/usr/include/paraview/vtkSimpleCellTessellator.h is in paraview-dev 5.0.1+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkSimpleCellTessellator.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkSimpleCellTessellator - helper class to perform cell tessellation
// .SECTION Description
// vtkSimpleCellTessellator is a helper class to perform adaptive tessellation
// of particular cell topologies. The major purpose for this class is to
// transform higher-order cell types (e.g., higher-order finite elements)
// into linear cells that can then be easily visualized by VTK. This class
// works in conjunction with the vtkGenericDataSet and vtkGenericAdaptorCell
// classes.
//
// This algorithm is based on edge subdivision. An error metric along each
// edge is evaluated, and if the error is greater than some tolerance, the
// edge is subdivided (as well as all connected 2D and 3D cells). The process
// repeats until the error metric is satisfied. Since the algorithm is based
// on edge subdivision it inherently avoid T-junctions.
//
// A significant issue addressed by this algorithm is to insure face
// compatibility across neigboring cells. That is, diagonals due to face
// triangulation must match to insure that the mesh is compatible. The
// algorithm employs a precomputed table to accelerate the tessellation
// process. The table was generated with the help of vtkOrderedTriangulator
// the basic idea is that the choice of diagonal is made only by considering the
// relative value of the point ids.
//
// .SECTION See Also
// vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric vtkAttributesErrorMetric
// vtkGeometricErrorMetric vtkViewDependentErrorMetric
#ifndef vtkSimpleCellTessellator_h
#define vtkSimpleCellTessellator_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkGenericCellTessellator.h"
class vtkTriangleTile;
class vtkTetraTile;
class vtkCellArray;
class vtkDoubleArray;
class vtkGenericEdgeTable;
class vtkGenericSubdivisionErrorMetric;
class vtkGenericAttributeCollection;
class vtkGenericAdaptorCell;
class vtkGenericCellIterator;
class vtkPointData;
class vtkOrderedTriangulator;
class vtkPolygon;
class vtkIdList;
//-----------------------------------------------------------------------------
//
// The tessellation object
class VTKCOMMONDATAMODEL_EXPORT vtkSimpleCellTessellator : public vtkGenericCellTessellator
{
public:
static vtkSimpleCellTessellator *New();
vtkTypeMacro(vtkSimpleCellTessellator,vtkGenericCellTessellator);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Get the higher order cell in order to access the evaluation function.
vtkGetObjectMacro(GenericCell, vtkGenericAdaptorCell);
// Description:
// Tessellate a face of a 3D `cell'. The face is specified by the
// index value.
// The result is a set of smaller linear triangles in `cellArray' with
// `points' and point data `internalPd'.
// \pre cell_exists: cell!=0
// \pre valid_dimension: cell->GetDimension()==3
// \pre valid_index_range: (index>=0) && (index<cell->GetNumberOfBoundaries(2))
// \pre att_exists: att!=0
// \pre points_exists: points!=0
// \pre cellArray_exists: cellArray!=0
// \pre internalPd_exists: internalPd!=0
void TessellateFace(vtkGenericAdaptorCell *cell,
vtkGenericAttributeCollection *att,
vtkIdType index,
vtkDoubleArray *points,
vtkCellArray *cellArray,
vtkPointData *internalPd);
// Description:
// Tessellate a 3D `cell'. The result is a set of smaller linear
// tetrahedra in `cellArray' with `points' and point data `internalPd'.
// \pre cell_exists: cell!=0
// \pre valid_dimension: cell->GetDimension()==3
// \pre att_exists: att!=0
// \pre points_exists: points!=0
// \pre cellArray_exists: cellArray!=0
// \pre internalPd_exists: internalPd!=0
void Tessellate(vtkGenericAdaptorCell *cell,
vtkGenericAttributeCollection *att,
vtkDoubleArray *points,
vtkCellArray *cellArray,
vtkPointData *internalPd );
// Description:
// Triangulate a 2D `cell'. The result is a set of smaller linear triangles
// in `cellArray' with `points' and point data `internalPd'.
// \pre cell_exists: cell!=0
// \pre valid_dimension: cell->GetDimension()==2
// \pre att_exists: att!=0
// \pre points_exists: points!=0
// \pre cellArray_exists: cellArray!=0
// \pre internalPd_exists: internalPd!=0
void Triangulate(vtkGenericAdaptorCell *cell,
vtkGenericAttributeCollection *att,
vtkDoubleArray *points,
vtkCellArray *cellArray,
vtkPointData *internalPd);
// Description:
// Reset the output for repeated use of this class.
void Reset();
// Description:
// Initialize the tessellator with a data set `ds'.
void Initialize(vtkGenericDataSet *ds);
// Description:
// Return the number of fixed subdivisions. It is used to prevent from
// infinite loop in degenerated cases. For order 3 or higher, if the
// inflection point is exactly on the mid-point, error metric will not
// detect that a subdivision is required. 0 means no fixed subdivision:
// there will be only adaptive subdivisions.
