\n"

    if calc_ti_stats:
        stats_output += "%-30s: " % "Time statistics"

        if file_type == FILE_TYPE_TXT:
            stats_output += time_stats_file_txt +"\n"

        if file_type == FILE_TYPE_CSV:
            stats_output += time_stats_file_csv +"\n"

    expanded_workflow_stats.close()

    print stats_output

def print_workflow_summary(workflow_stats, output_format, wf_summary=True, time_summary=True, multiple_wf=False):
    """
    Prints the workflow statistics summary of an top level workflow
    @param workflow_stats :  workflow statistics object reference
    """

    summary_str = ""

    if wf_summary == True:
        # status
        workflow_stats.set_job_filter('nonsub')

        # Tasks
        total_tasks = workflow_stats.get_total_tasks_status()
        total_succeeded_tasks = workflow_stats.get_total_succeeded_tasks_status(uses_PMC)
        total_failed_tasks = workflow_stats.get_total_failed_tasks_status()
        total_unsubmitted_tasks = total_tasks - (total_succeeded_tasks + total_failed_tasks)
        total_task_retries = workflow_stats.get_total_tasks_retries()
        total_invocations = total_succeeded_tasks + total_failed_tasks + total_task_retries

        # Jobs
        total_jobs = workflow_stats.get_total_jobs_status()
        total_succeeded_failed_jobs = workflow_stats.get_total_succeeded_failed_jobs_status()
        total_succeeded_jobs = total_succeeded_failed_jobs.succeeded
        total_failed_jobs = total_succeeded_failed_jobs.failed
        total_unsubmitted_jobs = total_jobs - (total_succeeded_jobs + total_failed_jobs)
        total_job_retries = workflow_stats.get_total_jobs_retries()
        total_job_instance_retries =  total_succeeded_jobs + total_failed_jobs + total_job_retries

        # Sub workflows
        workflow_stats.set_job_filter('subwf')
        total_sub_wfs = workflow_stats.get_total_jobs_status()
        total_succeeded_failed_sub_wfs = workflow_stats.get_total_succeeded_failed_jobs_status()
        total_succeeded_sub_wfs = total_succeeded_failed_sub_wfs.succeeded
        total_failed_sub_wfs = total_succeeded_failed_sub_wfs.failed
        #for non hierarichal workflows the combined query can return none
        if total_succeeded_sub_wfs is None:
            total_succeeded_sub_wfs = 0

        if total_failed_sub_wfs is None:
            total_failed_sub_wfs = 0

        total_unsubmitted_sub_wfs = total_sub_wfs - (total_succeeded_sub_wfs + total_failed_sub_wfs)
        total_sub_wfs_retries = workflow_stats.get_total_jobs_retries()
        total_sub_wfs_tries =  total_succeeded_sub_wfs + total_failed_sub_wfs + total_sub_wfs_retries

        # Format the output
        if output_format == "text":
            summary_str += "".center(sum(workflow_summary_col_size), '-') + "\n"
            summary_str += print_row(workflow_summary_col_name_text, workflow_summary_col_size, output_format) + "\n"
        else:
            summary_str += print_row(workflow_summary_col_name_csv, workflow_summary_col_size, output_format) + "\n"

        content = ["Tasks", istr(total_succeeded_tasks), istr(total_failed_tasks),
                   istr(total_unsubmitted_tasks), istr(total_tasks),
                   istr(total_task_retries), istr(total_invocations)]
        summary_str += print_row(content, workflow_summary_col_size, output_format) + "\n"

        content = ["Jobs", istr(total_succeeded_jobs), istr(total_failed_jobs),
                   istr(total_unsubmitted_jobs), istr(total_jobs),
                   str(total_job_retries), istr(total_job_instance_retries)]
        summary_str += print_row(content, workflow_summary_col_size, output_format) + "\n"

        content = ["Sub-Workflows", istr(total_succeeded_sub_wfs),
                   istr(total_failed_sub_wfs), istr(total_unsubmitted_sub_wfs),
                   istr(total_sub_wfs), str(total_sub_wfs_retries), istr(total_sub_wfs_tries)]
        summary_str += print_row(content, workflow_summary_col_size, output_format) + "\n"

