This file is indexed.

/usr/include/paraview/vtkStructuredData.h is in paraview-dev 5.0.1+dfsg1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkStructuredData.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkStructuredData - Singleton class for topologically regular data
//
// .SECTION Description
// vtkStructuredData is a singleton class that provides an interface for
// topologically regular data. Regular data is data that can be accessed
// in rectangular fashion using an i-j-k index. A finite difference grid,
// a volume, or a pixmap are all considered regular.
//
// .SECTION See Also
// vtkStructuredGrid vtkUniformGrid vtkRectilinearGrid vtkRectilinearGrid

#ifndef vtkStructuredData_h
#define vtkStructuredData_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkObject.h"

class vtkIdList;

#define VTK_UNCHANGED 0
#define VTK_SINGLE_POINT 1
#define VTK_X_LINE 2
#define VTK_Y_LINE 3
#define VTK_Z_LINE 4
#define VTK_XY_PLANE 5
#define VTK_YZ_PLANE 6
#define VTK_XZ_PLANE 7
#define VTK_XYZ_GRID 8
#define VTK_EMPTY 9

class VTKCOMMONDATAMODEL_EXPORT vtkStructuredData : public vtkObject
{
public:
  vtkTypeMacro(vtkStructuredData,vtkObject);

  // Description:
  // Specify the dimensions of a regular, rectangular dataset. The input is
  // the new dimensions (inDim) and the current dimensions (dim). The function
  // returns the dimension of the dataset (0-3D). If the dimensions are
  // improperly specified a -1 is returned. If the dimensions are unchanged, a
  // value of 100 is returned.
  static int SetDimensions(int inDim[3], int dim[3]);
  static int SetExtent(int inExt[6], int ext[6]);

  // Description:
  // Returns the data description given the dimensions (eg. VTK_SINGLE_POINT,
  // VTK_X_LINE, VTK_XY_PLANE etc.)
  static int GetDataDescription(int dims[3]);
  static int GetDataDescriptionFromExtent( int ext[6] );

  // Description:
  // Return the topological dimension of the data (e.g., 0, 1, 2, or 3D).
  static int GetDataDimension(int dataDescription);
  static int GetDataDimension( int ext[6] );

  // Description:
  // Given the grid extent, this method returns the total number of points
  // within the extent.
  // The dataDescription field is not used.
  static vtkIdType GetNumberOfPoints(int ext[6], int dataDescription=VTK_EMPTY);

  // Description:
  // Given the grid extent, this method returns the total number of cells
  // within the extent.
  // The dataDescription field is not used.
  static vtkIdType GetNumberOfCells(int ext[6], int dataDescription=VTK_EMPTY);

  // Description:
  // Given the point extent of a grid, this method computes the corresponding
  // cell extent for the grid.
  // The dataDescription field is not used.
  static void GetCellExtentFromPointExtent(
      int pntExtent[6], int cellExtent[6], int dataDescription=VTK_EMPTY );

  // Description:
  // Computes the structured grid dimensions based on the given extent.
  // The dataDescription field is not used.
  static void GetDimensionsFromExtent(
      int ext[6], int dims[3], int dataDescription=VTK_EMPTY );

  // Description:
  // Returns the cell dimensions, i.e., the number of cells along the i,j,k
  // for the grid with the given grid extent. Note, the grid extent is the
  // number of points.
  // The dataDescription field is not used.
  static void GetCellDimensionsFromExtent(
      int ext[6], int celldims[3], int dataDescription=VTK_EMPTY );

  // Description:
  // Given the dimensions of the grid, in pntdims, this method returns
  // the corresponding cell dimensions for the given grid.
  // The dataDescription field is not used.
  static void GetCellDimensionsFromPointDimensions(
      int pntdims[3],int cellDims[3] );

  // Description:
  // Given the global structured coordinates for a point or cell, ijk, w.r.t.
  // as well as, the global sub-grid cell or point extent, this method computes
  // the corresponding local structured coordinates, lijk, starting from 0.
  // The dataDescription argument is not used.
  static void GetLocalStructuredCoordinates(
      int ijk[3], int ext[6], int lijk[3], int dataDescription=VTK_EMPTY );

