This file is indexed.

/usr/include/paraview/vtkStructuredGridConnectivity.h is in paraview-dev 5.0.1+dfsg1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
/*=========================================================================

 Program:   Visualization Toolkit
 Module:    vtkStructuredGridConnectivity.h

 Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
 All rights reserved.
 See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

 This software is distributed WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 PURPOSE.  See the above copyright notice for more information.

 =========================================================================*/
// .NAME vtkStructuredGridConnectivity.h -- Constructs structured connectivity
//
// .SECTION Description
//  vtkStructuredGridConnectivity is a concrete instance of vtkObject that
//  implements functionality for computing the neighboring topology within a
//  single partitioned structured grid dataset. This class implementation does
//  not have any support for distributed data. For the parallel implementation
//  see vtkPStructuredGridConnectivity.
//
// .SECTION See Also
//  vtkGhostArray vtkPStructuredGridConnectivity

#ifndef vtkStructuredGridConnectivity_h
#define vtkStructuredGridConnectivity_h

#define VTK_NO_OVERLAP      0
#define VTK_NODE_OVERLAP    1
#define VTK_EDGE_OVERLAP    2
#define VTK_PARTIAL_OVERLAP 3

// VTK include directives
#include "vtkFiltersGeometryModule.h" // For export macro
#include "vtkAbstractGridConnectivity.h"
#include "vtkStructuredNeighbor.h" // For Structured Neighbor object definition
#include "vtkStructuredData.h" // For data description definitions

// C++ include directives
#include <iostream> // For cout
#include <vector>   // For STL vector
#include <map>      // For STL map
#include <utility>  // For STL pair and overloaded relational operators
#include <cassert>  // For assert()

// Forward Declarations
class vtkIdList;
class vtkUnsignedCharArray;
class vtkPointData;
class vtkCellData;
class vtkPoints;

class VTKFILTERSGEOMETRY_EXPORT vtkStructuredGridConnectivity :
  public vtkAbstractGridConnectivity
{
public:
  static vtkStructuredGridConnectivity* New();
  vtkTypeMacro( vtkStructuredGridConnectivity, vtkAbstractGridConnectivity );
  void PrintSelf(ostream& os, vtkIndent  indent );

  // Description:
  // Set/Get the whole extent of the grid
  vtkSetVector6Macro(WholeExtent,int);
  vtkGetVector6Macro(WholeExtent,int);

  // Description:
  // Returns the data dimension based on the whole extent
  vtkGetMacro(DataDimension,int);

  // Description:
  // Set/Get the total number of domains distributed among processors
  virtual void SetNumberOfGrids( const unsigned int N );

  // Description:
  // Registers the current grid corresponding to the grid ID by its global
  // extent w.r.t. the whole extent.
  virtual void RegisterGrid( const int gridID, int extents[6],
      vtkUnsignedCharArray* nodesGhostArray,
      vtkUnsignedCharArray* cellGhostArray,
      vtkPointData* pointData,
      vtkCellData* cellData,
      vtkPoints* gridNodes );

  // Description:
  // Returns the grid extent of the grid corresponding to the given grid ID.
  void GetGridExtent( const int gridID, int extent[6] );

  // Description:
  // Sets the ghosted grid extent for the grid corresponding to the given
  // grid ID to the given extent.
  void SetGhostedGridExtent( const int gridID, int ext[6] );

  // Description:
  // Returns the ghosted grid extent for the block corresponding the
  void GetGhostedGridExtent( const int gridID, int ext[6] );

  // Description:
  // Computes neighboring information
  virtual void ComputeNeighbors();

  // Description:
  // Returns the number of neighbors for the grid corresponding to the given
  // grid ID.
  int GetNumberOfNeighbors( const int gridID )
    { return( static_cast<int>(this->Neighbors[ gridID ].size() )); };

  // Description:
  // Returns the neighbor corresponding to the index nei for the grid with the
  // given (global) grid ID.
  vtkStructuredNeighbor GetGridNeighbor(const int gridID, const int nei);

  // Description:
  // Returns the list of neighboring blocks for the given grid and the
  // corresponding overlapping extents are filled in the 1-D flat array
  // strided by 6.
  //
  // NOTE: the flat array extents must be pre-allocated.
  vtkIdList* GetNeighbors( const int gridID, int *extents );