//
// The algorithm first performs `GetFixedSubdivisions' non adaptive
// subdivisions followed by at most `GetMaxAdaptiveSubdivisions' adaptive
// subdivisions. Hence, there are at most `GetMaxSubdivisionLevel'
// subdivisions.
// \post positive_result: result>=0 && result<=GetMaxSubdivisionLevel()
int GetFixedSubdivisions();
// Description:
// Return the maximum level of subdivision. It is used to prevent from
// infinite loop in degenerated cases. For order 3 or higher, if the
// inflection point is exactly on the mid-point, error metric will not
// detect that a subdivision is required. 0 means no subdivision,
// neither fixed nor adaptive.
// \post positive_result: result>=GetFixedSubdivisions()
int GetMaxSubdivisionLevel();
// Description:
// Return the maximum number of adaptive subdivisions.
// \post valid_result: result==GetMaxSubdivisionLevel()-GetFixedSubdivisions()
int GetMaxAdaptiveSubdivisions();
// Description:
// Set the number of fixed subdivisions. See GetFixedSubdivisions() for
// more explanations.
// \pre positive_level: level>=0 && level<=GetMaxSubdivisionLevel()
// \post is_set: GetFixedSubdivisions()==level
void SetFixedSubdivisions(int level);
// Description:
// Set the maximum level of subdivision. See GetMaxSubdivisionLevel() for
// more explanations.
// \pre positive_level: level>=GetFixedSubdivisions()
// \post is_set: level==GetMaxSubdivisionLevel()
void SetMaxSubdivisionLevel(int level);
// Description:
// Set both the number of fixed subdivisions and the maximum level of
// subdivisions. See GetFixedSubdivisions(), GetMaxSubdivisionLevel() and
// GetMaxAdaptiveSubdivisions() for more explanations.
// \pre positive_fixed: fixed>=0
// \pre valid_range: fixed<=maxLevel
// \post fixed_is_set: fixed==GetFixedSubdivisions()
// \post maxLevel_is_set: maxLevel==GetMaxSubdivisionLevel()
void SetSubdivisionLevels(int fixed,
int maxLevel);
protected:
vtkSimpleCellTessellator();
~vtkSimpleCellTessellator();
// Description:
// Extract point `pointId' from the edge table to the output point and output
// point data.
void CopyPoint(vtkIdType pointId);
// Description:
//HashTable instead of vtkPointLocator
vtkGenericEdgeTable *EdgeTable;
void InsertEdgesIntoEdgeTable( vtkTriangleTile &tri );
void RemoveEdgesFromEdgeTable( vtkTriangleTile &tri );
void InsertPointsIntoEdgeTable( vtkTriangleTile &tri );
void InsertEdgesIntoEdgeTable( vtkTetraTile &tetra );
void RemoveEdgesFromEdgeTable( vtkTetraTile &tetra );
// Description:
// Initialize `root' with the sub-tetra defined by the `localIds' points on
// the complex cell, `ids' are the global ids over the mesh of those points.
// The sub-tetra is also defined by the ids of its edges and of its faces
// relative to the complex cell. -1 means that the edge or the face of the
// sub-tetra is not an original edge or face of the complex cell.
// \pre cell_exists: this->GenericCell!=0
// \pre localIds_exists: localIds!=0
// \pre localIds_size: sizeof(localIds)==4
// \pre ids_exists: ids!=0
// \pre ids_size: sizeof(ids)==4
// \pre edgeIds_exists: edgeIds!=0
// \pre edgeIds_size: sizeof(edgeIds)==6
// \pre faceIds_exists: faceIds!=0
// \pre faceIds_size: sizeof(faceIds)==4
void InitTetraTile(vtkTetraTile &root,
vtkIdType *localIds,
vtkIdType *ids,
int *edgeIds,
int *faceIds);
// Description:
// Triangulate a triangle of `cell'. This triangle can be the top-level
// triangle if the cell is a triangle or a toplevel sub-triangle is the cell
// is a polygon, or a triangular face of a 3D cell or a top-level
// sub-triangle of a face of a 3D cell if the face is not a triangle.
// Arguments `localIds', `ids' and `edgeIds' have the same meaning than
// for InitTetraTile.
// \pre cell_exists: cell!=0
// \pre localIds_exists: localIds!=0
// \pre localIds_size: sizeof(localIds)==3
// \pre ids_exists: ids!=0
// \pre ids_size: sizeof(ids)==3
// \pre edgeIds_exists: edgeIds!=0
// \pre edgeIds_size: sizeof(edgeIds)==3
void TriangulateTriangle(vtkGenericAdaptorCell *cell,
vtkIdType *localIds,
vtkIdType *ids,
int *edgeIds,
vtkGenericAttributeCollection *att,
vtkDoubleArray *points,
vtkCellArray *cellArray,
vtkPointData *internalPd);
// Description:
// To access the higher order cell from third party library
vtkGenericAdaptorCell *GenericCell;
// Description:
// Allocate some memory if Scalars does not exists or is smaller than size.
