/usr/include/paraview/vtkPKdTree.h is in paraview-dev 5.0.1+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkPKdTree.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*----------------------------------------------------------------------------
Copyright (c) Sandia Corporation
See Copyright.txt or http://www.paraview.org/HTML/Copyright.html for details.
----------------------------------------------------------------------------*/
// .NAME vtkPKdTree - Build a k-d tree decomposition of a list of points.
//
// .SECTION Description
// Build, in parallel, a k-d tree decomposition of one or more
// vtkDataSets distributed across processors. We assume each
// process has read in one portion of a large distributed data set.
// When done, each process has access to the k-d tree structure,
// can obtain information about which process contains
// data for each spatial region, and can depth sort the spatial
// regions.
//
// This class can also assign spatial regions to processors, based
// on one of several region assignment schemes. By default
// a contiguous, convex region is assigned to each process. Several
// queries return information about how many and what cells I have
// that lie in a region assigned to another process.
//
// .SECTION See Also
// vtkKdTree
#ifndef vtkPKdTree_h
#define vtkPKdTree_h
#include "vtkFiltersParallelModule.h" // For export macro
#include "vtkKdTree.h"
class vtkMultiProcessController;
class vtkCommunicator;
class vtkSubGroup;
class vtkIntArray;
class vtkKdNode;
class VTKFILTERSPARALLEL_EXPORT vtkPKdTree : public vtkKdTree
{
public:
vtkTypeMacro(vtkPKdTree, vtkKdTree);
void PrintSelf(ostream& os, vtkIndent indent);
void PrintTiming(ostream& os, vtkIndent indent);
void PrintTables(ostream& os, vtkIndent indent);
static vtkPKdTree *New();
// Description:
// Build the spatial decomposition. Call this explicitly
// after changing any parameters affecting the build of the
// tree. It must be called by all processes in the parallel
// application, or it will hang.
void BuildLocator();
// Description:
// Get the total number of cells distributed across the data
// files read by all processes. You must have called BuildLocator
// before calling this method.
vtkIdType GetTotalNumberOfCells(){return this->TotalNumCells;}
// Description:
// Create tables of counts of cells per process per region.
// These tables can be accessed with queries like
// "HasData", "GetProcessCellCountForRegion", and so on.
// You must have called BuildLocator() beforehand. This
// method must be called by all processes or it will hang.
// Returns 1 on error, 0 when no error.
int CreateProcessCellCountData();
// Description:
// A convenience function which compiles the global
// bounds of the data arrays across processes.
// These bounds can be accessed with
// "GetCellArrayGlobalRange" and "GetPointArrayGlobalRange".
// This method must be called by all processes or it will hang.
// Returns 1 on error, 0 when no error.
int CreateGlobalDataArrayBounds();
// Description:
// Set/Get the communicator object
void SetController(vtkMultiProcessController *c);
vtkGetObjectMacro(Controller, vtkMultiProcessController);
// Description:
// The PKdTree class can assign spatial regions to processors after
// building the k-d tree, using one of several partitioning criteria.
// These functions Set/Get whether this assignment is computed.
// The default is "Off", no assignment is computed. If "On", and
// no assignment scheme is specified, contiguous assignment will be
// computed. Specifying an assignment scheme (with AssignRegions*())
// automatically turns on RegionAssignment.
vtkGetMacro(RegionAssignment, int);
static const int NoRegionAssignment;
static const int ContiguousAssignment;
static const int UserDefinedAssignment;
static const int RoundRobinAssignment;
// Description:
// Assign spatial regions to processes via a user defined map.
// The user-supplied map is indexed by region ID, and provides a
// process ID for each region.
int AssignRegions(int *map, int numRegions);
// Description:
// Let the PKdTree class assign a process to each region in a
// round robin fashion. If the k-d tree has not yet been
// built, the regions will be assigned after BuildLocator executes.
int AssignRegionsRoundRobin();
// Description:
// Let the PKdTree class assign a process to each region
// by assigning contiguous sets of spatial regions to each
// process. The set of regions assigned to each process will
// always have a union that is a convex space (a box).
// If the k-d tree has not yet been built, the regions
// will be assigned after BuildLocator executes.
int AssignRegionsContiguous();
// Description:
// Returns the region assignment map where index is the region and value is
// the processes id for that region.
const int* GetRegionAssignmentMap()
{ return this->RegionAssignmentMap; }
// Description:
/// Returns the number of regions in the region assignment map.
vtkGetMacro(RegionAssignmentMapLength, int);
// Description:
// Writes the list of region IDs assigned to the specified
// process. Regions IDs start at 0 and increase by 1 from there.
// Returns the number of regions in the list.
int GetRegionAssignmentList(int procId, vtkIntArray *list);
// Description:
// The k-d tree spatial regions have been assigned to processes.