  // Description:
  // Filles the mesh property arrays, nodes and cells, for the grid
  // corresponding to the given grid ID.
  // NOTE: this method assumes that ComputeNeighbors() has been called.
  void FillGhostArrays(
     const int gridID,
     vtkUnsignedCharArray *nodesArray,
     vtkUnsignedCharArray *cellsArray );

  // Description:
  // Creates ghost layers.
  virtual void CreateGhostLayers( const int N=1 );

protected:
  vtkStructuredGridConnectivity();
  virtual ~vtkStructuredGridConnectivity();

  // Description:
  // Returns true iff Lo <= idx <= Hi, otherwise false.
  bool InBounds( const int idx, const int Lo, const int Hi )
  { return( (idx>=Lo) && (idx<=Hi) ); };

  // Description:
  // Returns true iff Lo < idx < Hi, otherwise false.
  bool StrictlyInsideBounds( const int idx, const int Lo, const int Hi )
  { return( (idx > Lo) && (idx < Hi) ); };

  // Description:
  // Returns true iff A is a subset of B, otherwise false.
  bool IsSubset( int A[2], int B[2] )
  { return( this->InBounds(A[0], B[0], B[1]) &&
            this->InBounds(A[1], B[0], B[1]) ); };

  // Description:
  // Returns the cardinality of a range S.
  int Cardinality( int S[2] ) { return( S[1]-S[0]+1 ); };

  // Description:
  // Returns the number of nodes per cell according to the given dimension.
  int GetNumberOfNodesPerCell( const int dim )
    {
      int numNodes = 0;
      switch( dim )
        {
        case 1:
         numNodes = 2; // line cell
         break;
        case 2:
         numNodes = 4; // quad cell
         break;
        case 3:
         numNodes = 8; // hex cell
         break;
        default:
         assert( "ERROR: code should not reach here!" && false );
        } // END switch
      return( numNodes );
    }

  // Description:
  // Fills the the ghost array for the nodes
  void FillNodesGhostArray(
      const int gridID, const int dataDescription,
      int GridExtent[6], int RealExtent[6], vtkUnsignedCharArray *nodeArray );

  // Description:
  // Fills the ghost array for the grid cells
  void FillCellsGhostArray(
      const int dataDescription, const int numNodesPerCell,
      int dims[3], int CellExtent[6], vtkUnsignedCharArray *nodesArray,
      vtkUnsignedCharArray *cellsArray );

  // Description:
  // Given a point (i,j,k) belonging to the grid corresponding to the given
  // gridID, this method searches for the grids that this point is neighboring
  // with.
  void SearchNeighbors(
      const int gridID,
      const int i, const int j, const int k,
      vtkIdList *neiList );

  // Description:
  // Marks the node properties with the node with the given global i,j,k
  // grid coordinates w.r.t. to the grid defined by the given extent ext.
  void MarkNodeProperty(
      const int gridID,
      const int i, const int j, const int k,
      int ext[6], int RealExtent[6], unsigned char &pfield );

  // Description:
  // Marks the cell property for the cell composed by the nodes with the
  // given ghost fields.
  void MarkCellProperty(
      unsigned char &pfield,
      unsigned char *nodeGhostFields, const int numNodes );

  // Description:
  // Given a grid extent, this method computes the RealExtent.
  void GetRealExtent( const int gridID, int GridExtent[6],int RealExtent[6] );

  // Description:
  // Checks if the node corresponding to the given global i,j,k coordinates
  // is a ghost node or not.
  bool IsGhostNode(
      int GridExtent[6], int RealExtent[6],
      const int i, const int j, const int k );

  // Description:
  // Checks if the node corresponding to the given global i,j,k coordinates
  // is on the boundary of the given extent.
  bool IsNodeOnBoundaryOfExtent(
      const int i, const int j, const int k, int ext[6] );

  // Description:
  // Checks if the node corresponding to the given global i,j,k coordinates
  // is on the shared boundary, i.e., a partition interface.
  // NOTE: A node on a shared boundary, may also be on a real boundary.
  bool IsNodeOnSharedBoundary(
      const int gridID, int RealExtent[6],
      const int i, const int j, const int k );

  // Description:
  // Checks if the node corresponding to the given global i,j,k coordinates
  // touches the real boundaries of the domain given the whole extent.
  bool IsNodeOnBoundary( const int i, const int j, const int k );

