This file is indexed.

/usr/include/paraview/vtkParticleTracerBase.h is in paraview-dev 5.0.1+dfsg1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkParticleTracerBase.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkParticleTracerBase - A particle tracer for vector fields
// .SECTION Description
// vtkParticleTracerBase is the base class for filters that advect particles
// in a vector field. Note that the input vtkPointData structure must
// be identical on all datasets.
//
// .SECTION See Also
// vtkRibbonFilter vtkRuledSurfaceFilter vtkInitialValueProblemSolver
// vtkRungeKutta2 vtkRungeKutta4 vtkRungeKutta45 vtkStreamTracer

#ifndef vtkParticleTracerBase_h
#define vtkParticleTracerBase_h

#include "vtkFiltersFlowPathsModule.h" // For export macro
#include "vtkSmartPointer.h" // For protected ivars.
#include "vtkPolyDataAlgorithm.h"
//BTX
#include <vector> // STL Header
#include <list>   // STL Header
//ETX

class vtkAbstractInterpolatedVelocityField;
class vtkAbstractParticleWriter;
class vtkCellArray;
class vtkCharArray;
class vtkCompositeDataSet;
class vtkDataArray;
class vtkDataSet;
class vtkDoubleArray;
class vtkFloatArray;
class vtkGenericCell;
class vtkInitialValueProblemSolver;
class vtkIntArray;
class vtkMultiBlockDataSet;
class vtkMultiProcessController;
class vtkPointData;
class vtkPoints;
class vtkPolyData;
class vtkTemporalInterpolatedVelocityField;

//BTX
namespace vtkParticleTracerBaseNamespace
{
  typedef struct { double x[4]; } Position;
  typedef struct {
    // These are used during iteration
    Position      CurrentPosition;
    int           CachedDataSetId[2];
    vtkIdType     CachedCellId[2];
    int           LocationState;
    // These are computed scalars we might display
    int           SourceID;
    int           TimeStepAge; // amount of time steps the particle has advanced
    int           InjectedPointId;
    int           InjectedStepId;  // time step the particle was injected
    int           UniqueParticleId;
    double        SimulationTime;
    // These are useful to track for debugging etc
    int           ErrorCode;
    float         age;
    // these are needed across time steps to compute vorticity
    float         rotation;
    float         angularVel;
    float         time;
    float         speed;
    // once the partice is added, PointId is valid and is the tuple location
    // in ProtoPD.
    vtkIdType     PointId;
    // if PointId is negative then in parallel this particle was just
    // received and we need to get the tuple value from vtkPParticleTracerBase::Tail.
    vtkIdType     TailPointId;
  } ParticleInformation;

  typedef std::vector<ParticleInformation>  ParticleVector;
  typedef ParticleVector::iterator             ParticleIterator;
  typedef std::list<ParticleInformation>    ParticleDataList;
  typedef ParticleDataList::iterator           ParticleListIterator;
};
//ETX

class VTKFILTERSFLOWPATHS_EXPORT vtkParticleTracerBase : public vtkPolyDataAlgorithm
{
public:
  enum Solvers
  {
    RUNGE_KUTTA2,
    RUNGE_KUTTA4,
    RUNGE_KUTTA45,
    NONE,
    UNKNOWN
  };

  vtkTypeMacro(vtkParticleTracerBase,vtkPolyDataAlgorithm)
  void PrintSelf(ostream& os, vtkIndent indent);
  void PrintParticleHistories();

  // Description
  // Turn on/off vorticity computation at streamline points
  // (necessary for generating proper stream-ribbons using the
  // vtkRibbonFilter.
  vtkGetMacro(ComputeVorticity, bool);
  void SetComputeVorticity(bool);

  // Description
  // Specify the terminal speed value, below which integration is terminated.
  vtkGetMacro(TerminalSpeed, double);
  void SetTerminalSpeed(double);

  // Description
  // This can be used to scale the rate with which the streamribbons
  // twist. The default is 1.
  vtkGetMacro(RotationScale, double);
  void SetRotationScale(double);