        if output_format == "text":
            summary_str += "".center(sum(workflow_summary_col_size), '-') + "\n\n"

    if time_summary == True:
        states = workflow_stats.get_workflow_states()
        wwt = stats_utils.get_workflow_wall_time(states)
        wcjwt = workflow_stats.get_workflow_cum_job_wall_time()
        ssjwt = workflow_stats.get_submit_side_job_wall_time()

        if output_format == "text":
            def myfmt(val):
                if val is None: return "-"
                else: return format_seconds(val)
            if not multiple_wf:
                summary_str += "%-49s: %s\n" % ("Workflow wall time", myfmt(wwt))
            summary_str += "%-49s: %s\n" % ("Workflow cumulative job wall time", myfmt(wcjwt))
            summary_str += "%-49s: %s\n" % ("Cumulative job walltime as seen from submit side", myfmt(ssjwt))
        else:
            def myfmt(val):
                if val is None: return ""
                else: return str(val)
            summary_str += print_row(workflow_time_summary_col_name_csv, None, output_format) + "\n"
            summary_str += "workflow_wall_time,%s\n" % myfmt(wwt)
            summary_str += "workflow_cumulative_job_wall_time,%s\n" % myfmt(wcjwt)
            summary_str += "cumulative_job_walltime_from_submit_side,%s\n" % myfmt(ssjwt)

    return summary_str

def print_individual_workflow_stats(workflow_stats, workflow_id, dax_label, output_format):
    """
    Prints the workflow statistics of workflow
    @param workflow_stats :  workflow statistics object reference
    @param workflow_id  : workflow_id (title of the workflow table)
    """
    content_str = "\n"
    # individual workflow status

    # Add dax_label to workflow_id if writing text file
    if output_format == "text" and dax_label != "":
        workflow_id =  workflow_id + " (" + dax_label +")"

    # workflow status
    workflow_stats.set_job_filter('all')
    total_wf_retries = workflow_stats.get_workflow_retries()
    # only used for the text output...
    content = [workflow_id, istr(total_wf_retries)]
    retry_col_size = workflow_status_col_size[len(workflow_status_col_size) - 1]
    wf_status_str = print_row(content,
                              [sum(workflow_status_col_size) - retry_col_size, retry_col_size],
                              output_format)

    # tasks
    workflow_stats.set_job_filter('nonsub')
    total_tasks = workflow_stats.get_total_tasks_status()
    total_succeeded_tasks = workflow_stats.get_total_succeeded_tasks_status(uses_PMC)
    total_failed_tasks = workflow_stats.get_total_failed_tasks_status()
    total_unsubmitted_tasks = total_tasks - (total_succeeded_tasks + total_failed_tasks)
    total_task_retries =  workflow_stats.get_total_tasks_retries()
    total_task_invocations = total_succeeded_tasks + total_failed_tasks + total_task_retries
    if output_format == "text":
        content = ["Tasks", istr(total_succeeded_tasks),
                   istr(total_failed_tasks), istr(total_unsubmitted_tasks), istr(total_tasks),
                   istr(total_task_retries), istr(total_task_invocations), ""]
    else:
        content = [workflow_id, dax_label, "Tasks", istr(total_succeeded_tasks),
                   istr(total_failed_tasks), istr(total_unsubmitted_tasks), istr(total_tasks),
                   istr(total_task_retries), istr(total_task_invocations), istr(total_wf_retries)]

    tasks_status_str = print_row(content, workflow_status_col_size, output_format)

    # job status
    workflow_stats.set_job_filter('nonsub')
    total_jobs = workflow_stats.get_total_jobs_status()

    tmp = workflow_stats.get_total_succeeded_failed_jobs_status()
    total_succeeded_jobs = tmp.succeeded
    total_failed_jobs = tmp.failed

    total_unsubmitted_jobs = total_jobs - (total_succeeded_jobs + total_failed_jobs)
    total_job_retries = workflow_stats.get_total_jobs_retries()
    total_job_invocations = total_succeeded_jobs + total_failed_jobs + total_job_retries
    if output_format == "text":
        content = ["Jobs", istr(total_succeeded_jobs), istr(total_failed_jobs),
                   istr(total_unsubmitted_jobs), istr(total_jobs),
                   istr(total_job_retries), istr(total_job_invocations), ""]
    else:
        content = [workflow_id, dax_label, "Jobs", istr(total_succeeded_jobs),
                   istr(total_failed_jobs),
                   istr(total_unsubmitted_jobs), istr(total_jobs),
                   istr(total_job_retries), istr(total_job_invocations),
                   istr(total_wf_retries)]

    jobs_status_str = print_row(content, workflow_status_col_size, output_format)