  // Description:
  // Checks if the node, corresponding to the given global i,j,k coordinates
  // is within the interior of the given global grid extent.
  bool IsNodeInterior(
      const int i, const int j, const int k,
      int GridExtent[6] );

  // Description:
  // Checks if the node corresponding to the given global i,j,k coordinates
  // is within the given extent, inclusive of the extent bounds.
  bool IsNodeWithinExtent(
      const int i, const int j, const int k,
      int GridExtent[6] )
  {
    bool status = false;

    switch( this->DataDescription )
      {
      case VTK_X_LINE:
        if( (GridExtent[0] <= i) && (i <= GridExtent[1]) )
          {
          status = true;
          }
        break;
      case VTK_Y_LINE:
        if( (GridExtent[2] <= j) && (j <= GridExtent[3] ) )
          {
          status = true;
          }
        break;
      case VTK_Z_LINE:
        if( (GridExtent[4] <= k) && (k <= GridExtent[5] ) )
          {
          status = true;
          }
        break;
      case VTK_XY_PLANE:
        if( (GridExtent[0] <= i) && (i <= GridExtent[1]) &&
            (GridExtent[2] <= j) && (j <= GridExtent[3])  )
          {
          status = true;
          }
        break;
      case VTK_YZ_PLANE:
        if( (GridExtent[2] <= j) && (j <= GridExtent[3] ) &&
            (GridExtent[4] <= k) && (k <= GridExtent[5] ) )
          {
          status = true;
          }
        break;
      case VTK_XZ_PLANE:
        if( (GridExtent[0] <= i) && (i <= GridExtent[1] ) &&
            (GridExtent[4] <= k) && (k <= GridExtent[5] ) )
          {
          status = true;
          }
        break;
      case VTK_XYZ_GRID:
        if( (GridExtent[0] <= i) && (i <= GridExtent[1]) &&
            (GridExtent[2] <= j) && (j <= GridExtent[3]) &&
            (GridExtent[4] <= k) && (k <= GridExtent[5]) )
          {
          status = true;
          }
        break;
      default:
        std::cout << "Data description is: " << this->DataDescription << "\n";
        std::cout.flush();
        assert( "pre: Undefined data-description!" && false );
      } // END switch

    return( status );
  }

  // Description:
  // Creates a neighbor from i-to-j and from j-to-i.
  void SetNeighbors(
      const int i, const int j,
      int i2jOrientation[3], int j2iOrientation[3],
      int overlapExtent[6] );

  // Description:
  // Given two overlapping extents A,B and the corresponding overlap extent
  // this method computes A's relative neighboring orientation
  // w.r.t to its neighbor, B. The resulting orientation is stored in an
  // integer 3-tuple that holds the orientation of A relative to B alone each
  // axis, i, j, k. See vtkStructuredNeighbor::NeighborOrientation for a list
  // of valid orientation values.
  void DetermineNeighborOrientation(
      const int  idx, int A[2], int B[2], int overlap[2], int orient[3] );

  // Description:
  // Detects if the two extents, ex1 and ex2, corresponding to the grids
  // with grid IDs i,j respectively, are neighbors, i.e, they either share
  // a corner, an edge or a plane in 3-D.
  void DetectNeighbors(
      const int i, const int j, int ex1[6], int ex2[6],
      int orientation[3], int ndim);

  // Description:
  // Checks if the intervals A,B overlap. The intersection of A,B is returned
  // in the overlap array and a return code is used to indicate the type of
  // overlap. The return values are defined as follows:
  // VTK_NO_OVERLAP      0
  // VTK_NODE_OVERLAP    1
  // VTK_EDGE_OVERLAP    2
  // VTK_PARTIAL_OVERLAP 3
  int IntervalOverlap( int A[2], int B[2], int overlap[2] );

  // Description:
  // Checks if the internals s,S partially overlap where |s| < |S|.
  // The intersection of s,S is stored in the supplied overlap array and a
  // return code is used to indicate the type of overlap. The return values
  // are defined as follows:
  // VTK_NO_OVERLAP      0
  // VTK_NODE_OVERLAP    1
  // VTK_PARTIAL_OVERLAP 3
  int DoPartialOverlap( int s[2], int S[2], int overlap[2] );

