/usr/include/paraview/vtkVector.h is in paraview-dev 5.0.1+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkVector.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkVector - templated base type for storage of vectors.
//
// .SECTION Description
// This class is a templated data type for storing and manipulating fixed size
// vectors, which can be used to represent two and three dimensional points. The
// memory layout is a contiguous array of the specified type, such that a
// float[2] can be cast to a vtkVector2f and manipulated. Also a float[6] could
// be cast and used as a vtkVector2f[3].
#ifndef vtkVector_h
#define vtkVector_h
#include "vtkTuple.h"
#include "vtkObject.h" // for legacy macros
#include <cmath> // For math functions
template<typename T, int Size>
class vtkVector : public vtkTuple<T, Size>
{
public:
vtkVector()
{
}
// Description:
// Initialize all of the vector's elements with the supplied scalar.
explicit vtkVector(const T& scalar) : vtkTuple<T, Size>(scalar)
{
}
// Description:
// Initalize the vector's elements with the elements of the supplied array.
// Note that the supplied pointer must contain at least as many elements as
// the vector, or it will result in access to out of bounds memory.
explicit vtkVector(const T* init) : vtkTuple<T, Size>(init)
{
}
// Description:
// Get the squared norm of the vector.
T SquaredNorm() const
{
T result = 0;
for (int i = 0; i < Size; ++i)
{
result += this->Data[i] * this->Data[i];
}
return result;
}
// Description:
// Get the norm of the vector, i.e. its length.
double Norm() const
{
return sqrt(static_cast<double>(this->SquaredNorm()));
}
// Description:
// Normalize the vector in place.
// \return The length of the vector.
double Normalize()
{
const double norm(this->Norm());
const double inv(1.0 / norm);
for (int i = 0; i < Size; ++i)
{
this->Data[i] = static_cast<T>(this->Data[i] * inv);
}
return norm;
}
// Description:
// Return the normalized form of this vector.
// \return The normalized form of this vector.
vtkVector<T, Size> Normalized() const
{
vtkVector<T, Size> temp(*this);
temp.Normalize();
return temp;
}
// Description:
// The dot product of this and the supplied vector.
T Dot(const vtkVector<T, Size>& other) const
{
T result(0);
for (int i = 0; i < Size; ++i)
{
result += this->Data[i] * other[i];
}
return result;
}
// Description:
// Cast the vector to the specified type, returning the result.
template<typename TR>
vtkVector<TR, Size> Cast() const
{
vtkVector<TR, Size> result;
for (int i = 0; i < Size; ++i)
{
result[i] = static_cast<TR>(this->Data[i]);
}
return result;
}
};
// .NAME vtkVector2 - templated base type for storage of 2D vectors.
//
template<typename T>
class vtkVector2 : public vtkVector<T, 2>
{
public:
vtkVector2()
{
}
explicit vtkVector2(const T& scalar) : vtkVector<T, 2>(scalar)
{
}
explicit vtkVector2(const T* init) : vtkVector<T, 2>(init)
{
}
vtkVector2(const T& x, const T& y)
{
this->Data[0] = x;
this->Data[1] = y;
}
// Description:
// Set the x and y components of the vector.
void Set(const T& x, const T& y)
{
this->Data[0] = x;
this->Data[1] = y;
}
// Description:
// Set the x component of the vector, i.e. element 0.
void SetX(const T& x) { this->Data[0] = x; }
// Description:
// Get the x component of the vector, i.e. element 0.
const T& GetX() const { return this->Data[0]; }
// Description:
// Set the y component of the vector, i.e. element 1.
void SetY(const T& y) { this->Data[1] = y; }
// Description:
// Get the y component of the vector, i.e. element 1.
const T& GetY() const { return this->Data[1]; }
};
// .NAME vtkVector3 - templated base type for storage of 3D vectors.