  // Description:
  // To get around problems with the Paraview Animation controls
  // we can just animate the time step and ignore the TIME_ requests
  vtkSetMacro(IgnorePipelineTime, int);
  vtkGetMacro(IgnorePipelineTime, int);
  vtkBooleanMacro(IgnorePipelineTime, int);

  // Description:
  // When animating particles, it is nice to inject new ones every Nth step
  // to produce a continuous flow. Setting ForceReinjectionEveryNSteps to a
  // non zero value will cause the particle source to reinject particles
  // every Nth step even if it is otherwise unchanged.
  // Note that if the particle source is also animated, this flag will be
  // redundant as the particles will be reinjected whenever the source changes
  // anyway
  vtkGetMacro(ForceReinjectionEveryNSteps,int);
  void SetForceReinjectionEveryNSteps(int);

  // Description:
  // Setting TerminationTime to a positive value will cause particles
  // to terminate when the time is reached. Use a vlue of zero to
  // diable termination. The units of time should be consistent with the
  // primary time variable.
  void SetTerminationTime(double t);
  vtkGetMacro(TerminationTime,double);

  void SetIntegrator(vtkInitialValueProblemSolver *);
  vtkGetObjectMacro ( Integrator, vtkInitialValueProblemSolver );

  void SetIntegratorType(int type);
  int GetIntegratorType();

  // Description:
  // Setting TerminationTime to a positive value will cause particles
  // to terminate when the time is reached. Use a vlue of zero to
  // diable termination. The units of time should be consistent with the
  // primary time variable.
  vtkGetMacro(StartTime, double);
  void SetStartTime(double t);

  // Description:
  // if StaticSeeds is set and the mesh is static,
  // then every time particles are injected we can re-use the same
  // injection information. We classify particles according to
  // processor just once before start.
  // If StaticSeeds is set and a moving seed source is specified
  // the motion will be ignored and results will not be as expected.
  // The default is that StaticSeeds is 0.
  vtkSetMacro(StaticSeeds,int);
  vtkGetMacro(StaticSeeds,int);

  // Description:
  // if StaticMesh is set, many optimizations for cell caching
  // can be assumed. if StaticMesh is not set, the algorithm
  // will attempt to find out if optimizations can be used, but
  // setting it to true will force all optimizations.
  // Do not Set StaticMesh to true if a dynamic mesh is being used
  // as this will invalidate all results.
  // The default is that StaticMesh is 0.
  vtkSetMacro(StaticMesh,int);
  vtkGetMacro(StaticMesh,int);

  // Description:
  // Set/Get the Writer associated with this Particle Tracer
  // Ideally a parallel IO capable vtkH5PartWriter should be used
  // which will collect particles from all parallel processes
  // and write them to a single HDF5 file.
  virtual void SetParticleWriter(vtkAbstractParticleWriter *pw);
  vtkGetObjectMacro(ParticleWriter, vtkAbstractParticleWriter);

  // Description:
  // Set/Get the filename to be used with the particle writer when
  // dumping particles to disk
  vtkSetStringMacro(ParticleFileName);
  vtkGetStringMacro(ParticleFileName);

  // Description:
  // Set/Get the filename to be used with the particle writer when
  // dumping particles to disk
  vtkSetMacro(EnableParticleWriting,int);
  vtkGetMacro(EnableParticleWriting,int);
  vtkBooleanMacro(EnableParticleWriting,int);

  // Description:
  // Set/Get the flag to disable cache
  // This is off by default and turned on in special circumstances
  // such as in a coprocessing workflow
  vtkSetMacro(DisableResetCache,int);
  vtkGetMacro(DisableResetCache,int);
  vtkBooleanMacro(DisableResetCache,int);