  // Description:
  // Given local structured coordinates, and the corresponding global sub-grid
  // extent, this method computes the global ijk coordinates.
  // The dataDescription parameter is not used.
  static void GetGlobalStructuredCoordinates(
      int lijk[3], int ext[6], int ijk[3], int dataDescription=VTK_EMPTY );

  // Description:
  // Get the points defining a cell. (See vtkDataSet for more info.)
  static void GetCellPoints(vtkIdType cellId, vtkIdList *ptIds,
                            int dataDescription, int dim[3]);

  // Description:
  // Get the cells using a point. (See vtkDataSet for more info.)
  static void GetPointCells(vtkIdType ptId, vtkIdList *cellIds, int dim[3]);

  // Description:
  // Get the cells using the points ptIds, exclusive of the cell cellId.
  // (See vtkDataSet for more info.)
  static void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds,
                               vtkIdList *cellIds, int dim[3]);

  // Description:
  // Given a location in structured coordinates (i-j-k), and the extent
  // of the structured dataset, return the point id.
  // The dataDescription argument is not used.
  static vtkIdType ComputePointIdForExtent(int extent[6], int ijk[3],
                                           int dataDescription=VTK_EMPTY );

  // Description:
  // Given a location in structured coordinates (i-j-k), and the extent
  // of the structured dataset, return the point id.
  // The dataDescription argument is not used.
  static vtkIdType ComputeCellIdForExtent(
      int extent[6], int ijk[3], int dataDescription=VTK_EMPTY );

  // Description:
  // Given a location in structured coordinates (i-j-k), and the dimensions
  // of the structured dataset, return the point id.  This method does not
  // adjust for the beginning of the extent.
  // The dataDescription argument is not used.
  static vtkIdType ComputePointId(
      int dim[3], int ijk[3], int dataDescription=VTK_EMPTY );

  // Description:
  // Given a location in structured coordinates (i-j-k), and the dimensions
  // of the structured dataset, return the cell id.  This method does not
  // adjust for the beginning of the extent.
  // The dataDescription argument is not used.
  static vtkIdType ComputeCellId(
      int dim[3], int ijk[3], int dataDescription=VTK_EMPTY );

  // Description:
  // Given the global grid extent and the linear index of a cell within the
  // grid extent, this method computes the corresponding structured coordinates
  // of the given cell. This method adjusts for the beginning of the extent.
  // The dataDescription argument is not used.
  static void ComputeCellStructuredCoordsForExtent(
      const vtkIdType cellIdx, int ext[6], int ijk[3],
      int dataDescription=VTK_EMPTY );

  // Description:
  // Given a cellId and grid dimensions 'dim', get the structured coordinates
  // (i-j-k). This method does not adjust for the beginning of the extent.
  // The dataDescription argument is not used.
  static void ComputeCellStructuredCoords(
      const vtkIdType cellId, int dim[3], int ijk[3],
      int dataDescription=VTK_EMPTY );

  // Description:
  // Given a pointId and the grid extent ext, get the structured coordinates
  // (i-j-k). This method adjusts for the beginning of the extent.
  // The dataDescription argument is not used.
  static void ComputePointStructuredCoordsForExtent(
      const vtkIdType ptId, int ext[6], int ijk[3],
      int dataDescription=VTK_EMPTY );

  // Description:
  // Given a pointId and grid dimensions 'dim', get the structured coordinates
  // (i-j-k). This method does not adjust for the beginning of the extent.
  // The dataDescription argument is not used.
  static void ComputePointStructuredCoords(
      const vtkIdType ptId, int dim[3], int ijk[3],
      int dataDescription=VTK_EMPTY );

protected:
  vtkStructuredData() {}
  ~vtkStructuredData() {}

  // Description:
  // Computes the linear index for the given i-j-k structured of a grid with
  // of N1 and N2 dimensions along its principal directions. For example, the
  // principal directions of a 3-D grid are Ni and Nj and likewise for a 2-D
  // grid along the XY plane. For a grid in the XZ plane however, the principal
  // directions are Ni and Nk.
  static vtkIdType GetLinearIndex(
      const int i, const int j, const int k, const int N1, const int N2 )
    {
      return( (static_cast<vtkIdType>(k)*N2+j)*N1+i );
    }

