/usr/include/paraview/vtkSurfaceLICPainter.h is in paraview-dev 5.0.1+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkSurfaceLICPainter.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkSurfaceLICPainter - painter that performs LIC on the surface of
// arbitrary geometry.
//
// .SECTION Description
// vtkSurfaceLICPainter painter performs LIC on the surface of arbitrary
// geometry. Point vectors are used as the vector field for generating the LIC.
// The implementation was originallu based on "Image Space Based Visualization
// on Unsteady Flow on Surfaces" by Laramee, Jobard and Hauser appeared in
// proceedings of IEEE Visualization '03, pages 131-138.
//
// Internal pipeline:
// <pre>
// noise
// |
// [ PROJ (GAT) (COMP) LIC2D (SCAT) SHADE (CCE) DEP]
// | |
// vectors surface LIC
// </pre>
// PROj - prject vectors onto surface
// GAT - gather data for compositing and guard pixel generation (parallel only)
// COMP - composite gathered data
// LIC2D - line intengral convolution, see vtkLineIntegralConvolution2D.
// SCAT - scatter result (parallel only, not all compositors use it)
// SHADE - combine LIC and scalar colors
// CCE - color contrast enhancement (optional)
// DEP - depth test and copy to back buffer
//
// The result of each stage is cached in a texture so that during interaction
// a stage may be skipped if the user has not modified its paramters or input
// data.
//
// The parallel parts of algorithm are implemented in vtkPSurfaceLICPainter.
// Note that for MPI enabled builds this class will be automatically created
// by the object factory.
//
// .SECTION See also
// vtkSurfaceLICDefaultPainter vtkLineIntegralConvolution2D
#ifndef vtkSurfaceLICPainter_h
#define vtkSurfaceLICPainter_h
#include "vtkRenderingLICModule.h" // For export macro
#include "vtkPainter.h"
class vtkRenderWindow;
class vtkRenderer;
class vtkActor;
class vtkImageData;
class vtkDataObject;
class vtkDataArray;
class vtkPainterCommunicator;
class VTKRENDERINGLIC_EXPORT vtkSurfaceLICPainter : public vtkPainter
{
public:
static vtkSurfaceLICPainter* New();
vtkTypeMacro(vtkSurfaceLICPainter, vtkPainter);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Release any graphics resources that are being consumed by this mapper.
// The parameter window could be used to determine which graphic
// resources to release. In this case, releases the display lists.
virtual void ReleaseGraphicsResources(vtkWindow * win);
// Description:
// Get the output data object from this painter.
// Overridden to pass the input points (or cells) vectors as the tcoords to
// the deletage painters. This is required by the internal GLSL shader
// programs used for generating LIC.
virtual vtkDataObject* GetOutput();
// Description:
// Enable/Disable this painter.
void SetEnable(int val);
vtkGetMacro(Enable, int);
void SetEnableOn(){ this->SetEnable(1); }
void SetEnableOff(){ this->SetEnable(0); }
// Description:
// Set the vectors to used for applying LIC. By default point vectors are
// used. Arguments are same as those passed to
// vtkAlgorithm::SetInputArrayToProcess except the first 3 arguments i.e. idx,
// port, connection.
void SetInputArrayToProcess(int fieldAssociation, const char *name);
void SetInputArrayToProcess(int fieldAssociation, int fieldAttributeType);
// Description:
// Get/Set the number of integration steps in each direction.
void SetNumberOfSteps(int val);
vtkGetMacro(NumberOfSteps, int);
// Description:
// Get/Set the step size (in pixels).
void SetStepSize(double val);
vtkGetMacro(StepSize, double);
// Description:
// Normalize vectors during integration. When set(the default) the
// input vector field is normalized during integration, and each
// integration occurs over the same arclength. When not set each
// integration occurs over an arc length proportional to the field
// magnitude as is customary in traditional numerical methods. See,
// "Imaging Vector Fields Using Line Integral Convolution" for an
// axample where normalization is used. See, "Image Space Based
// Visualization of Unsteady Flow on Surfaces" for an example
// of where no normalization is used.