  // Description:
  // Provide support for multiple seed sources
  void AddSourceConnection(vtkAlgorithmOutput* input);
  void RemoveAllSources();

 protected:
  vtkSmartPointer<vtkPolyData> Output; //managed by child classes
  // Description:
  // ProtoPD is used just to keep track of the input array names and number of components
  // for copy allocating from other vtkPointDatas where the data is really stored
  vtkSmartPointer<vtkPointData> ProtoPD;
  vtkIdType UniqueIdCounter;// global Id counter used to give particles a stamp
  vtkParticleTracerBaseNamespace::ParticleDataList  ParticleHistories;
  vtkSmartPointer<vtkPointData>     ParticlePointData; //the current particle point data consistent
                                                       //with particle history
  //Everything related to time
  int IgnorePipelineTime; //whether to use the pipeline time for termination
  int DisableResetCache; //whether to enable ResetCache() method

  vtkParticleTracerBase();
  virtual ~vtkParticleTracerBase();

  //
  // Make sure the pipeline knows what type we expect as input
  //
  virtual int FillInputPortInformation(int port, vtkInformation* info);

  //
  // The usual suspects
  //
  virtual int ProcessRequest(vtkInformation* request,
                             vtkInformationVector** inputVector,
                             vtkInformationVector* outputVector);

  //
  // Store any information we need in the output and fetch what we can
  // from the input
  //
  virtual int RequestInformation(vtkInformation* request,
                                 vtkInformationVector** inputVector,
                                 vtkInformationVector* outputVector);

  //
  // Compute input time steps given the output step
  //
  virtual int RequestUpdateExtent(vtkInformation* request,
                                  vtkInformationVector** inputVector,
                                  vtkInformationVector* outputVector);

  //
  // what the pipeline calls for each time step
  //
  virtual int RequestData(vtkInformation* request,
                          vtkInformationVector** inputVector,
                          vtkInformationVector* outputVector);

  //
  // these routines are internally called to actually generate the output
  //
  virtual int ProcessInput(vtkInformationVector** inputVector);

  // This is the main part of the algorithm:
  //  * move all the particles one step
  //  * Reinject particles (by adding them to this->ParticleHistories)
  //    either at the beginning or at the end of each step (modulo this->ForceReinjectionEveryNSteps)
  //  * Output a polydata representing the moved particles
  // Note that if the starting and the ending time coincide, the polydata is still valid.
  virtual vtkPolyData* Execute(vtkInformationVector** inputVector);

  // the RequestData will call these methods in turn
  virtual void Initialize(){} //the first iteration
  virtual int OutputParticles(vtkPolyData* poly)=0; //every iteration
  virtual void Finalize(){} //the last iteration

  // Description:
  // Method to get the data set seed sources.
  // For in situ we want to override how the seed sources are made available.
  virtual std::vector<vtkDataSet*> GetSeedSources(vtkInformationVector* inputVector, int timeStep);

  //
  // Initialization of input (vector-field) geometry
  //
  int InitializeInterpolator();
  int UpdateDataCache(vtkDataObject *td);

  // Description : Test the list of particles to see if they are
  // inside our data. Add good ones to passed list and set count to the
  // number that passed
  void TestParticles(
    vtkParticleTracerBaseNamespace::ParticleVector &candidates,
    vtkParticleTracerBaseNamespace::ParticleVector &passed,
    int &count);

  void TestParticles(
    vtkParticleTracerBaseNamespace::ParticleVector &candidates, std::vector<int> &passed);

  // Description : Before starting the particle trace, classify
  // all the injection/seed points according to which processor
  // they belong to. This saves us retesting at every injection time
  // providing 1) The volumes are static, 2) the seed points are static
  // If either are non static, then this step is skipped.
  virtual void AssignSeedsToProcessors(
    double time, vtkDataSet *source, int sourceID, int ptId,
    vtkParticleTracerBaseNamespace::ParticleVector &localSeedPoints,
    int &localAssignedCount);

  // Description : once seeds have been assigned to a process, we
  // give each one a uniqu ID. We need to use MPI to find out
  // who is using which numbers.
  virtual void AssignUniqueIds(
    vtkParticleTracerBaseNamespace::ParticleVector &localSeedPoints);