    # sub workflow
    workflow_stats.set_job_filter('subwf')
    total_sub_wfs = workflow_stats.get_total_jobs_status()

    tmp = workflow_stats.get_total_succeeded_failed_jobs_status()

    total_succeeded_sub_wfs = 0
    if tmp.succeeded:
        total_succeeded_sub_wfs = tmp.succeeded

    total_failed_sub_wfs = 0
    if tmp.failed:
        total_failed_sub_wfs = tmp.failed

    total_unsubmitted_sub_wfs = total_sub_wfs - (total_succeeded_sub_wfs + total_failed_sub_wfs)
    total_sub_wfs_retries = workflow_stats.get_total_jobs_retries()
    total_sub_wfs_invocations = total_succeeded_sub_wfs + total_failed_sub_wfs + total_sub_wfs_retries
    if output_format == "text":
        content = ["Sub Workflows", istr(total_succeeded_sub_wfs),
                   istr(total_failed_sub_wfs), istr(total_unsubmitted_sub_wfs),
                   istr(total_sub_wfs), istr(total_sub_wfs_retries),
                   istr(total_sub_wfs_invocations), ""]
    else:
        content = [workflow_id, dax_label, "Sub_Workflows", istr(total_succeeded_sub_wfs),
                   istr(total_failed_sub_wfs), istr(total_unsubmitted_sub_wfs),
                   istr(total_sub_wfs), istr(total_sub_wfs_retries),
                   istr(total_sub_wfs_invocations), istr(total_wf_retries)]

    sub_wf_status_str = print_row(content, workflow_status_col_size, output_format)

    if output_format == "text":
        # Only print these in the text format output
        content_str += "".center(sum(workflow_status_col_size), '-') + "\n"
        content_str += wf_status_str + "\n"

    content_str += tasks_status_str + "\n"
    content_str += jobs_status_str + "\n"
    content_str += sub_wf_status_str + "\n"

    return content_str

def print_individual_wf_job_stats(workflow_stats, workflow_id, dax_label, output_format):
    """
    Prints the job statistics of workflow
    @param workflow_stats :  workflow statistics object reference
    @param workflow_id : workflow_id (title for the table)
    """
    job_stats_dict = {}
    job_stats_list = []
    job_retry_count_dict = {}

    # Add dax_label to workflow_id if writing text file
    if output_format == "text":
        workflow_id =  workflow_id + " (" + dax_label +")"

    if output_format == "text":
        job_status_str = "\n# " + workflow_id + "\n"
    else:
        job_status_str = "\n"

    if output_format == "text":
        max_length = [max(0, len (i)) for i in job_stats_col_name_text]

    wf_job_stats_list = workflow_stats.get_job_statistics()

    # Go through each job in the workflow
    for job in wf_job_stats_list:
        job_stats = JobStatistics()
        job_stats.name = job.job_name
        job_stats.site = job.site
        job_stats.kickstart = job.kickstart
        job_stats.multiplier_factor = job.multiplier_factor
        job_stats.kickstart_mult = job.kickstart_multi
        job_stats.remote_cpu_time = job.remote_cpu_time
        job_stats.post = job.post_time
        job_stats.runtime = job.runtime
        job_stats.condor_delay = job.condor_q_time
        job_stats.resource = job.resource_delay
        job_stats.seqexec = job.seqexec
        job_stats.exitcode = utils.raw_to_regular(job.exit_code)
        job_stats.hostname = job.host_name
        if job_stats.seqexec is not None and job_stats.kickstart is not None:
            job_stats.seqexec_delay = (float(job_stats.seqexec) - float(job_stats.kickstart))
        if job_retry_count_dict.has_key(job.job_name):
            job_retry_count_dict[job.job_name] += 1
        else:
            job_retry_count_dict[job.job_name] = 1
        job_stats.retry_count = job_retry_count_dict[job.job_name]