void SetNormalizeVectors(int val);
vtkBooleanMacro(NormalizeVectors, int);
vtkGetMacro(NormalizeVectors, int);
// Description:
// When set MaskOnSurface computes |V| for use in the fragment masking
// tests on the surface. When not set the original un-projected
// un-transformed |V| is used.
void SetMaskOnSurface(int val);
vtkBooleanMacro(MaskOnSurface, int);
vtkGetMacro(MaskOnSurface, int);
// Description:
// The MaskThreshold controls the rendering of fragments in stagnant
// regions of flow. // In these regions LIC noise texture will be masked,
// where |V| < MaskThreshold is satisifed. The masking process blends a
// the MaskColor with the scalar color of the surface proportional to
// MaskIntesnsity. See MaskIntensity for more information on the blending
// algorithm. This blending allows one control over the masking process
// so that masked fragments may be: highlighted (by setting a unique
// mask color and mask intensity > 0), made invisible with and without
// passing the un-convolved noise texture (by setting mask intensity 0),
// made to blend into the LIC.
//
// MaskThreshold units are in the original vector space. Note that the
// threshold can be applied to the original vector field or to the surface
// projected vector field. See MaskOnSurface.
void SetMaskThreshold(double val);
vtkGetMacro(MaskThreshold, double);
// Description:
// The MaskColor is used on masked fragments. The default of (0.5, 0.5, 0.5)
// makes the masked fragments look similar to the LIC'd fragments. The mask
// color is applied only when MaskIntensity > 0.
void SetMaskColor(double *val);
void SetMaskColor(double r, double g, double b)
{ double rgb[3]={r,g,b}; this->SetMaskColor(rgb); }
vtkGetVector3Macro(MaskColor, double);
// Description:
// The MaskIntensity controls the blending of the mask color and the geometry
// color. The color of masked fragments is given by:
//
// c = maskColor * maskIntensity + geomColor * (1 - maskIntensity)
//
// The default value of 0.0 results in the geometry color being used.
void SetMaskIntensity(double val);
vtkGetMacro(MaskIntensity, double);
// Description:
// EnhancedLIC mean compute the LIC twice with the second pass using
// the edge-enhanced result of the first pass as a noise texture. Edge
// enhancedment is made by a simple Laplace convolution.
void SetEnhancedLIC(int val);
vtkGetMacro(EnhancedLIC, int);
vtkBooleanMacro(EnhancedLIC, int);
// Description:
// Enable/Disable contrast and dynamic range correction stages. Contrast
// enhancement can be enabled during LIC computations (See
// vtkLineINtegralComvolution2D) and after the scalar colors have been
// combined with the LIC.
//
// The best appraoch for using this feature is to enable LIC enhancement,
// and only if the image is to dark or dull enable COLOR enhancement.
//
// Both stages are implemented by a histogram stretching algorithm. During
// LIC stages the contrast enhancement is applied to gray scale LIC image.
// During the scalar coloring stage the contrast enhancement is applied to
// the lightness channel of the color image in HSL color space. The
// histogram stretching is implemented as follows:
//
// L = (L-m)/(M-m)
//
// where, L is the fragment intensity/lightness, m is the intensity/lightness
// to map to 0, M is the intensity/lightness to map to 1. The default values
// of m and M are the min and max taken over all fragments.
//
// This increase the dynamic range and contrast in the LIC'd image, both of
// which are natuarly attenuated by the convolution proccess.