  // Description:
  // Checks if the intervals A,B partially overlap. The region of partial
  // overlap is returned in the provided overlap array and a return code is
  // used to indicate whether there is partial overlap or not. The return
  // values are defined as follows:
  // VTK_NO_OVERLAP      0
  // VTK_NODE_OVERLAP    1
  // VTK_PARTIAL_OVERLAP 3
  int PartialOverlap(
      int A[2], const int CofA,
      int B[2], const int CofB,
      int overlap[2] );

  // Description:
  // Establishes the neighboring information between the two grids
  // corresponding to grid ids "i" and "j" with i < j.
  void EstablishNeighbors( const int i, const int j );

  // Description:
  // Based on the user-supplied WholeExtent, this method determines the
  // topology of the structured domain, e.g., VTK_XYZ_GRID, VTK_XY_PLANE, etc.
  void AcquireDataDescription();

  // Description:
  // Checks if the block corresponding to the given grid ID has a block
  // adjacent to it in the given block direction.
  // NOTE: The block direction is essentially one of the 6 faces  of the
  // block defined as follows:
  // <ul>
  //  <li> FRONT  = 0 (+k diretion)  </li>
  //  <li> BACK   = 1 (-k direction) </li>
  //  <li> RIGHT  = 2 (+i direction) </li>
  //  <li> LEFT   = 3 (-i direction) </li>
  //  <li> TOP    = 4 (+j direction) </li>
  //  <li> BOTTOM = 5 (-j direction) </li>
  // </ul>
  bool HasBlockConnection( const int gridID, const int blockDirection );

  // Description:
  // Removes a block connection along the given direction for the block
  // corresponding to the given gridID.
  // NOTE: The block direction is essentially one of the 6 faces  of the
  // block defined as follows:
  // <ul>
  //  <li> FRONT  = 0 (+k diretion)  </li>
  //  <li> BACK   = 1 (-k direction) </li>
  //  <li> RIGHT  = 2 (+i direction) </li>
  //  <li> LEFT   = 3 (-i direction) </li>
  //  <li> TOP    = 4 (+j direction) </li>
  //  <li> BOTTOM = 5 (-j direction) </li>
  // </ul>
  void RemoveBlockConnection( const int gridID, const int blockDirection );

  // Description:
  // Adds a block connection along the given direction for the block
  // corresponding to the given gridID.
  // NOTE: The block direction is essentially one of the 6 faces  of the
  // block defined as follows:
  // <ul>
  //  <li> FRONT  = 0 (+k diretion)  </li>
  //  <li> BACK   = 1 (-k direction) </li>
  //  <li> RIGHT  = 2 (+i direction) </li>
  //  <li> LEFT   = 3 (-i direction) </li>
  //  <li> TOP    = 4 (+j direction) </li>
  //  <li> BOTTOM = 5 (-j direction) </li>
  // </ul>
  void AddBlockConnection( const int gridID, const int blockDirection );

  // Description:
  // Clears all block connections for the  block corresponding to the given
  // grid ID.
  void ClearBlockConnections( const int gridID );

  // Description:
  // Returns the number of faces of the block corresponding to the given grid
  // ID that are adjacent to at least one other block. Note, this is not the
  // total number of neighbors for the block. This method simply checks how
  // many out of the 6 block faces have connections. Thus, the return value
  // has an upper-bound of 6.
  int GetNumberOfConnectingBlockFaces( const int gridID );

  // Description:
  // Sets the block topology connections for the grid corresponding to gridID.
  void SetBlockTopology( const int gridID );

  // Description:
  // Given i-j-k coordinates and the grid defined by tis extent, ext, this
  // method determines IJK orientation with respect to the block boundaries,
  // i.e., the 6 block faces. If the node is not on a boundary, then
  // orientation[i] = BlockFace::NOT_ON_BLOCK_FACE for all i in [0,2].
  void GetIJKBlockOrientation(
      const int i, const int j, const int k, int ext[6], int orientation[3] );

  // Description:
  // A helper method that computes the 1-D i-j-k orientation to facilitate the
  // implementation of GetNodeBlockOrientation.
  int Get1DOrientation(
      const int idx, const int ExtentLo, const int ExtentHi,
      const int OnLo, const int OnHi, const int NotOnBoundary );

  // Description:
  // Creates the ghosted extent of the grid corresponding to the given
  // gridID.
  void CreateGhostedExtent( const int gridID, const int N );