        if output_format == "text":
            max_length[0] = max(max_length[0], len(job_stats.name))
            max_length[1] = max(max_length[1], len(str(job_stats.retry_count)))
            max_length[2] = max(max_length[2], len(job_stats.site))
            max_length[3] = max(max_length[3], len(str(job_stats.kickstart)))
            max_length[4] = max(max_length[4], len(str(job_stats.multiplier_factor)))
            max_length[5] = max(max_length[5], len(str(job_stats.kickstart_mult)))
            max_length[6] = max(max_length[6], len(str(job_stats.remote_cpu_time)))
            max_length[7] = max(max_length[7], len(str(job_stats.post)))
            max_length[8] = max(max_length[8], len(str(job_stats.condor_delay)))
            max_length[9] = max(max_length[9], len(str(job_stats.resource)))
            max_length[10] = max(max_length[10], len(str(job_stats.runtime)))
            max_length[11] = max(max_length[11], len(str(job_stats.seqexec)))
            max_length[12] = max(max_length[12], len(str(job_stats.seqexec_delay)))
            max_length[13] = max(max_length[13], len(str(job_stats.exitcode)))
            max_length[14] = max(max_length[14], len(job_stats.hostname if job_stats.hostname else 'None'))

        job_stats_list.append(job_stats)

    max_length = [i + 1 for i in max_length]

    # Print header
    if output_format == "text":
        job_status_str += print_row(job_stats_col_name_text, max_length, output_format)
    else:
        job_status_str += print_row(job_stats_col_name_csv, job_stats_col_size, output_format)

    job_status_str += "\n"

    # printing
    content_list = []
    # find the pretty print length
    for job_stat in job_stats_list:
        job_det = job_stat.getFormattedJobStatistics()
        if output_format == "text":
            index = 0
            for content in job_det:
                job_status_str += str(content).ljust(max_length[index])
                index = index + 1
        else:
            job_status_str += workflow_id
            job_status_str += ","
            job_status_str += dax_label
            for content in job_det:
                job_status_str += "," + str(content)

        job_status_str += NEW_LINE_STR

    return job_status_str


def print_wf_transformation_stats(stats, workflow_id, dax_label, fmt):
    """
    Prints the transformation statistics of workflow
    stats       : workflow statistics object reference
    workflow_id : UUID of workflow
    dax_label   : Name of workflow
    format      : Format of report ('text' or 'csv')
    """
    if fmt not in ['text','csv']:
        print "Output format %s not recognized!" % fmt
        sys.exit(1)

    report = ["\n"]

    if fmt == "text":
        # In text file, we need a line with the workflow id first
        report.append("# %s (%s)" % (workflow_id, dax_label or "All"))

    col_names = transformation_stats_col_name_text
    if fmt == "csv": col_names = transformation_stats_col_name_csv

    transformation_statistics = stats.get_transformation_statistics()

    if fmt == "text":
        max_length = [max(0, len(col_names[i])) for i in range(8)]

        for t in transformation_statistics:
            max_length[0] = max(max_length[0], len(t.transformation))
            max_length[1] = max(max_length[1], len(str(t.count)))
            max_length[2] = max(max_length[2], len(str(t.success)))
            max_length[3] = max(max_length[3], len(str(t.failure)))
            max_length[4] = max(max_length[4], len(str(t.min)))
            max_length[5] = max(max_length[5], len(str(t.max)))
            max_length[6] = max(max_length[6], len(str(t.avg)))
            max_length[6] = max(max_length[7], len(str(t.sum)))

        max_length = [i + 1 for i in max_length]

    header_printed = False

    for t in transformation_statistics:
        content = [t.transformation, str(t.count), str(t.success), str(t.failure),
                   fstr(t.min), fstr(t.max), fstr(t.avg), fstr(t.sum)]

        if fmt == "text":
            for i in range(0, 8):
                col_names[i] = col_names[i].ljust(max_length[i])
                content[i] = content[i].ljust(max_length[i])