  // Description : copy list of particles from a vector used for testing particles
  // and sending between processors, into a list, which is used as the master
  // list on this processor
  void UpdateParticleList(
    vtkParticleTracerBaseNamespace::ParticleVector &candidates);

  // Description : Perform a GatherV operation on a vector of particles
  // this is used during classification of seed points and also between iterations
  // of the main loop as particles leave each processor domain. Returns true
  // if particles moved between processes and false otherwise.
  virtual bool UpdateParticleListFromOtherProcesses(){return false;}

  // Description : The main loop performing Runge-Kutta integration of a single
  // particle between the two times supplied.
  void IntegrateParticle(
    vtkParticleTracerBaseNamespace::ParticleListIterator &it,
    double currenttime, double terminationtime,
    vtkInitialValueProblemSolver* integrator);

  // if the particle is added to send list, then returns value is 1,
  // if it is kept on this process after a retry return value is 0
  virtual bool SendParticleToAnotherProcess(
    vtkParticleTracerBaseNamespace::ParticleInformation &,
    vtkParticleTracerBaseNamespace::ParticleInformation &, vtkPointData*)
  {
    return true;
  }

  // Description:
  // This is an old routine kept for possible future use.
  // In dynamic meshes, particles might leave the domain and need to be extrapolated across
  // a gap between the meshes before they re-renter another domain
  // dodgy rotating meshes need special care....
  bool ComputeDomainExitLocation(
    double pos[4], double p2[4], double intersection[4],
    vtkGenericCell *cell);

  //
  // Scalar arrays that are generated as each particle is updated
  //
  void CreateProtoPD(vtkDataObject* input);

  vtkFloatArray*    GetParticleAge(vtkPointData*);
  vtkIntArray*      GetParticleIds(vtkPointData*);
  vtkCharArray*     GetParticleSourceIds(vtkPointData*);
  vtkIntArray*      GetInjectedPointIds(vtkPointData*);
  vtkIntArray*      GetInjectedStepIds(vtkPointData*);
  vtkIntArray*      GetErrorCodeArr(vtkPointData*);
  vtkFloatArray*    GetParticleVorticity(vtkPointData*);
  vtkFloatArray*    GetParticleRotation(vtkPointData*);
  vtkFloatArray*    GetParticleAngularVel(vtkPointData*);

  // utility function we use to test if a point is inside any of our local datasets
  bool InsideBounds(double point[]);

  void CalculateVorticity( vtkGenericCell* cell, double pcoords[3],
                           vtkDoubleArray* cellVectors, double vorticity[3] );

  //------------------------------------------------------


  double GetCacheDataTime(int i);
  double GetCacheDataTime();

  virtual void ResetCache();
  void AddParticle(vtkParticleTracerBaseNamespace::ParticleInformation &info, double* velocity);

  // Description:
  // Methods that check that the input arrays are ordered the
  // same on all data sets. This needs to be true for all
  // blocks in a composite data set as well as across all processes.
  virtual bool IsPointDataValid(vtkDataObject* input);
  bool IsPointDataValid(vtkCompositeDataSet* input, std::vector<std::string>& arrayNames);
  void GetPointDataArrayNames(vtkDataSet* input, std::vector<std::string>& names);

  vtkGetMacro(ReinjectionCounter, int);
  vtkGetMacro(CurrentTimeValue, double);

  // Description:
  // Methods to append values to existing point data arrays that may
  // only be desired on specific concrete derived classes.
  virtual void InitializeExtraPointDataArrays(vtkPointData* vtkNotUsed(outputPD)) {}

  virtual void AppendToExtraPointDataArrays(vtkParticleTracerBaseNamespace::ParticleInformation &) {}

  vtkTemporalInterpolatedVelocityField* GetInterpolator();

  // Description:
  // For restarts of particle paths, we add in the ability to add in
  // particles from a previous computation that we will still advect.
  virtual void AddRestartSeeds(vtkInformationVector** /*inputVector*/) {}

 private:
  // Description:
  // Hide this because we require a new interpolator type
  void SetInterpolatorPrototype(vtkAbstractInterpolatedVelocityField*) {}