  // Description:
  // Returns the structured coordinates (i,j,k) for the given linear index of
  // a grid with N1 and N2 dimensions along its principal directions.
  // NOTE: i,j,k are relative to the frame of reference of the grid. For example,
  // if the grid is on the XZ-Plane, then i=>i, j=>k, k=>j.
  static void GetStructuredCoordinates(
      const vtkIdType idx, const int N1, const int N2,int &i, int &j, int &k )
    {
      int N12 = N1*N2;
      k = idx/N12;
      j = (idx-k*N12)/N1;
      i = idx-k*N12-j*N1;
    }

  // Want to avoid importing <algorithm> in the header...
  template <typename T>
  static T Max(const T &a, const T &b)
  {
    return (a > b) ? a : b;
  }

private:
  vtkStructuredData(const vtkStructuredData&);  // Not implemented.
  void operator=(const vtkStructuredData&);  // Not implemented.
};

//------------------------------------------------------------------------------
inline void vtkStructuredData::GetCellDimensionsFromExtent(
    int ext[6], int celldims[3], int)
{
  celldims[0] = vtkStructuredData::Max(ext[1] - ext[0], 0);
  celldims[1] = vtkStructuredData::Max(ext[3] - ext[2], 0);
  celldims[2] = vtkStructuredData::Max(ext[5] - ext[4], 0);
}

//------------------------------------------------------------------------------
inline vtkIdType vtkStructuredData::ComputePointId(int dims[3], int ijk[3], int)
{
  return vtkStructuredData::GetLinearIndex(ijk[0], ijk[1], ijk[2],
                                           dims[0], dims[1]);
}

//------------------------------------------------------------------------------
inline vtkIdType vtkStructuredData::ComputeCellId(int dims[3], int ijk[3], int)
{
  return vtkStructuredData::GetLinearIndex(
        ijk[0], ijk[1], ijk[2],
        vtkStructuredData::Max(dims[0] - 1, 1),
        vtkStructuredData::Max(dims[1] - 1, 1));
}

//------------------------------------------------------------------------------
inline vtkIdType vtkStructuredData::GetNumberOfPoints(int ext[6], int)
{
  return static_cast<vtkIdType>(ext[1] - ext[0] + 1) *
         static_cast<vtkIdType>(ext[3] - ext[2] + 1) *
         static_cast<vtkIdType>(ext[5] - ext[4] + 1);
}

//------------------------------------------------------------------------------
inline vtkIdType vtkStructuredData::GetNumberOfCells(int ext[6], int)
{
  int cellDims[3];
  vtkStructuredData::GetCellDimensionsFromExtent(ext,cellDims);

  // Replace 0's with 1's so we can just multiply them regardless of cell type.
  cellDims[0] = vtkStructuredData::Max(cellDims[0], 1);
  cellDims[1] = vtkStructuredData::Max(cellDims[1], 1);
  cellDims[2] = vtkStructuredData::Max(cellDims[2], 1);

  // Note, when we compute the result below, we statically cast to vtkIdType to
  // ensure the compiler will generate a 32x32=64 instruction.
  return static_cast<vtkIdType>(cellDims[0]) *
         static_cast<vtkIdType>(cellDims[1]) *
         static_cast<vtkIdType>(cellDims[2]);
}

//------------------------------------------------------------------------------
inline void vtkStructuredData::GetCellExtentFromPointExtent(
    int nodeExtent[6], int cellExtent[6], int)
{
  cellExtent[0] = nodeExtent[0];
  cellExtent[2] = nodeExtent[2];
  cellExtent[4] = nodeExtent[4];

  cellExtent[1] = vtkStructuredData::Max(nodeExtent[0], nodeExtent[1] - 1);
  cellExtent[3] = vtkStructuredData::Max(nodeExtent[2], nodeExtent[3] - 1);
  cellExtent[5] = vtkStructuredData::Max(nodeExtent[4], nodeExtent[5] - 1);
}