        if fmt == "csv":
            content = [workflow_id, dax_label] + content

        if not header_printed:
            header_printed = True
            report.append(print_row(col_names, transformation_stats_col_size, fmt))

        report.append(print_row(content, transformation_stats_col_size, fmt))

    return NEW_LINE_STR.join(report) + NEW_LINE_STR


def print_statistics_by_time_and_host(stats, fmt, combined=True, per_host=True):
    """
    Prints the job instance and invocation statistics sorted by time
    @param stats     : workflow statistics object reference
    @param fmt       : indicates how to format the output: "text" or "csv"
    @param combined  : print combined output (all hosts consolidated)
    @param per_host  : print per-host totals
    """
    report = []
    stats.set_job_filter('nonsub')
    stats.set_time_filter('hour')
    stats.set_transformation_filter(exclude=['condor::dagman'])

    if combined == True:
        col_names = time_stats_col_name_text
        if fmt == "csv": col_names = time_stats_col_name_csv

        report.append("\n# Job instances statistics per " + time_filter)
        report.append(print_row(col_names, time_stats_col_size, fmt))
        stats_by_time = stats.get_jobs_run_by_time()
        formatted = stats_utils.convert_stats_to_base_time(stats_by_time, time_filter)
        for s in formatted:
            content = [s['date_format'], str(s['count']), fstr(s['runtime'])]
            if fmt == "csv": content.insert(0, "jobs/" + time_filter)
            report.append(print_row(content, time_stats_col_size, fmt))


        report.append("\n# Invocation statistics run per " + time_filter)
        report.append(print_row(col_names, time_stats_col_size, fmt))
        stats_by_time = stats.get_invocation_by_time()
        formatted = stats_utils.convert_stats_to_base_time(stats_by_time, time_filter)
        for s in formatted:
            content = [s['date_format'], str(s['count']), fstr(s['runtime'])]
            if fmt == "csv": content.insert(0, "invocations/" + time_filter)
            report.append(print_row(content, time_stats_col_size, fmt))

    if per_host == True:
        col_names = time_host_stats_col_name_text
        if fmt == "csv": col_names = time_host_stats_col_name_csv

        report.append("\n# Job instances statistics on host per " + time_filter)
        report.append(print_row(col_names, time_host_stats_col_size, fmt))
        stats_by_time = stats.get_jobs_run_by_time_per_host()
        formatted_stats_list = stats_utils.convert_stats_to_base_time(stats_by_time, time_filter, True)
        for s in formatted_stats_list:
            content = [s['date_format'], str(s['host']), str(s['count']), fstr(s['runtime'])]
            if fmt == "csv": content.insert(0, "jobs/host/" + time_filter)
            report.append(print_row(content, time_host_stats_col_size, fmt))


        report.append("\n# Invocation statistics on host per " + time_filter)
        report.append(print_row(col_names, time_host_stats_col_size, fmt))
        stats_by_time = stats.get_invocation_by_time_per_host()
        formatted_stats_list = stats_utils.convert_stats_to_base_time(stats_by_time, time_filter, True)
        for s in formatted_stats_list:
            content = [s['date_format'], str(s['host']), str(s['count']), fstr(s['runtime'])]
            if fmt == "csv": content.insert(0, "invocations/host/" + time_filter)
            report.append(print_row(content, time_host_stats_col_size, fmt))

    return "\n".join(report)

def main():
    # Configure command line option parser
    prog_usage = "%s [options] [[SUBMIT_DIRECTORY ..] | [WORKFLOW_UUID ..]]" % sys.argv[0]