  // Description:
  // Gets the ghosted extent from the given grid extent along the dimension
  // given by minIdx and maxIdx. This method is a helper method for the
  // implementation of CreateGhostedExtent.
  void GetGhostedExtent(
      int *ghostedExtent, int GridExtent[6],
      const int minIdx, const int maxIdx, const int N);

  // Description:
  // This method creates the ghosted mask arrays, i.e., the NodeGhostArrays
  // and the CellGhostArrays for the grid corresponding to the given gridID.
  void CreateGhostedMaskArrays(const int gridID);

  // Description:
  // This method initializes the ghost data according to the computed ghosted
  // grid extent for the grid with the given grid ID. Specifically, PointData,
  // CellData and grid coordinates are allocated for the ghosted grid
  // accordingly.
  void InitializeGhostData( const int gridID );

  // Description:
  // Adds/creates all the arrays in the reference grid point data, RPD, to
  // the user-supplied point data instance, PD, where the number of points
  // is given by N.
  void AllocatePointData( vtkPointData *RPD, const int N, vtkPointData *PD );

  // Description:
  // Adds/creates all the arrays in the reference grid cell data, RCD, to the
  // user-supplied cell data instance, CD, where the number of cells is given
  // by N.
  void AllocateCellData( vtkCellData *RCD, const int N, vtkCellData *CD );

  // Description:
  // This method transfers the registered grid data to the corresponding
  // ghosted grid data.
  void TransferRegisteredDataToGhostedData( const int gridID );

  // Description:
  // This method computes, the send and rcv extents for each neighbor of
  // each grid.
  void ComputeNeighborSendAndRcvExtent( const int gridID, const int N );

  // Description:
  // This method transfers the fields (point data and cell data) to the
  // ghost extents from the neighboring grids of the grid corresponding
  // to the given gridID.
  virtual void TransferGhostDataFromNeighbors( const int gridID );

  // Description:
  // This method transfers the fields
  void TransferLocalNeighborData(
      const int gridID, const vtkStructuredNeighbor& Neighor);

  // Description:
  // Copies the coordinates from the source points to the target points.
  void CopyCoordinates(
      vtkPoints *source, vtkIdType sourceIdx,
      vtkPoints *target, vtkIdType targetIdx );

  // Description:
  // Loops through all arrays in the source and for each array, it copies the
  // tuples from sourceIdx to the target at targetIdx. This method assumes
  // that the source and target have a one-to-one array correspondance, that
  // is array i in the source corresponds to array i in the target.
  void CopyFieldData(
      vtkFieldData *source, vtkIdType sourceIdx,
      vtkFieldData *target, vtkIdType targetIdx );

  // Description:
  // Given a global grid ID and the neighbor grid ID, this method returns the
  // neighbor index w.r.t. the Neighbors list of the grid with grid ID
  // gridIdx.
  int GetNeighborIndex( const int gridIdx, const int NeighborGridIdx );

  // Description:
  // Prints the extent, used for debugging
  void PrintExtent( int extent[6] );

  int DataDimension;
  int DataDescription;
  int WholeExtent[6];

  // BTX
  std::vector< int > GridExtents;
  std::vector< int > GhostedExtents;
  std::vector< unsigned char  > BlockTopology;
  std::vector< std::vector<vtkStructuredNeighbor> > Neighbors;
  std::map< std::pair< int,int >, int > NeighborPair2NeighborListIndex;
  // ETX

private:
  vtkStructuredGridConnectivity( const vtkStructuredGridConnectivity& ); // Not implemented
  void operator=(const vtkStructuredGridConnectivity& ); // Not implemented
};

//=============================================================================
//  INLINE METHODS
//=============================================================================

//------------------------------------------------------------------------------
inline int vtkStructuredGridConnectivity::GetNeighborIndex(
    const int gridIdx, const int NeighborGridIdx )
{
  assert("pre: Grid index is out-of-bounds!" &&
         (gridIdx >= 0) &&
         (gridIdx < static_cast<int>(this->NumberOfGrids)));
  assert("pre: Neighbor grid index is out-of-bounds!" &&
         (NeighborGridIdx >= 0) &&
         (NeighborGridIdx < static_cast<int>(this->NumberOfGrids) ) );

  std::pair<int,int> gridPair = std::make_pair(gridIdx,NeighborGridIdx);
  assert("pre: Neighboring grid pair does not exist in hash!" &&
         (this->NeighborPair2NeighborListIndex.find(gridPair) !=
             this->NeighborPair2NeighborListIndex.end() ) );

  return(this->NeighborPair2NeighborListIndex[gridPair]);
}

//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::GetGhostedExtent(
    int *ghostedExtent, int GridExtent[6],
    const int minIdx, const int maxIdx, const int N )
{
  assert( "pre: Number of ghost layers must be N >= 1" && (N >= 1) );
  assert( "pre: ghosted extent pointer is NULL" && ghostedExtent != NULL);

  ghostedExtent[minIdx] = GridExtent[minIdx]-N;
  ghostedExtent[maxIdx] = GridExtent[maxIdx]+N;

