This file is indexed.

/usr/include/paraview/vtkVertex.h is in paraview-dev 5.0.1+dfsg1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkVertex.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkVertex - a cell that represents a 3D point
// .SECTION Description
// vtkVertex is a concrete implementation of vtkCell to represent a 3D point.

#ifndef vtkVertex_h
#define vtkVertex_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkCell.h"

class vtkIncrementalPointLocator;

class VTKCOMMONDATAMODEL_EXPORT vtkVertex : public vtkCell
{
public:
  static vtkVertex *New();
  vtkTypeMacro(vtkVertex,vtkCell);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Make a new vtkVertex object with the same information as this object.

  // Description:
  // See the vtkCell API for descriptions of these methods.
  int GetCellType() {return VTK_VERTEX;};
  int GetCellDimension() {return 0;};
  int GetNumberOfEdges() {return 0;};
  int GetNumberOfFaces() {return 0;};
  vtkCell *GetEdge(int) {return 0;};
  vtkCell *GetFace(int) {return 0;};
  void Clip(double value, vtkDataArray *cellScalars,
            vtkIncrementalPointLocator *locator, vtkCellArray *pts,
            vtkPointData *inPd, vtkPointData *outPd,
            vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
            int insideOut);
  int EvaluatePosition(double x[3], double* closestPoint,
                       int& subId, double pcoords[3],
                       double& dist2, double *weights);
  void EvaluateLocation(int& subId, double pcoords[3], double x[3],
                        double *weights);
  virtual double *GetParametricCoords();

  // Description:
  // Given parametric coordinates of a point, return the closest cell
  // boundary, and whether the point is inside or outside of the cell. The
  // cell boundary is defined by a list of points (pts) that specify a vertex
  // (1D cell).  If the return value of the method is != 0, then the point is
  // inside the cell.
  int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);

  // Description:
  // Generate contouring primitives. The scalar list cellScalars are
  // scalar values at each cell point. The point locator is essentially a
  // points list that merges points as they are inserted (i.e., prevents
  // duplicates).
  void Contour(double value, vtkDataArray *cellScalars,
               vtkIncrementalPointLocator *locator, vtkCellArray *verts1,
               vtkCellArray *lines, vtkCellArray *verts2,
               vtkPointData *inPd, vtkPointData *outPd,
               vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);

  // Description:
  // Return the center of the triangle in parametric coordinates.
  int GetParametricCenter(double pcoords[3]);

  // Description:
  // Intersect with a ray. Return parametric coordinates (both line and cell)
  // and global intersection coordinates, given ray definition and tolerance.
  // The method returns non-zero value if intersection occurs.
  int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
                        double x[3], double pcoords[3], int& subId);

  // Description:
  // Triangulate the vertex. This method fills pts and ptIds with information
  // from the only point in the vertex.
  int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);

  // Description:
  // Get the derivative of the vertex. Returns (0.0, 0.0, 0.0) for all
  // dimensions.
  void Derivatives(int subId, double pcoords[3], double *values,
                   int dim, double *derivs);

  // Description:
  // @deprecated Replaced by vtkVertex::InterpolateFunctions as of VTK 5.2
  static void InterpolationFunctions(double pcoords[3], double weights[1]);
  // Description:
  // @deprecated Replaced by vtkVertex::InterpolateDerivs as of VTK 5.2
  static void InterpolationDerivs(double pcoords[3], double derivs[3]);
  // Description:
  // Compute the interpolation functions/derivatives
  // (aka shape functions/derivatives)
  virtual void InterpolateFunctions(double pcoords[3], double weights[1])
    {
    vtkVertex::InterpolationFunctions(pcoords,weights);
    }
  virtual void InterpolateDerivs(double pcoords[3], double derivs[3])
    {
    vtkVertex::InterpolationDerivs(pcoords,derivs);
    }

protected:
  vtkVertex();
  ~vtkVertex() {}

private:
  vtkVertex(const vtkVertex&);  // Not implemented.
  void operator=(const vtkVertex&);  // Not implemented.
};

//----------------------------------------------------------------------------
inline int vtkVertex::GetParametricCenter(double pcoords[3])
{
  pcoords[0] = pcoords[1] = pcoords[2] = 0.0;
  return 0;
}

#endif