    parser = optparse.OptionParser(usage=prog_usage)
    parser.add_option("-o", "--output", action = "store", dest = "output_dir",
                      help = "Writes the output to given directory.")
    parser.add_option("-f", "--file", action="store", dest="filetype", choices=[FILE_TYPE_TXT, FILE_TYPE_CSV],
                      default=FILE_TYPE_TXT,
                      help="Select output file type. Valid values are 'text' and 'csv'. Default is '%default'.")
    parser.add_option("-c","--conf", action = "store", type = "string", dest = "config_properties", default=None,
                      help = "Specifies the properties file to use. This option overrides all other property files.")
    parser.add_option("-s", "--statistics-level", action="store", dest="statistics_level",
                      choices=['all', 'summary', 'wf_stats', 'jb_stats', 'tf_stats', 'ti_stats'],
                      default='summary',
                      help = "Valid levels are: all,summary,wf_stats,jb_stats,tf_stats,ti_stats; Default is '%default'.")
    parser.add_option("-t", "--time-filter", action = "store", dest = "time_filter",
                      choices=['day', 'hour'], default='day',
                      help = "Valid levels are: day,hour; Default is '%default'.")
    parser.add_option("-i", "--ignore-db-inconsistency", action="store_true", default=False,
                      dest = "ignore_db_inconsistency", help = "turn off the check for db consistency")
    parser.add_option("-v", "--verbose", action="count", default=0, dest="verbose",
                      help="Increase verbosity, repeatable")
    parser.add_option("-q", "--quiet", action="count", default=0, dest="quiet",
                      help="Decrease verbosity, repeatable")

    parser.add_option("-m", "--multiple-wf", action="store_true", dest="multiple_wf", default=False,
                      help="Calculate statistics for multiple workflows")
    parser.add_option("-p", "--ispmc", action="store_true", dest="is_pmc", default=False,
                      help="Calculate statistics for workflows which use PMC")
    parser.add_option("-u", "--isuuid", action="store_true", dest="is_uuid", default=False,
                      help="Set if the positional arguments are wf uuids")

    # Parse command line options
    (options, args) = parser.parse_args()

    # Multiple workflow is set to true if there are multiple positional arguments.
    multiple_wf = options.multiple_wf

    if len(args) < 1:
        # * means all workflows in the database, and . means current directory
        submit_dir = '.'
        if multiple_wf:
            submit_dir = '*'
    elif len(args) > 1:
        options.multiple_wf = True
        multiple_wf = True
        submit_dir = args
    else:
        options.multiple_wf = False
        multiple_wf = False
        submit_dir = args[0]

    log_level = options.verbose - options.quiet
    if log_level < 0:
        logger.setLevel(logging.ERROR)
    elif log_level == 0:
        logger.setLevel(logging.WARNING)
    elif log_level == 1:
        logger.setLevel(logging.INFO)
    elif log_level > 1:
        logger.setLevel(logging.DEBUG)

    def check_dump (dir):
        braindump = os.path.join(dir,"braindump.txt")
        if not os.path.isfile(braindump):
            sys.stderr.write("Not a workflow submit directory: %s\n" % submit_dir)
            sys.exit(1)

    if multiple_wf:
        #Check for braindump file's existence if workflows are not specified as UUIDs and
        # statistics need to be calculated only on a sub set of workflows
        if not options.is_uuid and submit_dir != '*':
            for dir in submit_dir:
                check_dump(dir)
    else:
        if not options.is_uuid:
            check_dump(submit_dir)

    if options.ignore_db_inconsistency:
        logger.warning("Ignoring db inconsistency")
        logger.warning("The tool is meant to be run after the completion of workflow run.")
    else:

        def loading_complete(dir):
            if not utils.loading_completed(dir):
                if utils.monitoring_running(dir):
                    sys.stderr.write("pegasus-monitord still running. Please wait for it to complete.\n")
                else:
                    sys.stderr.write("Please run pegasus monitord in replay mode.\n")
                sys.exit(1)

        if multiple_wf:
            if submit_dir == '*':
                logger.warning("Statistics have to be calculated on all workflows. Tool cannot check to see if all of them have finished. Ensure that all workflows have finished")

            if not options.is_uuid and submit_dir != '*':
                for dir in submit_dir:
                    loading_complete(dir)
        else:
            if not options.is_uuid:
                loading_complete(submit_dir)

