This file is indexed.

/usr/include/paraview/vtkStreamingPriorityQueue.h is in paraview-dev 5.0.1+dfsg1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*=========================================================================

  Program:   ParaView
  Module:    vtkStreamingPriorityQueue

  Copyright (c) Kitware, Inc.
  All rights reserved.
  See Copyright.txt or http://www.paraview.org/HTML/Copyright.html for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkStreamingPriorityQueue - provides a datastructure for building
// priority queues.
// .SECTION Description
// vtkStreamingPriorityQueue provides a data-structure for building priority
// queue for steraming based on block bounds. This used by
// vtkAMRStreamingPriorityQueue.

#ifndef vtkStreamingPriorityQueue_h
#define vtkStreamingPriorityQueue_h

#include "vtkBoundingBox.h"
#include "vtkMath.h"

#include <queue>
#include <algorithm>

//*****************************************************************************
namespace
{
  // this code is stolen from vtkFrustumCoverageCuller.
  double vtkComputeScreenCoverage(const double planes[24],
    const double bounds[6], double &distance, double &centeredness,
    double& itemCoverage)
    {
    distance = 0.0;
    centeredness = 0.0;
    itemCoverage = 0.0;

    // a duff dataset like a polydata with no cells will have bad bounds
    if (!vtkMath::AreBoundsInitialized(const_cast<double*>(bounds)))
      {
      return 0.0;
      }
    double screen_bounds[4];

    double center[3];
    center[0] = (bounds[0] + bounds[1]) / 2.0;
    center[1] = (bounds[2] + bounds[3]) / 2.0;
    center[2] = (bounds[4] + bounds[5]) / 2.0;
    double radius = 0.5 * sqrt(
      ( bounds[1] - bounds[0] ) * ( bounds[1] - bounds[0] ) +
      ( bounds[3] - bounds[2] ) * ( bounds[3] - bounds[2] ) +
      ( bounds[5] - bounds[4] ) * ( bounds[5] - bounds[4] ) );
    for (int i = 0; i < 6; i++ )
      {
      // Compute how far the center of the sphere is from this plane
      double d = planes[i*4 + 0] * center[0] +
        planes[i*4 + 1] * center[1] +
        planes[i*4 + 2] * center[2] +
        planes[i*4 + 3];
      // If d < -radius the prop is not within the view frustum
      if ( d < -radius )
        {
        return 0.0;
        }

      // The first four planes are the ones bounding the edges of the
      // view plane (the last two are the near and far planes) The
      // distance from the edge of the sphere to these planes is stored
      // to compute coverage.
      if ( i < 4 )
        {
        screen_bounds[i] = d - radius;
        }
      // The fifth plane is the near plane - use the distance to
      // the center (d) as the value to sort by
      if ( i == 4 )
        {
        distance = d;
        }
      }

    // If the prop wasn't culled during the plane tests...
    // Compute the width and height of this slice through the
    // view frustum that contains the center of the sphere
    double full_w = screen_bounds[0] + screen_bounds[1] + 2.0 * radius;
    double full_h = screen_bounds[2] + screen_bounds[3] + 2.0 * radius;

    // Multiply the distances from each side to get a measure of how centered
    // the sphere is on the screen (divide by half the length in that dimension
    // squared to get a measure of how centered the object is in that dimension).
    double measure_w = (screen_bounds[0] + radius) * (screen_bounds[1] + radius) / (full_w * full_w / 4.0);
    double measure_h = (screen_bounds[2] + radius) * (screen_bounds[3] + radius) / (full_h * full_h / 4.0);

    // If the object is off the edge of the screen, treat it as if it is just
    // inside the edge (which we know it is since it wasn't culled)
    if (measure_w < 0.01)
      {
      measure_w = 0.01;
      }
    if (measure_h < 0.01)
      {
      measure_h = 0.01;
      }
    centeredness = measure_w * measure_h;

    double w = 2 * radius;
    double h = 2 * radius;
    if (screen_bounds[0] < 0.0)
      {
      w += screen_bounds[0];
      }
    if (screen_bounds[1] < 0.0)
      {
      w += screen_bounds[1];
      }
    if (screen_bounds[2] < 0.0)
      {
      h += screen_bounds[2];
      }
    if (screen_bounds[3] < 0.0)
      {
      h += screen_bounds[3];
      }
    itemCoverage = h*w / (4 * radius * radius);