// Given a point on the boundary of one of the regions, this
// method creates a list of all processes whose region
// boundaries include that point. This may be required when
// looking for processes that have cells adjacent to the cells
// of a given process.
void GetAllProcessesBorderingOnPoint(float x, float y, float z,
vtkIntArray *list);
// Description:
// Returns the ID of the process assigned to the region.
int GetProcessAssignedToRegion(int regionId);
// Description:
// Returns 1 if the process has data for the given region,
// 0 otherwise.
int HasData(int processId, int regionId);
// Description:
// Returns the number of cells the specified process has in the
// specified region.
int GetProcessCellCountForRegion(int processId, int regionId);
// Description:
// Returns the total number of processes that have data
// falling within this spatial region.
int GetTotalProcessesInRegion(int regionId);
// Description:
// Adds the list of processes having data for the given
// region to the supplied list, returns the number of
// processes added.
int GetProcessListForRegion(int regionId, vtkIntArray *processes);
// Description:
// Writes the number of cells each process has for the region
// to the supplied list of length len. Returns the number of
// cell counts written. The order of the cell counts corresponds
// to the order of process IDs in the process list returned by
// GetProcessListForRegion.
int GetProcessesCellCountForRegion(int regionId, int *count, int len);
// Description:
// Returns the total number of spatial regions that a given
// process has data for.
int GetTotalRegionsForProcess(int processId);
// Description:
// Adds the region IDs for which this process has data to
// the supplied vtkIntArray. Retruns the number of regions.
int GetRegionListForProcess(int processId, vtkIntArray *regions);
// Description:
// Writes to the supplied integer array the number of cells this
// process has for each region. Returns the number of
// cell counts written. The order of the cell counts corresponds
// to the order of region IDs in the region list returned by
// GetRegionListForProcess.
int GetRegionsCellCountForProcess(int ProcessId, int *count, int len);
// Description:
// After regions have been assigned to processes, I may want to know
// which cells I have that are in the regions assigned to a particular
// process.
//
// This method takes a process ID and two vtkIdLists. It
// writes to the first list the IDs of the cells
// contained in the process' regions. (That is, their cell
// centroid is contained in the region.) To the second list it
// write the IDs of the cells which intersect the process' regions
// but whose cell centroid lies elsewhere.
//
// The total number of cell IDs written to both lists is returned.
// Either list pointer passed in can be NULL, and it will be ignored.
// If there are multiple data sets, you must specify which data set
// you wish cell IDs for.
//
// The caller should delete these two lists when done. This method
// uses the cell lists created in vtkKdTree::CreateCellLists().
// If the cell lists for the process' regions do not exist, this
// method will first build the cell lists for all regions by calling
// CreateCellLists(). You must remember to DeleteCellLists() when
// done with all calls to this method, as cell lists can require a
// great deal of memory.
vtkIdType GetCellListsForProcessRegions(int ProcessId, int set,
vtkIdList *inRegionCells, vtkIdList *onBoundaryCells);
vtkIdType GetCellListsForProcessRegions(int ProcessId, vtkDataSet *set,
vtkIdList *inRegionCells, vtkIdList *onBoundaryCells);
vtkIdType GetCellListsForProcessRegions(int ProcessId,
vtkIdList *inRegionCells,
vtkIdList *onBoundaryCells);
// Description:
// Return a list of all processes in order from front to back given a
// vector direction of projection. Use this to do visibility sorts
// in parallel projection mode. `orderedList' will be resized to the number
// of processes. The return value is the number of processes.
// \pre orderedList_exists: orderedList!=0
int ViewOrderAllProcessesInDirection(const double directionOfProjection[3],
vtkIntArray *orderedList);
// Description:
// Return a list of all processes in order from front to back given a
// camera position. Use this to do visibility sorts in perspective
// projection mode. `orderedList' will be resized to the number
// of processes. The return value is the number of processes.
// \pre orderedList_exists: orderedList!=0
int ViewOrderAllProcessesFromPosition(const double cameraPosition[3],
vtkIntArray *orderedList);
// Description:
// An added feature of vtkPKdTree is that it will calculate the
// the global range of field arrays across all processes. You
// call CreateGlobalDataArrayBounds() to do this calculation.
// Then the following methods return the ranges.
// Returns 1 on error, 0 otherwise.