// \pre positive_size: size>0
void AllocateScalars(int size);
// Description:
// Scalar buffer used to save the interpolate values of the attributes
// The capacity is at least the number of components of the attribute
// collection ot the current cell.
// Scalar buffer that stores the global coordinates, parametric coordinates,
// attributes at left, mid and right point. The format is:
// lxlylz lrlslt [lalb lcldle...] mxmymz mrmsmt [mamb mcmdme...]
// rxryrz rrrsrt [rarb rcrdre...]
// The ScalarsCapacity>=(6+attributeCollection->GetNumberOfComponents())*3
double *Scalars;
int ScalarsCapacity;
// Description:
// Number of double value to skip to go to the next point into Scalars array
// It is 6+attributeCollection->GetNumberOfComponents()
int PointOffset;
// Description:
// Used to iterate over edges boundaries in GetNumberOfCellsUsingEdges()
vtkGenericCellIterator *CellIterator;
// Description:
// To access the higher order field from third party library
vtkGenericAttributeCollection *AttributeCollection;
// Description:
// To avoid New/Delete
vtkDoubleArray *TessellatePoints; //Allow to use GetPointer
vtkCellArray *TessellateCellArray;
vtkPointData *TessellatePointData;
int FindEdgeReferenceCount(double p1[3], double p2[3],
vtkIdType &e1, vtkIdType &e2);
int GetNumberOfCellsUsingFace( int faceId );
int GetNumberOfCellsUsingEdge( int edgeId );
// Description:
// Is the edge defined by vertices (`p1',`p2') in parametric coordinates on
// some edge of the original tetrahedron? If yes return on which edge it is,
// else return -1.
// \pre p1!=p2
// \pre p1 and p2 are in bounding box (0,0,0) (1,1,1)
// \post valid_result: (result==-1) || ( result>=0 && result<=5 )
int IsEdgeOnFace(double p1[3], double p2[3]);
// Description:
// Return 1 if the parent of edge defined by vertices (`p1',`p2') in
// parametric coordinates, is an edge; 3 if there is no parent (the edge is
// inside). If the parent is an edge, return its id in `localId'.
// \pre p1!=p2
// \pre p1 and p2 are in bounding box (0,0,0) (1,1,1)
// \post valid_result: (result==1)||(result==3)
int FindEdgeParent2D(double p1[3], double p2[3], int &localId);
// Description:
// Return 1 if the parent of edge defined by vertices (`p1',`p2') in
// parametric coordinates, is an edge; 2 if the parent is a face, 3 if there
// is no parent (the edge is inside). If the parent is an edge or a face,
// return its id in `localId'.
// \pre p1!=p2
// \pre p1 and p2 are in bounding box (0,0,0) (1,1,1)
// \post valid_result: result>=1 && result<=3
int FindEdgeParent(double p1[3], double p2[3], int &localId);
// Description:
// Allocate some memory if PointIds does not exist or is smaller than size.
// \pre positive_size: size>0
void AllocatePointIds(int size);
// Description:
// Are the faces `originalFace' and `face' equal?
// The result is independent from any order or orientation.
// \pre originalFace_exists: originalFace!=0
int FacesAreEqual(int *originalFace,
int face[3]);
// Description:
// Dataset to be tessellated.
vtkGenericDataSet *DataSet;
// Description:
// Number of points in the dataset to be tessellated.
vtkIdType NumberOfPoints;
int FixedSubdivisions;
int MaxSubdivisionLevel;
int CurrentSubdivisionLevel;
// Description:
// For each edge (6) of the sub-tetra, there is the id of the original edge
// or -1 if the edge is not an original edge
int *EdgeIds;
// Description:
// For each face (4) of the sub-tetra, there is the id of the original face
// or -1 if the face is not an original face
int *FaceIds;
// The following variables are for complex cells.
// Used to create tetra from more complex cells, because the tessellator
// is supposed to deal with simplices only.
vtkOrderedTriangulator *Triangulator;
// Used to store the sub-tetra during the tessellation of complex
// cells.
vtkCellArray *Connectivity;
// Used to create triangles from a face of a complex cell.
vtkPolygon *Polygon;
// Used to store the sub-triangles during the tessellation of complex cells.
vtkIdList *TriangleIds;
vtkIdType *PointIds;
int PointIdsCapacity;
private:
vtkSimpleCellTessellator(const vtkSimpleCellTessellator&); // Not implemented.
void operator=(const vtkSimpleCellTessellator&); // Not implemented.
//BTX
friend class vtkTetraTile;
friend class vtkTriangleTile;
//ETX
};
#endif
|