//
// Values
//
// ENHANCE_CONTRAST_OFF -- don't enhance LIC or scalar colors
// ENHANCE_CONTRAST_LIC -- enhance in LIC high-pass input and output
// ENHANCE_CONTRAST_COLOR -- enhance after scalars are combined with LIC
// ENHANCE_CONTRAST_BOTH -- enhance in LIC stages and after scalar colors
//
// This feature is disabled by default.
enum {
ENHANCE_CONTRAST_OFF=0,
ENHANCE_CONTRAST_LIC=1,
ENHANCE_CONTRAST_COLOR=3,
ENHANCE_CONTRAST_BOTH=4
};
void SetEnhanceContrast(int val);
vtkGetMacro(EnhanceContrast, int);
// Description:
// This feature is used to fine tune the contrast enhancement. There are two
// modes AUTOMATIC and MANUAL.In AUTOMATIC mode values are provided indicating
// the fraction of the range to adjust M and m by, during contrast enahncement
// histogram stretching. M and m are the intensity/lightness values that map
// to 1 and 0. (see EnhanceContrast for an explanation of the mapping
// procedure). m and M are computed using the factors as follows:
//
// m = min(C) + mFactor * (max(C) - min(C))
// M = max(C) - MFactor * (max(C) - min(C))
//
// the default values for mFactor and MFactor are 0 which result in
// m = min(C), M = max(C), taken over the entire image. Modifying mFactor and
// MFactor above or below zero provide control over the saturation/
// de-saturation during contrast enhancement.
vtkGetMacro(LowLICContrastEnhancementFactor, double);
vtkGetMacro(HighLICContrastEnhancementFactor, double);
void SetLowLICContrastEnhancementFactor(double val);
void SetHighLICContrastEnhancementFactor(double val);
//
vtkGetMacro(LowColorContrastEnhancementFactor, double);
vtkGetMacro(HighColorContrastEnhancementFactor, double);
void SetLowColorContrastEnhancementFactor(double val);
void SetHighColorContrastEnhancementFactor(double val);
// Description:
// Enable/Disable the anti-aliasing pass. This optional pass (disabled by
// default) can be enabled to reduce jagged patterns in the final LIC image.
// Values greater than 0 control the number of iterations, 1 is typically
// sufficient.
void SetAntiAlias(int val);
vtkBooleanMacro(AntiAlias, int);
vtkGetMacro(AntiAlias, int);
// Description:
// Set/Get the color mode. The color mode controls how scalar colors are
// combined with the LIC in the final image. The BLEND mode combines scalar
// colors with LIC intensities with proportional blending controled by the
// LICIntensity parameter. The MAP mode combines scalar colors with LIC,
// by multiplication the HSL represntation of color's lightness.
//
// The default is COLOR_MODE_BLEND.
enum {
COLOR_MODE_BLEND=0,
COLOR_MODE_MAP
};
void SetColorMode(int val);
vtkGetMacro(ColorMode, int);
// Description:
// Factor used when blend mode is set to COLOR_MODE_BLEND. This controls the
// contribution of the LIC in the final output image as follows:
//
// c = LIC * LICIntensity + scalar * (1 - LICIntensity);
//
// 0.0 produces same result as disabling LIC altogether, while 1.0 implies
// show LIC result alone.
void SetLICIntensity(double val);
vtkGetMacro(LICIntensity, double);
// Description:
// Factor used when blend mode is set to COLOR_MODE_MAP. This adds a bias to
// the LIC image. The purpose of this is to adjust the brightness when a
// brighter image is desired. The default of 0.0 results in no change. Values
// gretaer than 0.0 will brighten the image while values less than 0.0 darken
// the image.
void SetMapModeBias(double val);
vtkGetMacro(MapModeBias, double);
// Description:
// Set the data containing a noise array as active scalars. Active scalars
// array will be converted into a texture for use as noise in the LIC process.