int GetCellArrayGlobalRange(const char *name, float range[2]);
int GetPointArrayGlobalRange(const char *name, float range[2]);
int GetCellArrayGlobalRange(const char *name, double range[2]);
int GetPointArrayGlobalRange(const char *name, double range[2]);
int GetCellArrayGlobalRange(int arrayIndex, double range[2]);
int GetPointArrayGlobalRange(int arrayIndex, double range[2]);
int GetCellArrayGlobalRange(int arrayIndex, float range[2]);
int GetPointArrayGlobalRange(int arrayIndex, float range[2]);
protected:
vtkPKdTree();
~vtkPKdTree();
void SingleProcessBuildLocator();
int MultiProcessBuildLocator(double *bounds);
private:
int RegionAssignment;
vtkMultiProcessController *Controller;
vtkSubGroup *SubGroup;
static char *StrDupWithNew(const char *s);
int NumProcesses;
int MyId;
// basic tables - each region is the responsibility of one process, but
// one process may be assigned many regions
int *RegionAssignmentMap; // indexed by region ID
int RegionAssignmentMapLength;
int **ProcessAssignmentMap; // indexed by process ID
int *NumRegionsAssigned; // indexed by process ID
int UpdateRegionAssignment();
// basic tables reflecting the data that was read from disk
// by each process
char *DataLocationMap; // by process, by region
int *NumProcessesInRegion; // indexed by region ID
int **ProcessList; // indexed by region ID
int *NumRegionsInProcess; // indexed by process ID
int **RegionList; // indexed by process ID
vtkIdType **CellCountList; // indexed by region ID
double *CellDataMin; // global range for data arrays
double *CellDataMax;
double *PointDataMin;
double *PointDataMax;
char **CellDataName;
char **PointDataName;
int NumCellArrays;
int NumPointArrays;
// distribution of indices for select operation
int BuildGlobalIndexLists(vtkIdType ncells);
vtkIdType *StartVal;
vtkIdType *EndVal;
vtkIdType *NumCells;
vtkIdType TotalNumCells;
// local share of points to be partitioned, and local cache
int WhoHas(int pos);
int _whoHas(int L, int R, int pos);
float *GetLocalVal(int pos);
float *GetLocalValNext(int pos);
void SetLocalVal(int pos, float *val);
void ExchangeVals(int pos1, int pos2);
void ExchangeLocalVals(int pos1, int pos2);
float *PtArray;
float *PtArray2;
float *CurrentPtArray;
float *NextPtArray;
int PtArraySize;
int *SelectBuffer;
// Parallel build of k-d tree
int AllCheckForFailure(int rc, const char *where, const char *how);
void AllCheckParameters();
// Description:
// Return the global bounds over all processes. Returns true
// if successful and false otherwise.
bool VolumeBounds(double*);
int DivideRegion(vtkKdNode *kd, int L, int level, int tag);
int BreadthFirstDivide(double *bounds);
void enQueueNode(vtkKdNode *kd, int L, int level, int tag);
int Select(int dim, int L, int R);
void _select(int L, int R, int K, int dim);
void DoTransfer(int from, int to, int fromIndex, int toIndex, int count);
int *PartitionAboutMyValue(int L, int R, int K, int dim);
int *PartitionAboutOtherValue(int L, int R, float T, int dim);
int *PartitionSubArray(int L, int R, int K, int dim, int p1, int p2);
int CompleteTree();
#ifdef YIELDS_INCONSISTENT_REGION_BOUNDARIES
void RetrieveData(vtkKdNode *kd, int *buf);
#else
void ReduceData(vtkKdNode *kd, int *sources);
void BroadcastData(vtkKdNode *kd);
#endif
float *DataBounds(int L, int K, int R);
void GetLocalMinMax(int L, int R, int me, float *min, float *max);
static int FillOutTree(vtkKdNode *kd, int level);
static int ComputeDepth(vtkKdNode *kd);
static void PackData(vtkKdNode *kd, double *data);
static void UnpackData(vtkKdNode *kd, double *data);
static void CheckFixRegionBoundaries(vtkKdNode *tree);
// list management
int AllocateDoubleBuffer();
void FreeDoubleBuffer();
void SwitchDoubleBuffer();
int AllocateSelectBuffer();
void FreeSelectBuffer();
void InitializeGlobalIndexLists();
int AllocateAndZeroGlobalIndexLists();
void FreeGlobalIndexLists();
void InitializeRegionAssignmentLists();
int AllocateAndZeroRegionAssignmentLists();
void FreeRegionAssignmentLists();
void InitializeProcessDataLists();
int AllocateAndZeroProcessDataLists();
void FreeProcessDataLists();
void InitializeFieldArrayMinMax();
int AllocateAndZeroFieldArrayMinMax();
void FreeFieldArrayMinMax();
void ReleaseTables();
// Assigning regions to processors
void AddProcessRegions(int procId, vtkKdNode *kd);
void BuildRegionListsForProcesses();
// Gather process/region data totals
int *CollectLocalRegionProcessData();
int BuildRegionProcessTables();
int BuildFieldArrayMinMax();
void AddEntry(int *list, int len, int id);
#ifdef VTK_USE_64BIT_IDS
void AddEntry(vtkIdType *list, int len, vtkIdType id);
#endif
static int BinarySearch(vtkIdType *list, int len, vtkIdType which);
static int FindNextLocalArrayIndex(const char *n, const char **names, int len, int start=0);
vtkPKdTree(const vtkPKdTree&); // Not implemented
void operator=(const vtkPKdTree&); // Not implemented
};
#endif
|