  // Description:
  // When particles leave the domain, they must be collected
  // and sent to the other processes for possible continuation.
  // These routines manage the collection and sending after each main iteration.
  // RetryWithPush adds a small push to a particle along it's current velocity
  // vector, this helps get over cracks in dynamic/rotating meshes. This is a
  // first order integration though so it may introduce a bit extra error compared
  // to the integrator that is used.
  bool RetryWithPush(
    vtkParticleTracerBaseNamespace::ParticleInformation &info, double* point1,double delT, int subSteps);

  bool SetTerminationTimeNoModify(double t);

  //Parameters of tracing
  vtkInitialValueProblemSolver* Integrator;
  double IntegrationStep;
  double MaximumError;
  bool ComputeVorticity;
  double RotationScale;
  double TerminalSpeed;

  // A counter to keep track of how many times we reinjected
  int ReinjectionCounter;

  // Important for Caching of Cells/Ids/Weights etc
  int           AllFixedGeometry;
  int           StaticMesh;
  int           StaticSeeds;

  std::vector<double>  InputTimeValues;
  double StartTime;
  double TerminationTime;
  double CurrentTimeValue;

  int  StartTimeStep; //InputTimeValues[StartTimeStep] <= StartTime <= InputTimeValues[StartTimeStep+1]
  int  CurrentTimeStep;
  int  TerminationTimeStep; //computed from start time
  bool FirstIteration;

  //Innjection parameters
  int           ForceReinjectionEveryNSteps;
  vtkTimeStamp  ParticleInjectionTime;
  bool          HasCache;

  // Particle writing to disk
  vtkAbstractParticleWriter *ParticleWriter;
  char                      *ParticleFileName;
  int                        EnableParticleWriting;


  // The main lists which are held during operation- between time step updates
  vtkParticleTracerBaseNamespace::ParticleVector    LocalSeeds;

  // The velocity interpolator
  vtkSmartPointer<vtkTemporalInterpolatedVelocityField>  Interpolator;
  vtkAbstractInterpolatedVelocityField * InterpolatorPrototype;

  // Data for time step CurrentTimeStep-1 and CurrentTimeStep
  vtkSmartPointer<vtkMultiBlockDataSet> CachedData[2];

  // Cache bounds info for each dataset we will use repeatedly
  typedef struct {
    double b[6];
  } bounds;
  std::vector<bounds> CachedBounds[2];

  // temporary variables used by Exeucte(), for convenience only

  vtkSmartPointer<vtkPoints> OutputCoordinates;
  vtkSmartPointer<vtkFloatArray>    ParticleAge;
  vtkSmartPointer<vtkIntArray>      ParticleIds;
  vtkSmartPointer<vtkCharArray>     ParticleSourceIds;
  vtkSmartPointer<vtkIntArray>      InjectedPointIds;
  vtkSmartPointer<vtkIntArray>      InjectedStepIds;
  vtkSmartPointer<vtkIntArray>      ErrorCode;
  vtkSmartPointer<vtkFloatArray>    ParticleVorticity;
  vtkSmartPointer<vtkFloatArray>    ParticleRotation;
  vtkSmartPointer<vtkFloatArray>    ParticleAngularVel;
  vtkSmartPointer<vtkDoubleArray>   CellVectors;
  vtkSmartPointer<vtkPointData>     OutputPointData;
  vtkSmartPointer<vtkDataSet>       DataReferenceT[2];
  vtkSmartPointer<vtkCellArray>     ParticleCells;

  vtkParticleTracerBase(const vtkParticleTracerBase&);  // Not implemented.
  void operator=(const vtkParticleTracerBase&);  // Not implemented.
  vtkTimeStamp ExecuteTime;

  unsigned int NumberOfParticles();

  friend class ParticlePathFilterInternal;
  friend class StreaklineFilterInternal;

  static const double Epsilon;
};

#endif