//------------------------------------------------------------------------------
inline void vtkStructuredData::GetDimensionsFromExtent(int ext[6], int dims[3],
                                                       int)
{
  dims[0] = ext[1] - ext[0] + 1;
  dims[1] = ext[3] - ext[2] + 1;
  dims[2] = ext[5] - ext[4] + 1;
}

//------------------------------------------------------------------------------
inline void vtkStructuredData::GetCellDimensionsFromPointDimensions(
    int nodeDims[3], int cellDims[3])
{
  cellDims[0] = vtkStructuredData::Max(nodeDims[0] - 1, 0);
  cellDims[1] = vtkStructuredData::Max(nodeDims[1] - 1, 0);
  cellDims[2] = vtkStructuredData::Max(nodeDims[2] - 1, 0);
}

//------------------------------------------------------------------------------
inline void vtkStructuredData::GetLocalStructuredCoordinates(
    int ijk[3], int ext[6], int lijk[3], int)
{
  lijk[0] = ijk[0] - ext[0];
  lijk[1] = ijk[1] - ext[2];
  lijk[2] = ijk[2] - ext[4];
}

//------------------------------------------------------------------------------
inline void vtkStructuredData::GetGlobalStructuredCoordinates(
    int lijk[3], int ext[6], int ijk[3], int)
{
  ijk[0] = ext[0] + lijk[0];
  ijk[1] = ext[2] + lijk[1];
  ijk[2] = ext[4] + lijk[2];
}

//------------------------------------------------------------------------------
inline vtkIdType vtkStructuredData::ComputePointIdForExtent(
    int extent[6], int ijk[3], int)
{
  int dims[3];
  vtkStructuredData::GetDimensionsFromExtent(extent, dims);

  int lijk[3];
  vtkStructuredData::GetLocalStructuredCoordinates(ijk, extent, lijk);

  return vtkStructuredData::ComputePointId(dims, lijk);
}

//------------------------------------------------------------------------------
inline vtkIdType vtkStructuredData::ComputeCellIdForExtent(
    int extent[6], int ijk[3], int)
{
  int nodeDims[3];
  vtkStructuredData::GetDimensionsFromExtent(extent, nodeDims);

  int lijk[3];
  vtkStructuredData::GetLocalStructuredCoordinates(ijk, extent, lijk);

  return vtkStructuredData::ComputeCellId(nodeDims, lijk);
}

//------------------------------------------------------------------------------
inline void vtkStructuredData::ComputeCellStructuredCoords(
    const vtkIdType cellId, int dims[3], int ijk[3], int)
{
  vtkStructuredData::GetStructuredCoordinates(cellId,
                                              dims[0] - 1, dims[1] - 1,
                                              ijk[0], ijk[1], ijk[2]);
}

//------------------------------------------------------------------------------
inline void vtkStructuredData::ComputeCellStructuredCoordsForExtent(
    const vtkIdType cellIdx, int ext[6], int ijk[3], int)
{
  int nodeDims[3];
  vtkStructuredData::GetDimensionsFromExtent(ext, nodeDims);

  int lijk[3];
  vtkStructuredData::ComputeCellStructuredCoords(cellIdx, nodeDims, lijk);

  vtkStructuredData::GetGlobalStructuredCoordinates(lijk, ext, ijk);
}

//------------------------------------------------------------------------------
inline void vtkStructuredData::ComputePointStructuredCoords(
    const vtkIdType ptId, int dim[3], int ijk[3], int)
{
  vtkStructuredData::GetStructuredCoordinates(ptId, dim[0], dim[1],
                                              ijk[0], ijk[1], ijk[2]);
}

//------------------------------------------------------------------------------
inline void vtkStructuredData::ComputePointStructuredCoordsForExtent(
    const vtkIdType ptId, int ext[6], int ijk[3], int)
{
  int nodeDims[3];
  vtkStructuredData::GetDimensionsFromExtent(ext, nodeDims);

  int lijk[3];
  vtkStructuredData::ComputePointStructuredCoords(ptId, nodeDims, lijk);

  vtkStructuredData::GetGlobalStructuredCoordinates(lijk, ext, ijk);
}

#endif

// VTK-HeaderTest-Exclude: vtkStructuredData.h