    // Subtract from the full width to get the width of the square
    // enclosing the circle slice from the sphere in the plane
    // through the center of the sphere. If the screen bounds for
    // the left and right planes (0,1) are greater than zero, then
    // the edge of the sphere was a positive distance away from the
    // plane, so there is a gap between the edge of the plane and
    // the edge of the box.
    double part_w = full_w;
    if ( screen_bounds[0] > 0.0 )
      {
      part_w -= screen_bounds[0];
      }
    if ( screen_bounds[1] > 0.0 )
      {
      part_w -= screen_bounds[1];
      }
    // Do the same thing for the height with the top and bottom
    // planes (2,3).
    double part_h = full_h;
    if ( screen_bounds[2] > 0.0 )
      {
      part_h -= screen_bounds[2];
      }
    if ( screen_bounds[3] > 0.0 )
      {
      part_h -= screen_bounds[3];
      }

    // Compute the fraction of coverage
    if ((full_w * full_h)!=0.0)
      {
      return (part_w * part_h) / (full_w * full_h);
      }

    return 0;
    }
}

class vtkStreamingPriorityQueueItem
{
public:
  unsigned int Identifier; // this is used to identify this block when making a
                           // request.
  double Refinement;       // Where lower the Refinement cheaper is the
                           // processing for this block. 0 is considered as
                           // undefined.
  double ScreenCoverage;   // computed coverage for the block.
  double Centeredness;     // how centered the object is on the screen (1 is centered, 0.0001 is near the edge)
  double Priority;         // Computed priority for this block.
  double Distance;
  double AmountOfDetail;
  double ItemCoverage;     // amount of the item that is onscreen (fraction, if whole item is onscreen it is 1)
  vtkBoundingBox Bounds;   // Bounds for the block.

  vtkStreamingPriorityQueueItem() :
    Identifier(0), Refinement(0), ScreenCoverage(0), Priority(0), Distance(0),
    AmountOfDetail(-1)
  {
  }
};

class vtkStreamingPriorityQueueItemComparator
{
public:
  bool operator()(const vtkStreamingPriorityQueueItem& me,
    const vtkStreamingPriorityQueueItem& other) const
    {
    return me.Priority < other.Priority;
    }
};


template <typename Comparator = vtkStreamingPriorityQueueItemComparator>
class vtkStreamingPriorityQueue :
  public std::priority_queue<vtkStreamingPriorityQueueItem,
  std::vector<vtkStreamingPriorityQueueItem>, Comparator>
{
public:
  // Description:
  // Updates the priorities of items in the queue.
  void UpdatePriorities(
    const double view_planes[24],
    const double clamp_bounds[6])
    {
    bool clamp_bounds_initialized =
      (vtkMath::AreBoundsInitialized(const_cast<double*>(clamp_bounds)) != 0);
    vtkBoundingBox clampBox(const_cast<double*>(clamp_bounds));

    vtkStreamingPriorityQueue current_queue;
    std::swap(current_queue, *this);

    for (;!current_queue.empty(); current_queue.pop())
      {
      vtkStreamingPriorityQueueItem item = current_queue.top();
      if (!item.Bounds.IsValid())
        {
        continue;
        }

      double block_bounds[6];
      item.Bounds.GetBounds(block_bounds);

      if (clamp_bounds_initialized)
        {
        if (!clampBox.ContainsPoint(
            block_bounds[0], block_bounds[2], block_bounds[4]) &&
          !clampBox.ContainsPoint(
            block_bounds[1], block_bounds[3], block_bounds[5]))
          {
          // if the block_bounds is totally outside the clamp_bounds, skip it.
          continue;
          }
        }

      double refinement2 = item.Refinement * item.Refinement;
      double distance, centeredness, itemCoverage;
      double coverage = vtkComputeScreenCoverage(view_planes, block_bounds, distance, centeredness, itemCoverage);
      item.ScreenCoverage = coverage;
      item.Distance = distance;
      item.Centeredness = centeredness;
      item.ItemCoverage = itemCoverage;


      if (coverage > 0)
        {
//        item.Priority =  coverage / (item.Refinement/* * distance*/) ;// / distance; //coverage * coverage / ( 1 + refinement2 + distance);
        item.Priority = coverage * coverage * centeredness / ( 1 + refinement2 + distance);
        }
      else
        {
        item.Priority = 0;
        }
      this->push(item);
      }
    }
};
#endif

// VTK-HeaderTest-Exclude: vtkStreamingPriorityQueue.h