This file is indexed.

/usr/include/paraview/vtkMatrix3x3.h is in paraview-dev 5.0.1+dfsg1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkMatrix3x3.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
// .NAME vtkMatrix3x3 - represent and manipulate 3x3 transformation matrices
// .SECTION Description
// vtkMatrix3x3 is a class to represent and manipulate 3x3 matrices.
// Specifically, it is designed to work on 3x3 transformation matrices
// found in 2D rendering using homogeneous coordinates [x y w].

// .SECTION See Also
// vtkTransform2D

#ifndef vtkMatrix3x3_h
#define vtkMatrix3x3_h

#include "vtkCommonMathModule.h" // For export macro
#include "vtkObject.h"

class VTKCOMMONMATH_EXPORT vtkMatrix3x3 : public vtkObject
{
  // Some of the methods in here have a corresponding static (class)
  // method taking a pointer to 9 doubles that constitutes a user
  // supplied matrix. This allows C++ clients to allocate double arrays
  // on the stack and manipulate them using vtkMatrix3x3 methods.
  // This is an alternative to allowing vtkMatrix3x3 instances to be
  // created on the stack (which is frowned upon) or doing lots of
  // temporary heap allocation within vtkTransform2D methods,
  // which is inefficient.

public:
  // Description:
  // Construct a 3x3 identity matrix.
  static vtkMatrix3x3 *New();

  vtkTypeMacro(vtkMatrix3x3,vtkObject);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Set the elements of the matrix to the same values as the elements
  // of the source Matrix.
  void DeepCopy(vtkMatrix3x3 *source)
    {vtkMatrix3x3::DeepCopy(*this->Element,source); this->Modified(); }
  static void DeepCopy(double elements[9], vtkMatrix3x3 *source)
    {vtkMatrix3x3::DeepCopy(elements,*source->Element); }
  static void DeepCopy(double elements[9], const double newElements[9]);

  // Description:
  // Non-static member function. Assigns *from* elements array
  void DeepCopy(const double elements[9])
    { this->DeepCopy(*this->Element,elements); this->Modified(); }

  // Description:
  // Set all of the elements to zero.
  void Zero()
    { vtkMatrix3x3::Zero(*this->Element); this->Modified(); }
  static void Zero(double elements[9]);

  // Description:
  // Set equal to Identity matrix
  void Identity()
    { vtkMatrix3x3::Identity(*this->Element); this->Modified();}
  static void Identity(double elements[9]);

  // Description:
  // Matrix Inversion (adapted from Richard Carling in "Graphics Gems,"
  // Academic Press, 1990).
  static void Invert(vtkMatrix3x3 *in, vtkMatrix3x3 *out)
    {vtkMatrix3x3::Invert(*in->Element,*out->Element); out->Modified(); }
  void Invert()
    { vtkMatrix3x3::Invert(this,this); }
  static void Invert(const double inElements[9], double outElements[9]);

  // Description:
  // Transpose the matrix and put it into out.
  static void Transpose(vtkMatrix3x3 *in, vtkMatrix3x3 *out)
    {vtkMatrix3x3::Transpose(*in->Element,*out->Element); out->Modified(); }
  void Transpose()
    { vtkMatrix3x3::Transpose(this,this); }
  static void Transpose(const double inElements[9], double outElements[9]);

  // Description:
  // Multiply a homogeneous coordinate by this matrix, i.e. out = A*in.
  // The in[3] and out[3] can be the same array.
  void MultiplyPoint(const float in[3], float out[3])
    {vtkMatrix3x3::MultiplyPoint(*this->Element,in,out); }
  void MultiplyPoint(const double in[3], double out[3])
    {vtkMatrix3x3::MultiplyPoint(*this->Element,in,out); }

  static void MultiplyPoint(const double elements[9],
                            const float in[3], float out[3]);
  static void MultiplyPoint(const double elements[9],
                            const double in[3], double out[3]);

  // Description:
  // Multiplies matrices a and b and stores the result in c (c=a*b).
  static void Multiply3x3(vtkMatrix3x3 *a, vtkMatrix3x3 *b, vtkMatrix3x3 *c) {
    vtkMatrix3x3::Multiply3x3(*a->Element,*b->Element,*c->Element); }
  static void Multiply3x3(const double a[9], const double b[9],
                          double c[9]);

  // Description:
  // Compute adjoint of the matrix and put it into out.
  void Adjoint(vtkMatrix3x3 *in, vtkMatrix3x3 *out)
    {vtkMatrix3x3::Adjoint(*in->Element,*out->Element);}
  static void Adjoint(const double inElements[9], double outElements[9]);

  // Description:
  // Compute the determinant of the matrix and return it.
  double Determinant() {return vtkMatrix3x3::Determinant(*this->Element);}
  static double Determinant(const double elements[9]);

  // Description:
  // Sets the element i,j in the matrix.
  void SetElement(int i, int j, double value);

  // Description:
  // Returns the element i,j from the matrix.
  double GetElement(int i, int j) const
    {return this->Element[i][j];}

  // Description:
  // Legacy methods. Do not use.
  VTK_LEGACY(double *operator[](const unsigned int i));
  VTK_LEGACY(const double *operator[](unsigned int i) const);
  VTK_LEGACY(bool operator==(const vtkMatrix3x3&));
  VTK_LEGACY(bool operator!=(const vtkMatrix3x3&));
  VTK_LEGACY(void Adjoint(vtkMatrix3x3 &in,vtkMatrix3x3 &out));
  VTK_LEGACY(double Determinant(vtkMatrix3x3 &in));
  VTK_LEGACY(double Determinant(vtkMatrix3x3 *));
  VTK_LEGACY(void Invert(vtkMatrix3x3 &in,vtkMatrix3x3 &out));
  VTK_LEGACY(void Transpose(vtkMatrix3x3 &in,vtkMatrix3x3 &out));
  VTK_LEGACY(static void PointMultiply(const double [9],
                                       const float [3], float [3]));
  VTK_LEGACY(static void PointMultiply(const double [9],
                                       const double [3], double [3]));

  // Descption:
  // Returns true if this matrix is equal to the identity matrix.
  bool IsIdentity();

  // Description:
  // Return a pointer to the first element of the matrix (double[9]).
  double * GetData() { return *this->Element; }

protected:
  vtkMatrix3x3();
  ~vtkMatrix3x3();

  double Element[3][3]; // The elements of the 3x3 matrix

private:
  vtkMatrix3x3(const vtkMatrix3x3&);  // Not implemented
  void operator=(const vtkMatrix3x3&);  // Not implemented
};

inline void vtkMatrix3x3::SetElement(int i, int j, double value)
{
  if (this->Element[i][j] != value)
    {
    this->Element[i][j] = value;
    this->Modified();
    }
}

inline bool vtkMatrix3x3::IsIdentity()
{
  double *M = *this->Element;
  if (M[0] == 1.0 && M[4] == 1.0 && M[8] == 1.0 &&
      M[1] == 0.0 && M[2] == 0.0 && M[3] == 0.0 && M[5] == 0.0 &&
      M[6] == 0.0 && M[7] == 0.0)
    {
    return true;
    }
  else
    {
    return false;
    }
}

#endif