  // Clamp the ghosted extent to be within the WholeExtent
  ghostedExtent[minIdx] =
   (ghostedExtent[minIdx] < this->WholeExtent[minIdx] )?
       this->WholeExtent[minIdx] : ghostedExtent[minIdx];
  ghostedExtent[maxIdx] =
   (ghostedExtent[maxIdx] > this->WholeExtent[maxIdx])?
       this->WholeExtent[maxIdx] : ghostedExtent[maxIdx];
}

//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::SetGhostedGridExtent(
    const int gridID, int ext[6] )
{
  assert( "pre: gridID is out-of-bounds" &&
          (gridID >= 0) && (gridID < static_cast<int>(this->NumberOfGrids)));
  assert( "pre: ghosted-extents vector has not been allocated" &&
          (this->NumberOfGrids == this->GhostedExtents.size()/6 ) );

  for( int i=0; i < 6; ++i )
    {
    this->GhostedExtents[ gridID*6+i ] = ext[i];
    }
}

//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::GetGridExtent(
    const int gridID, int ext[6])
{
  assert( "pre: gridID out-of-bounds!" &&
        (gridID >= 0  && gridID < static_cast<int>(this->NumberOfGrids)));
  for( int i=0; i < 6; ++i )
    {
    ext[i] = this->GridExtents[ gridID*6+i ];
    }
}

//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::GetGhostedGridExtent(
    const int gridID, int ext[6])
{
  assert( "pre: gridID out-of-bounds!" &&
        (gridID >= 0  && gridID < static_cast<int>(this->NumberOfGrids)));

  if( this->GhostedExtents.size() == 0 )
    {
    ext[0] = ext[2] = ext[4] = -1;
    ext[1] = ext[3] = ext[5] = 0;
    vtkErrorMacro( "No ghosted extents found for registered grid extends!!!" );
    return;
    }

  assert( "GhostedExtents are not aligned with registered grid extents" &&
        ( this->GhostedExtents.size() == this->GridExtents.size() ) );
  for( int i=0; i < 6; ++i )
    {
    ext[i] = this->GhostedExtents[ gridID*6+i ];
    }
}

//------------------------------------------------------------------------------
inline bool vtkStructuredGridConnectivity::IsNodeOnBoundaryOfExtent(
    const int i, const int j, const int k, int ext[6] )
{
  if( !this->IsNodeWithinExtent( i,j,k, ext) )
    {
    return false;
    }

  bool status = false;
  switch( this->DataDescription )
    {
    case VTK_X_LINE:
       if( i==ext[0] || i==ext[1] )
         {
         status = true;
         }
       break;
     case VTK_Y_LINE:
       if( j==ext[2] || j==ext[3] )
         {
         status = true;
         }
       break;
     case VTK_Z_LINE:
       if( k==ext[4] || k==ext[5] )
         {
         status = true;
         }
       break;
     case VTK_XY_PLANE:
       if( (i==ext[0] || i==ext[1]) ||
           (j==ext[2] || j==ext[3]) )
         {
         status = true;
         }
       break;
     case VTK_YZ_PLANE:
       if( (j==ext[2] || j==ext[3]) ||
           (k==ext[4] || k==ext[5]) )
         {
         status = true;
         }
       break;
     case VTK_XZ_PLANE:
       if( (i==ext[0] || i==ext[1]) ||
           (k==ext[4] || k==ext[5]) )
         {
         status = true;
         }
       break;
     case VTK_XYZ_GRID:
       if( (i==ext[0] || i==ext[1]) ||
           (j==ext[2] || j==ext[3]) ||
           (k==ext[4] || k==ext[5]) )
         {
         status = true;
         }
       break;
     default:
       std::cout << "Data description is: " << this->DataDescription << "\n";
       std::cout.flush();
       assert( "pre: Undefined data-description!" && false );
    } // END switch