// Noise datasets are expected to be gray scale.
void SetNoiseDataSet(vtkImageData *data);
vtkImageData *GetNoiseDataSet();
// Description:
// Set/Get the noise texture source. When not set the default 200x200 white
// noise texture is used (see VTKData/Data/Data/noise.png). When set a noise
// texture is generated based on the following parameters:
//
// NoiseType - select noise type. Gaussian, Uniform, etc
// NoiseTextureSize - number of pixels in square noise texture(side)
// NoiseGrainSize - number of pixels each noise value spans(side)
// MinNoiseValue - minimum noise color >=0 && < MaxNoiseValue
// MaxNoiseValue - maximum noise color <=1 ** > MinNoiseValue
// NumberOfNoiseLevels - number of discrete noise colors
// ImpulseNoiseProbability - impulse noise is generated when < 1
// ImpulseNoiseBackgroundValue - the background color for untouched pixels
// NoiseGeneratorSeed - seed the random number generators
//
// Changing the noise texture gives one greater control over the look of the
// final image. The default is 0 which results in the use of a static 200x200
// Gaussian noise texture. See VTKData/Data/Data/noise.png.
void SetGenerateNoiseTexture(int shouldGenerate);
vtkGetMacro(GenerateNoiseTexture, int);
// Description:
// Select the statistical distribution of randomly generated noise values.
// With uniform noise there is greater control over the range of values
// in the noise texture. The Default is NOISE_TYPE_GAUSSIAN.
enum {
NOISE_TYPE_UNIFORM=0,
NOISE_TYPE_GAUSSIAN=1,
NOISE_TYPE_PERLIN=2
};
void SetNoiseType(int type);
vtkGetMacro(NoiseType, int);
// Description:
// Set/Get the side length in pixels of the noise texture. The texture will
// be length^2 pixels in area.
void SetNoiseTextureSize(int length);
vtkGetMacro(NoiseTextureSize, int);
// Description:
// Set/Get the side length in pixels of the noise values in the noise texture.
// Each noise value will be length^2 pixels in area.
void SetNoiseGrainSize(int val);
vtkGetMacro(NoiseGrainSize, int);
// Description:
// Set/Get the minimum and mximum gray scale values that the generated noise
// can take on. The generated noise will be in the range of MinNoiseValue to
// MaxNoiseValue. Values are clamped within 0 to 1. MinNoiseValue must be
// less than MaxNoiseValue.
void SetMinNoiseValue(double val);
void SetMaxNoiseValue(double val);
vtkGetMacro(MinNoiseValue, double);
vtkGetMacro(MaxNoiseValue, double);
// Description:
// Set/Get the number of discrete values a noise pixel may take on. Default
// 1024.
void SetNumberOfNoiseLevels(int val);
vtkGetMacro(NumberOfNoiseLevels, int);
// Description:
// Control the density of of the noise. A value of 1.0 produces uniform random
// noise while values < 1.0 produce impulse noise with the given probabilty.
void SetImpulseNoiseProbability(double val);
vtkGetMacro(ImpulseNoiseProbability, double);
// Description:
// The color to use for untouched pixels when impulse noise probability < 1.
void SetImpulseNoiseBackgroundValue(double val);
vtkGetMacro(ImpulseNoiseBackgroundValue, double);
// Description:
// Set/Get the seed value used by the random number generator.
void SetNoiseGeneratorSeed(int val);
vtkGetMacro(NoiseGeneratorSeed, int);
// Description:
// Control the screen space decomposition where LIC is computed.
enum {
COMPOSITE_INPLACE=0,
COMPOSITE_INPLACE_DISJOINT=1,
COMPOSITE_BALANCED=2,
COMPOSITE_AUTO=3
};
void SetCompositeStrategy(int val);
vtkGetMacro(CompositeStrategy, int);
// Description:
// Returns true if the rendering context supports extensions needed by this
// painter.
static bool IsSupported(vtkRenderWindow *context);
// Description:
// Methods used for parallel benchmarks. Use cmake to define
// vtkSurfaceLICPainterTIME to enable benchmarks. During each
// update timing information is stored, it can be written to
// disk by calling WriteLog.
virtual void WriteTimerLog(const char *){}
protected:
vtkSurfaceLICPainter();
~vtkSurfaceLICPainter();
// Description:
// Called before RenderInternal() if the Information has been changed
// since the last time this method was called. We use this to detect
// when LUT has changed.
virtual void ProcessInformation(vtkInformation* info);
// Description:
// Get the min/max across all ranks. min/max are in/out.