    # Figure out what statistics we need to calculate
    global calc_wf_stats
    global calc_wf_summary
    global calc_jb_stats
    global calc_tf_stats
    global calc_ti_stats
    sl = options.statistics_level
    logger.info("Statistics level is %s" % sl)
    if sl == 'all':
        calc_wf_stats = True
        calc_wf_summary = True
        calc_tf_stats = True
        calc_ti_stats = True
        if not multiple_wf:
            calc_jb_stats = True
    elif sl =='summary':
        calc_wf_summary = True
    elif sl =='wf_stats':
        calc_wf_stats = True
    elif sl == 'jb_stats':
        if multiple_wf:
            logger.fatal('Job breakdown statistics cannot be computed over multiple workflows')
            sys.exit(1)
        calc_jb_stats = True
    elif sl == 'tf_stats':
        calc_tf_stats = True
    else:
        calc_ti_stats = True

    global file_type
    file_type = options.filetype
    logger.info("File type is %s" % file_type)

    global time_filter
    time_filter = options.time_filter
    logger.info("Time filter is %s" % time_filter)

    # Change the legend to show the time filter format
    tf_format = str(stats_utils.get_date_print_format(time_filter))

    time_stats_col_name_text[0] += tf_format
    time_stats_col_name_csv[1] += tf_format
    time_host_stats_col_name_text[0] += tf_format
    time_host_stats_col_name_csv[1] += tf_format

    if options.output_dir:
        output_dir = options.output_dir
    else:
        if multiple_wf or options.is_uuid:
            sys.stderr.write("Output directory option is required when calculating statistics over multiple workflows.\n")
            sys.exit(1)
        else:
            output_dir = os.path.join(submit_dir, DEFAULT_OUTPUT_DIR)

    logger.info("Output directory is %s" % output_dir)
    utils.create_directory(output_dir, True)

    global uses_PMC

    def use_pmc(dir):
        braindb = utils.slurp_braindb(dir)
        if "uses_pmc" in braindb:
            if "true" == braindb["uses_pmc"].lower():
                return True

        return False

    if options.is_pmc:
        logger.info('Calculating statistics with use of PMC clustering')
        uses_PMC = True
    else:
        if options.is_uuid:
            # User provided workflow UUID
            logger.info('Workflows are specified as UUIDs and ispmc option is not set.')
            uses_PMC = False
        else:
            # User provided workflow submit directories
            if multiple_wf:
                if submit_dir == '*':
                    logger.info('Calculating statistics over all workflows, and ispmc option is not set.')
                else:
                    # int(True) -> 1
                    tmp = sum([int(use_pmc(dir)) for dir in submit_dir])

                    # All workflow are either PMC or non PMC workflows?
                    if tmp == len(submit_dir) or tmp == 0:
                        uses_PMC = use_pmc(submit_dir[0])
                    else:
                        uses_PMC = False
                        logger.warn('Input workflows use both PMC & regular clustering! Calculating statistics with regular clustering')

            else:
                uses_PMC = use_pmc(submit_dir)

    # Check db_url, and get wf_uuid's
    if multiple_wf:
        if options.is_uuid or submit_dir == '*':
            # URL picked from config_properties file.
            output_db_url = db_utils.get_db_url(options.config_properties)
            wf_uuid = submit_dir

            if not output_db_url:
                logger.error('Unable to determine database URL. Kindly specify a value for "pegasus.monitord.output" property')
                sys.exit(1)
        else:
            db_url_set = set()
            wf_uuid = []

            for dir in submit_dir:
                db_url, uuid = db_utils.get_db_url_wf_uuid(dir, options.config_properties)
                db_url_set.add(db_url)
                wf_uuid.append(uuid)

            if len(db_url_set) != 1:
                logger.error("Workflows are distributed across multiple databases, which is not supported")
                sys.exit(1)

            output_db_url = db_url_set.pop()

    else:
        if options.is_uuid:
            output_db_url = db_utils.get_db_url(options.config_properties)
            wf_uuid = submit_dir

            if not output_db_url:
                logger.error('Unable to determine database URL. Kindly specify a value for "pegasus.monitord.output" property')
                sys.exit(1)
        else:
            output_db_url, wf_uuid = db_utils.get_db_url_wf_uuid(submit_dir, options.config_properties)

    logger.info('DB URL is: %s' % output_db_url)
    logger.info('workflow UUID is: %s' % wf_uuid)

    if output_db_url is not None:
        print_workflow_details(output_db_url, wf_uuid, output_dir, multiple_wf=multiple_wf)

if __name__ == '__main__':
    main()