  return( status );
}

//------------------------------------------------------------------------------
inline bool vtkStructuredGridConnectivity::IsNodeInterior(
    const int i, const int j, const int k,
    int GridExtent[6] )
{
  bool status = false;

  switch( this->DataDescription )
    {
    case VTK_X_LINE:
      if( (GridExtent[0] < i) && (i < GridExtent[1]) )
        {
        status = true;
        }
      break;
    case VTK_Y_LINE:
      if( (GridExtent[2] < j) && (j < GridExtent[3] ) )
        {
        status = true;
        }
      break;
    case VTK_Z_LINE:
      if( (GridExtent[4] < k) && (k < GridExtent[5] ) )
        {
        status = true;
        }
      break;
    case VTK_XY_PLANE:
      if( (GridExtent[0] < i) && (i < GridExtent[1]) &&
          (GridExtent[2] < j) && (j < GridExtent[3])  )
        {
        status = true;
        }
      break;
    case VTK_YZ_PLANE:
      if( (GridExtent[2] < j) && (j < GridExtent[3] ) &&
          (GridExtent[4] < k) && (k < GridExtent[5] ) )
        {
        status = true;
        }
      break;
    case VTK_XZ_PLANE:
      if( (GridExtent[0] < i) && (i < GridExtent[1] ) &&
          (GridExtent[4] < k) && (k < GridExtent[5] ) )
        {
        status = true;
        }
      break;
    case VTK_XYZ_GRID:
      if( (GridExtent[0] < i) && (i < GridExtent[1]) &&
          (GridExtent[2] < j) && (j < GridExtent[3]) &&
          (GridExtent[4] < k) && (k < GridExtent[5]) )
        {
        status = true;
        }
      break;
    default:
      std::cout << "Data description is: " << this->DataDescription << "\n";
      std::cout.flush();
      assert( "pre: Undefined data-description!" && false );
    } // END switch

  return( status );
}

//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::DetermineNeighborOrientation(
    const int idx, int A[2], int B[2], int overlap[2], int orient[3] )
{
  assert( "pre: idx is out-of-bounds" && (idx >= 0) && (idx < 3)  );

  // A. Non-overlapping cases
  if( overlap[0] == overlap[1] )
    {
    if( A[1] == B[0] )
      {
      orient[ idx ] = vtkStructuredNeighbor::HI;
      }
    else if( A[0] == B[1] )
      {
      orient[ idx ] = vtkStructuredNeighbor::LO;
      }
    else
      {
      orient[ idx ] = vtkStructuredNeighbor::UNDEFINED;
      assert( "ERROR: Code should not reach here!" && false );
      }
    } // END non-overlapping cases
  // B. Sub-set cases
  else if( this->IsSubset( A, B) )
    {
    if( (A[0] == B[0]) && (A[1] == B[1]) )
      {
      orient[ idx ] = vtkStructuredNeighbor::ONE_TO_ONE;
      }
    else if( this->StrictlyInsideBounds( A[0], B[0], B[1] ) &&
             this->StrictlyInsideBounds( A[1], B[0], B[1] ) )
      {
      orient[ idx ] = vtkStructuredNeighbor::SUBSET_BOTH;
      }
    else if( A[0] == B[0] )
      {
      orient[ idx ] = vtkStructuredNeighbor::SUBSET_HI;
      }
    else if( A[1] == B[1] )
      {
      orient[ idx ] = vtkStructuredNeighbor::SUBSET_LO;
      }
    else
      {
      orient[ idx ] = vtkStructuredNeighbor::UNDEFINED;
      assert( "ERROR: Code should not reach here!" && false );
      }
    }
  // C. Super-set cases
  else if( this->IsSubset( B, A ) )
    {
    orient[ idx ] = vtkStructuredNeighbor::SUPERSET;
    }
  // D. Partially-overlapping (non-subset) cases
  else if( !(this->IsSubset(A,B) || this->IsSubset(A,B)) )
    {
    if( this->InBounds( A[0], B[0], B[1] ) )
      {
      orient[ idx ] = vtkStructuredNeighbor::LO;
      }
    else if( this->InBounds( A[1], B[0], B[1] ) )
      {
      orient[ idx ] = vtkStructuredNeighbor::HI;
      }
    else
      {
      orient[ idx ] = vtkStructuredNeighbor::UNDEFINED;
      assert( "ERROR: Code should not reach here!" && false );
      }
    }
  else
    {
    orient[ idx ] = vtkStructuredNeighbor::UNDEFINED;
    assert( "ERROR: Code should not reach here!" && false );
    }
}