//
template<typename T>
class vtkVector3 : public vtkVector<T, 3>
{
public:
vtkVector3()
{
}
explicit vtkVector3(const T& scalar) : vtkVector<T, 3>(scalar)
{
}
explicit vtkVector3(const T* init) : vtkVector<T, 3>(init)
{
}
vtkVector3(const T& x, const T& y, const T& z)
{
this->Data[0] = x;
this->Data[1] = y;
this->Data[2] = z;
}
// Description:
// Set the x, y and z components of the vector.
void Set(const T& x, const T& y, const T& z)
{
this->Data[0] = x;
this->Data[1] = y;
this->Data[2] = z;
}
// Description:
// Set the x component of the vector, i.e. element 0.
void SetX(const T& x) { this->Data[0] = x; }
// Description:
// Get the x component of the vector, i.e. element 0.
const T& GetX() const { return this->Data[0]; }
// Description:
// Set the y component of the vector, i.e. element 1.
void SetY(const T& y) { this->Data[1] = y; }
// Description:
// Get the y component of the vector, i.e. element 1.
const T& GetY() const { return this->Data[1]; }
// Description:
// Set the z component of the vector, i.e. element 2.
void SetZ(const T& z) { this->Data[2] = z; }
// Description:
// Get the z component of the vector, i.e. element 2.
const T& GetZ() const { return this->Data[2]; }
// Description:
// Return the cross product of this X other.
vtkVector3<T> Cross(const vtkVector3<T>& other) const
{
vtkVector3<T> res;
res[0] = this->Data[1] * other.Data[2] - this->Data[2] * other.Data[1];
res[1] = this->Data[2] * other.Data[0] - this->Data[0] * other.Data[2];
res[2] = this->Data[0] * other.Data[1] - this->Data[1] * other.Data[0];
return res;
}
};
// Description:
// Some inline functions for the derived types.
#define vtkVectorNormalized(vectorType, type, size) \
vectorType Normalized() const \
{ \
return vectorType(vtkVector<type, size>::Normalized().GetData()); \
} \
#define vtkVectorDerivedMacro(vectorType, type, size) \
vtkVectorNormalized(vectorType, type, size) \
explicit vectorType(type s) : Superclass(s) {} \
explicit vectorType(const type *i) : Superclass(i) {} \
explicit vectorType(const vtkTuple<type, size> &o) : Superclass(o.GetData()) {} \
vectorType(const vtkVector<type, size> &o) : Superclass(o.GetData()) {} \
// Description:
// Some derived classes for the different vectors commonly used.
class vtkVector2i : public vtkVector2<int>
{
public:
typedef vtkVector2<int> Superclass;
vtkVector2i() {}
vtkVector2i(int x, int y) : vtkVector2<int>(x, y) {}
vtkVectorDerivedMacro(vtkVector2i, int, 2)
};
class vtkVector2f : public vtkVector2<float>
{
public:
typedef vtkVector2<float> Superclass;
vtkVector2f() {}
vtkVector2f(float x, float y) : vtkVector2<float>(x, y) {}
vtkVectorDerivedMacro(vtkVector2f, float, 2)
};
class vtkVector2d : public vtkVector2<double>
{
public:
typedef vtkVector2<double> Superclass;
vtkVector2d() {}
vtkVector2d(double x, double y) : vtkVector2<double>(x, y) {}
vtkVectorDerivedMacro(vtkVector2d, double, 2)
};
#define vtkVector3Cross(vectorType, type) \
vectorType Cross(const vectorType& other) const \
{ \
return vectorType(vtkVector3<type>::Cross(other).GetData()); \
} \
class vtkVector3i : public vtkVector3<int>
{
public:
typedef vtkVector3<int> Superclass;
vtkVector3i() {}
vtkVector3i(int x, int y, int z) : vtkVector3<int>(x, y, z) {}
vtkVectorDerivedMacro(vtkVector3i, int, 3)
vtkVector3Cross(vtkVector3i, int)
};
class vtkVector3f : public vtkVector3<float>
{
public:
typedef vtkVector3<float> Superclass;
vtkVector3f() {}
vtkVector3f(float x, float y, float z) : vtkVector3<float>(x, y, z) {}
vtkVectorDerivedMacro(vtkVector3f, float, 3)
vtkVector3Cross(vtkVector3f, float)
};
class vtkVector3d : public vtkVector3<double>
{
public:
typedef vtkVector3<double> Superclass;
vtkVector3d() {}
vtkVector3d(double x, double y, double z) : vtkVector3<double>(x, y, z) {}
vtkVectorDerivedMacro(vtkVector3d, double, 3)
vtkVector3Cross(vtkVector3d, double)
};
#endif // vtkVector_h
// VTK-HeaderTest-Exclude: vtkVector.h
|