// In serial operation this is a no-op, in parallel it
// is a global collective reduction.
virtual void GetGlobalMinMax(vtkPainterCommunicator*, float&, float&){}
// Description:
// Methods used for parallel benchmarks. Use cmake to define
// vtkSurfaceLICPainterTIME to enable benchmarks. During each
// update timing information is stored, it can be written to
// disk by calling WriteLog.
virtual void StartTimerEvent(const char *){}
virtual void EndTimerEvent(const char *){}
// Description:
// Creates a new communicator with/without the calling processes
// as indicated by the passed in flag, if not 0 the calling process
// is included in the new communicator. In parallel this call is mpi
// collective on the world communicator. In serial this is a no-op.
virtual vtkPainterCommunicator *CreateCommunicator(int);
// Description:
// Creates a new communicator for internal use based on this
// rank's visible data.
void CreateCommunicator();
// Description:
// Computes data bounds.
void GetBounds(vtkDataObject* data, double bounds[6]);
// Description:
// Take part in garbage collection.
virtual void ReportReferences(vtkGarbageCollector *collector);
// Description:
// Updates the noise texture, downsampling by the requested sample rate.
void UpdateNoiseImage(vtkRenderWindow *renWin);
// Description:
// Performs the actual rendering. Subclasses may override this method.
// default implementation merely call a Render on the DelegatePainter,
// if any. When RenderInternal() is called, it is assured that the
// DelegatePainter is in sync with this painter i.e. UpdateDelegatePainter()
// has been called.
virtual void RenderInternal(
vtkRenderer* renderer,
vtkActor* actor,
unsigned long typeflags,
bool forceCompileOnly);
// Description:
// Look for changes that would trigger stage updates
void ValidateContext(vtkRenderer *renderer);
// Description:
// Return false if stage can be skipped
bool NeedToUpdateOutputData();
virtual bool NeedToUpdateCommunicator();
bool NeedToRenderGeometry(vtkRenderer *renderer, vtkActor *actor);
bool NeedToGatherVectors();
bool NeedToComputeLIC();
bool NeedToColorLIC();
void SetUpdateAll();
// Description:
// resoucre allocators
bool PrepareOutput();
void InitializeResources();
// Description:
// set tcoords with vectors
bool VectorsToTCoords(vtkDataObject *dataObj);
bool VectorsToTCoords(vtkDataSet *dataObj);
void ClearTCoords(vtkDataSet *data);
// Description:
// Returns true when rendering LIC is possible.
bool CanRenderSurfaceLIC(vtkActor *actor, int typeflags);
protected:
// Unit is a pixel length.
int NumberOfSteps;
double StepSize;
int NormalizeVectors;
int EnhancedLIC;
int EnhanceContrast;
double LowLICContrastEnhancementFactor;
double HighLICContrastEnhancementFactor;
double LowColorContrastEnhancementFactor;
double HighColorContrastEnhancementFactor;
int AntiAlias;
int MaskOnSurface;
double MaskThreshold;
double MaskIntensity;
double MaskColor[3];
int ColorMode;
double LICIntensity;
double MapModeBias;
int GenerateNoiseTexture;
int NoiseType;
int NoiseTextureSize;
int NoiseGrainSize;
double MinNoiseValue;
double MaxNoiseValue;
int NumberOfNoiseLevels;
double ImpulseNoiseProbability;
double ImpulseNoiseBackgroundValue;
int NoiseGeneratorSeed;
int AlwaysUpdate;
int Enable;
int CompositeStrategy;
vtkDataObject* Output;
class vtkInternals;
vtkInternals* Internals;
private:
vtkSurfaceLICPainter(const vtkSurfaceLICPainter&); // Not implemented.
void operator=(const vtkSurfaceLICPainter&); // Not implemented.
};
#endif
|