//------------------------------------------------------------------------------
inline int vtkStructuredGridConnectivity::Get1DOrientation(
        const int idx, const int ExtentLo, const int ExtentHi,
        const int OnLo, const int OnHi, const int NotOnBoundary )
{
  if( idx == ExtentLo )
    {
    return OnLo;
    }
  else if( idx == ExtentHi )
    {
    return OnHi;
    }
  return NotOnBoundary;
}

//------------------------------------------------------------------------------
inline bool vtkStructuredGridConnectivity::HasBlockConnection(
    const int gridID, const int blockDirection )
{
  // Sanity check
  assert("pre: gridID is out-of-bounds" &&
        (gridID >=0) && (gridID < static_cast<int>(this->NumberOfGrids)));
  assert("pre: BlockTopology has not been properly allocated" &&
        (this->NumberOfGrids == this->BlockTopology.size()));
  assert("pre: blockDirection is out-of-bounds" &&
        (blockDirection >= 0) && (blockDirection < 6) );
  bool status = false;
  if( this->BlockTopology[ gridID ] & (1 << blockDirection) )
    {
    status = true;
    }
  return( status );
}

//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::RemoveBlockConnection(
    const int gridID, const int blockDirection )
{
  // Sanity check
  assert("pre: gridID is out-of-bounds" &&
        (gridID >=0) && (gridID < static_cast<int>(this->NumberOfGrids)));
  assert("pre: BlockTopology has not been properly allocated" &&
        (this->NumberOfGrids == this->BlockTopology.size()));
  assert("pre: blockDirection is out-of-bounds" &&
        (blockDirection >= 0) && (blockDirection < 6) );

  this->BlockTopology[ gridID ] &= ~(1 << blockDirection);
}

//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::AddBlockConnection(
    const int gridID, const int blockDirection )
{
  // Sanity check
  assert("pre: gridID is out-of-bounds" &&
        (gridID >=0) && (gridID < static_cast<int>(this->NumberOfGrids)));
  assert("pre: BlockTopology has not been properly allocated" &&
        (this->NumberOfGrids == this->BlockTopology.size()));
  assert("pre: blockDirection is out-of-bounds" &&
        (blockDirection >= 0) && (blockDirection < 6) );
  this->BlockTopology[ gridID ] |= (1 << blockDirection);
}

//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::ClearBlockConnections(
    const int gridID )
{
  // Sanity check
  assert("pre: gridID is out-of-bounds" &&
        (gridID >=0) && (gridID < static_cast<int>(this->NumberOfGrids)));
  assert("pre: BlockTopology has not been properly allocated" &&
        (this->NumberOfGrids == this->BlockTopology.size()));
  for( int i=0; i < 6; ++i )
    {
    this->RemoveBlockConnection( gridID, i );
    } // END for all block directions
}

//------------------------------------------------------------------------------
inline int vtkStructuredGridConnectivity::GetNumberOfConnectingBlockFaces(
    const int gridID )
{
  // Sanity check
  assert("pre: gridID is out-of-bounds" &&
        (gridID >=0) && (gridID < static_cast<int>(this->NumberOfGrids)));
  assert("pre: BlockTopology has not been properly allocated" &&
        (this->NumberOfGrids == this->BlockTopology.size()));

  int count = 0;
  for( int i=0; i < 6; ++i )
    {
    if( this->HasBlockConnection( gridID, i ) )
      {
      ++count;
      }
    }
  assert( "post: count must be in [0,5]" && (count >=0 && count <= 6) );
  return( count );
}

//------------------------------------------------------------------------------
inline void vtkStructuredGridConnectivity::SetNumberOfGrids(
    const unsigned int N )
{
  if (N == 0)
    {
    vtkErrorMacro("Number of grids cannot be 0.");
    return;
    }

  this->NumberOfGrids = N;
  this->AllocateUserRegisterDataStructures();

  this->GridExtents.resize( 6*N,-1);
  this->Neighbors.resize( N );
  this->BlockTopology.resize( N );
}
#endif /* vtkStructuredGridConnectivity_h */